Step Motor **Products**

Overview

Step Motor Products

IDC has a wide range of microstepping products to meet your motion control needs. These products are:

- NextStep[®], S6002 Microstepping Drives
- SmartStep, S6961, S6962 Programmable Microstepping Indexer/Drives
- 961, 962 Stand-alone Programmable Indexers
- 14 step motors ranging from low torque 17 frame single stack to high torque 42 frame step motors
- Microstepping Gearmotors

Microstepping Drives

Consider the NextStep[®] and S6002 high performance microstepping drives for your next application. These drives use innovative anti-resonance technology to achieve clearly superior step motor performance, and improve machine throughput. For a comparison of the NextStep^(R) and S6002, see the table below.

NextStep [®]	S6002
Single Axis	Two Axis
0.1-7.9 amps	0.1-6 amps
Anti-Resonance Circuitry	Anti-Resonance Circuitry
Internal Fan/Heatsink	Conventional Heatsink
Auto-Adjusting Current	Rotary Inductance
Loop	Adjustment
See page G-12	See page G-16

Standalone Programmable Motion Controller and Drive Packages

IDC's SmartStep, S6961 (single axis) and S6962 (two axis) Smart Drives are standalone, packaged, microstepping indexer/drives that were designed for ease of use and to minimize implementation time. When using these products, you can literally have your system up and running in a matter of minutes! Some of the features to be found in these products are:

- Fully integrated motion controller/drive/power supply/operator interface
- High performance microstepping drives that utilize the latest in anti-resonance circuitry to optimize motor performance
- Powerful and flexible IDealTM programming language
- Optional keypad that functions as both a programming tool and an operator interface
- See page G-19 for more information.

Step Motor Systems

Stand-alone Programmable Motion Controllers

For applications that require a stand-alone motion controller, consider the 961 one-axis and 962 two-axis indexers. Some features to be found with the 961/2 are:

- Integrated Motion Controller/Power Supply/Operator Interface/and I/O rack provides the user with an industrial motion control solution
- The 962 allows a user to control servo and stepper drives from the same controller
- Multiple drives can be run from one command signal. Useful for multi-axis applications where each axis is performing identical moves.
- 30 I/O, 8 OPTO 22 I/O slots
- Uses our easy-to-use IDeal[™] programming language
- See page G-42 for more information

Microstepping Motors

IDC has recently expanded our microstepping motor line to 14 motors. IDC's step motor family provides you with:

- Wide range of motor Torque/Speed curves for system optimization
- Motor sizes from 17 to 42 frame
- S series step motors with standard speed/torque ranges, or P, K series step motors with enhanced speed/torque curves
- Optional encoder
- See page G-46 for more information

Microstepping Gearmotors

To provide the exact speed and torque required for your application, an IDC microstepping gearmotor may be the most appropriate solution.

- Both inline and right angle gearmotors available
- IDC microstepping gearmotors come in gear ratios from 3:1 to 700:1
- Both Performance Planetary and Value Planetary gearmotors available providing the user with a wide range of performance
- See page I-1 for more information

Product Description			Maximum Speed
Flouder Description			in/sec [mm/sec]
Electric Cylinder Rod Type		Highest Force (Thrust) Clean, Hydraulic Replacement Compact Cross Section Extends into Work Area	52.5 [1300]
Rodless Screw Drive		High Force (Thrust) High Repeatability Long Travel Load Carrying Capability	40 [1000]
Rodless Belt Drive		Very High Speed Quiet Operation Long Travel Load Carrying Capability	120 [3000]
Linear Servo Module		Highest Speeds Highest Accelerations High Repeatability Low Maintenance, Long Life High Moment Loads	196 [5000]
Cartesian Systems Complete 2 & 3 Axis Assemblies	-	Fully Engineered Multi-Axis Systems Large Work Area — 60 x 108 inches Multiple & Custom Configurations Long Travel	120 [3000]
Positioning Tables		Smoothest Motion High Precision (Straightness & Flatness) Highest Moment Loads High Accuracy XY, XYZ, and XYθ Configurations	51.3 [1300]
Product Description			Maximum Speed rev/sec (rev/min)
Rotary Tables		Accuracy to 3 arc minutes Ratios to 180:1 Low Static Torque Runout to 0.001"	30 [1800] input 0.66 [40] output
Gearmotors		High Value/Low Cost	108 [6500] input

High Input Speeds

Ratio to 700:1

Note 1: Electric Cylinders are designed primarily for thrust applications where loads are supported externally. See engineering section for more details.

Note 2: Thrust ratings are based on mechanical limits rather than motor limits unless indicated.

Note 3: Maximum Speed and Thrust ratings are not necessarily achievable simultaneously.

•

Step Motor Systems

Right Angle & Inline

28 [1650] output

Positioning Products Comparison

Max. Travel

Step Motor Systems

Section

in [mm] [Note 5]	lbs [N] [Note 2]	lbs [N]	in [mm]	ocolion
to 0.0005	5620	[Note 1]	60	<u>A-1</u>
[0.013]	[25000]		[1524]	•
to 0.0005	to 700	300	108	B-1
[0.013]	[3110]	[1335]	[2743]	
				_
to 0.004	300	300	108	B-1
[0.1]	[1335]	[1335]	[2734]	
				_
to 0.0003	80 Contin.	300	57.5	C-1
[0.008]	[358]	[1335]	[1462]	
[Note 4]	281 Peak			_
	[1250]			
[Note 6]	[Note 6]	to 150	60 x 108	D-1
		[667]	[1524 x 2743]	
				_
to 0.00016	to 234	to 1482	to 60	E-1
[0.004]	[1041]	[6592]	[1524]	
bi-directional				
Repeatability	Axial Load Ibs (N)	Radial Load Ibs (N)	Diameter	Section
0.2 arc minutes	to 214	to 108	6 to 12 inches	E-1
	[952]	[480]	[152 to 304.8 mm]	
7 to 25 arc minutes	to 1260	to 1260	Frame Size	I-1
	[5605]	[5605]	17, 23, 34, 42	

Max. Thrust

Max. Payload

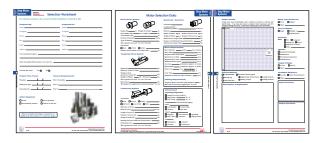
Note 4: Repeatability is dependent on encoder resolution, load, friction, settling time and gain settings in the servo control. Note 5: Repeatability is uni-directional unless otherwise specified.

Note 6: Cartesian systems can be configured using a combination of IDC technologies. Repeatability and Max. Thrust are dependent on the technology selected.

Repeatability

G-5 Idc

Selection Checklist


The following steps describe the process of selecting a microstepping system which matches your

MicroStepping System

Selection Checklist

application requirements.

1) Complete the Product Selection Worksheet (pages G-8 through G-10)

2) Peak Speed Requirement (see Engineering Section)

In order to calculate the peak speed of the motor, your mechanical system must be known, or you must make an assumption as to which mechanical system will meet your application's requirements. Calculate the peak speed required for your motor to complete the desired motion profile. Several motion profiles are covered in the Engineering Section. One commonly chosen motion profile is the triangular profile.

Formula: Triangular Move Profile (peak speed = average speed x 2).

Sample Calculation:

Desired Motion: Move 5 revolutions in 0.2 seconds Peak Speed Requirement: (5 revolutions ÷ 0.2 seconds) x 2 = 50 revolutions/second

3) Peak Torque Requirement (see Engineering Section)

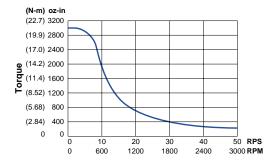
Determine the peak torque requirement for your motor to complete the desired motion profile. Adjust your peak torque requirement by 30% to include the recommended safety factor for step motor systems.

Formula: Peak Torque = $T_{applied} + T_{gravity} + T_{accel} + T_{friction}$

Sample Calculation: Peak torque = 10 + 50 + 250 + 20 = 330 oz-in

Sample Calculation:

330 oz-in x 1.3 = 429 oz-in (required for selection of step motor)


Selection

Checklist

4) Select Torque-Speed Curve

Search through the motor performance curves on pages G-47 through G-60 to find a step motor which meets your application's torque and speed requirements.

K42 Motor Torque/Speed Curve

5) Decide which IDC step motor control system is most appropriate for your application.

IDC offers microstepping drives, programmable microstepping indexer/drive systems, and motion controllers.

- NextStep[®] Microstepping Drive—see page G-12.
- S6002 Two-Axis MicroStepping Drive—see page G-16.
- SmartStep MicroStepping Indexer/Drive—see page G-26.
- S6961, S6962 One- or Two-Axis MicroStepping Indexer/Drive—see page G-32.
- 961, 962 One- or Two-Axis Packaged Standalone Indexer—see page G-42.

6) Decide if a gearmotor is appropriate.

A gearmotor may be more appropriate for your application than simply a motor-only solution. The information needed to make this determination can be found by reviewing:

- Motor Specifications, pages G-47 through G-60
- Gearhead Specifications, Section I
- Gearmotor How-to-Order, page I-1
- Motor How-to-Order, page G-46

7) Proceed to Motor and Control How-to-Order Pages

You have now selected the IDC step motor and step motor control system most appropriate for your application. Proceed to the Motor *How-to-Order* page (G-46) and the *How-to-Order* page for the IDC control system you selected.

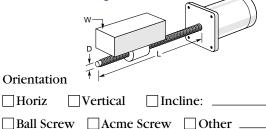
Step Motor Systems

Selection Worksheet

For selection assistance, fax, to your local IDC Distributor or directly to IDC

Prepared By Name	Prepared For Name
	Company
	Phone
	Fax
	E-mail
	Address
Type of machine IDC product to be used on	
Current IDC user? Yes No	
Project Time Frame Volume	Requirements
Proposal / / Next 12 n	nonths:
Build prototype/ / Year 2:	
In production / / Year 3:	
Action Required Demo Price quotation Recommend product Call me to discuss	
Please include drawings, comments or additional information on separate pages.	

Motor Selection Data


Selection Worksheet

Step Motor Systems

Direct Drive System Radius (R):_____ in Weight of Cylinder _____ oz Inner Radius (R1) _____ in Length (L) _____ in __ in Outer Radius (R2) Density of Material _____ oz/in³ Type of Material _____ Will a gearbox be used? Yes/No/Not Sure Orientation Horiz Vertical Incline: Distance from Cylinder CL to Motor Face _____ in **Tangential Drive System** Radius (R)_ __ in Efficiency of belt or chain _____ Weight of load plus belt or chain (W) _____ lbf Weight of Pulleys _____ lbf Friction (F) _____ lbf Will a gearbox be used? Yes / No / Not Sure ____ lbf Belt Tension

Will pulleys be supported by external bearings? Yes / No

Leadscrew System

Horiz Vertical Incline:	
Ball Screw Acme Screw Other	
Efficiency of Screw	
Pitch of Screw	_revs/in
Length of Screw (L)	in
Diameter of Screw (D)	in

Weight of Load (W) _____ lbf

Running Friction Coefficient (Load/Surface)

Breakaway Force ____ ____lbf

Will a gearbox be used? Yes / No / Not Sure

Gearhead / Geartrain

Gear Ratio	- 61
Gearhead Inertia (reflected to pinion)	oz-in-sec ²
Efficiency	%
Radius of Pinion in	Radius of Driven Gear in
Weight of Pinion oz	Weight of Driven Gear oz
Radial load on output sha	ft lbf
Distance of radial load fro	om gearhead face in
Axial load on output shaf	t lbf

Move Requirements

Move Distance inches revs of motor
Move Time secs
Required Motor Peak Speed rev/s
Required Accel Time secs
Required Decel Time secs
Minimum Motor Speed rev/s
Accuracy arcminutes, degrees, or inches
Repeatability arcminutes, degrees, or inches
Duty Cycle (%) $\left(\frac{\text{Time in Motion}}{\text{Total Cycle Time}} \right)$
Cycle Time secs
Maximum Continuous Time in Motion secs

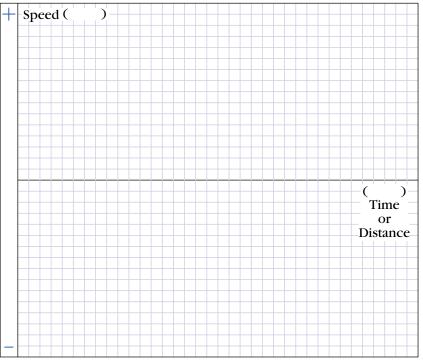
Cabling Requirements

Length of Motor / Encoder Cable Required _____ ft Will cable be moving in application? Yes/No

E

Environment
Operating Temperature
□ Normal 32-140°F [0-60°C]
\square High Temp °F / °C
\Box Low Temp °F / °C
Contaminants (Check all that apply)
Solid:
\Box non-abrasive \Box coarse chips
□ abrasive □ fine dust
Liquid:
□ dripping □ non-corrosive □ splashing
\Box mist / spray \Box corrosive \Box high pressure

Conditions


☐ Washdown □ Outdoor Cleanroom □ Vacuum

Selection Worksheet

Motion Profile

Graph your most demanding cycle, include accel/decel, velocity and dwell times. You may also want to indicate load variations and I/O changes during the cycle. Label axes with proper scale and units.

Control Method

Programmable	External Control Signal	
🗌 Manual Jog	□ Digital (Step & Direction)	□ Analog V
Limit Switches	□ Analog Torque	□ Analog P

/elocity Position

g **Description of Application**

Motor Type Preferred

Servo	□ Stepper	
Other _		

Axes of Motion

Singl	e 🗌 Multiple #
	Synchronized
Interf	ace
Host	PLC Computer
	Analog I/O RS232
	Digital I/O Control
	Other
Operat	or
Keyp	ad/LCD Display
Push	buttons
Poter	ntiometer/Joystick
🗌 Thun	nbwheels

Supply Voltage

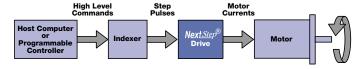
110 AC 220 AC Other _

Feedback Required

Encoder Linear Potentiometer

Other _____

Inpu	t Functions
Out	out Functions



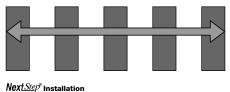
NextStep[®] in Functionality and Flexibility

- Operates from standard line voltages of 120 VAC & 240 VAC
- Accepts step & direction or optional CW/CCW step input
- Descriptive tri-color diagnostic LEDs
- Eight user-selectable drive resolutions of up to 50,000 steps/ rev with additional resolutions optional
- Achieves peak step motor performance from the motor supplier of your choice
 - 160 VDC bus voltage (120 version) with selectable motor current setting of up to 7.9 amps

Indexer, Drive, Motor Diagram

Compatible Mechanics:

EC2-S, EC3-S, EC4-S, EC5-S, NV-S, N2-S, R2A-S, R3-S, R4-S Positioning Tables



- 320 VDC bus voltage (240 version) with selectable motor current setting of up to 3.9 amps
 - Available with high torque 17, 23, 34, & 42 frame step motors
 - Adjustable motor current waveform for optimal smoothness, and step to step accuracy
- Built in regenerative circuit safely dissipates energy from large inertial loads

NextStep® Microstepping Drive

Step Motor Systems

Typical Multi-Axis Installation

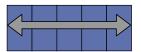


Figure 1. The latest technology in power electronics allows multiple NextStep[®] drives to be mounted side-by-side for the most efficient use of panel space.

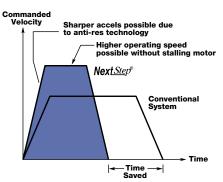


Figure 2. Higher acceleration rates and operating speeds result in better cycle times, higher through-put and better productivity.

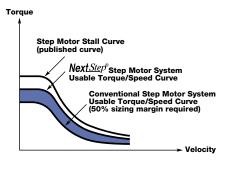


Figure 3. The NextStep[®] drive provides more usable torque from a given motor than any other microstepping drive on the market today, and generates a significantly better speed/torque curve than conventional step motor systems.

NextStep[®] in Innovation

- The microstepping industry's first Auto-Adjusting Current Loop delivers more torque at higher speeds for a better speed/torque curve (see Figure 3)
- The NextStep[®]'s proprietary Anti-Resonance circuitry provides optimum motor performance throughout the entire speed range resulting in:
 - The best throughput available in a stepper drive/motor package
 - Less motor vibration and more usable torque
 - Highest acceleration/ deceleration rates possible from the Step Motor (see Figure 2)
 - Overall better Speed/Torque curves delivering more torque at higher speeds (see Figure 3)
 - Smoother performance throughout the entire motion profile
- Internal Cooling Tunnel keeps drive electronics cool and clean for long life (Patent in progress)

• The NextStep[®]'s efficient design allows it to be stacked together dramatically reducing panel space (see Figure 1)

The NextStep® in Quality

- CE, Nus certified
- Guaranteed to be reliable in unpredictable conditions: short circuit, over temperature, under voltage, and motor regenerative energy protected
- IDC's innovative internal cooling tunnel keeps drive electronics cool & clean for many years of reliable operation and performance
- The user selectable REST switch reduces motor current when your drive is powered, but not in use, reducing both the drive and motor temperature
- The NextStep[®] uses the latest in surface mount technology and energy efficient hybridized power circuitry

- All NextStep[®] drives undergo rigorous testing and burn-in processes prior to shipment
- The NextStep[®] is backed by IDC with a two year warranty

and the NextStep® in Value!

- Dollar for Dollar, square inch for square inch, the best throughput available in a stepper drive/motor package
- Designed for quick and easy installation & operation
- Built in power supply and compact design saves the user time and valuable panel space
- Accessible and removable screw terminal connectors for easy wiring
- Removable connectors are conveniently located on top and bottom of drive for clean panel layout
- Compact design and "stackability" minimizes required panel space (see Figure 1)
- Best Drive Power Density in the Microstepping Industry!

G-13 Idc

90-120 VAC Single Phase, 50/60 Hz

6 amps, drive will fold back current

to 6 amps when the motor is at rest

500 VA max, @ 7.9 amp setting

0-7.9 amps, 0.1 amp increments

If current setting is higher than

NextStep®

160 VDC nominal

200, 400, 1000, 2000

inductance step motor.

20 kHz

Specifications

5000, 10000, 18000, 20000, 25000, 25400, 36000, 50000

2 phase, hybrid permanent magnet, 1.8° full step

Amp disabled if heatsink exceeds 65° C

smoothness and step-to-step accuracy.

NextStep®-240

100-240 VAC Single Phase, 50/60 Hz

500 VA max, @ 3.9 amp setting

0-3.9 amps, 0.1 amp increments

No automatic current fold back

feature in NextStep®-240

320 VDC nominal

2-60 mH for NextStep®; 8-240 mH for NextStep®-240. Motor inductance less than

10 mH set dipswitch to low. Greater than or equal to 10 mH set to high. Combines with Auto Adjusting Current Loop to optimize performance of any

Amp disabled if phase to phase, or phase to ground short detected

Amp disabled if interlock connection is broken on motor connector

VAC input voltage, or 440 VDC for 240 VAC input voltage

step pulse. Reduces drive and motor temperature

step pulse. Reduces drive and motor temperature.

Amp disabled if supply drops below 90 VAC (100 VAC for -240 version)

Amp disabled if regen condition causes bus voltage to exceed 220 VDC for 120

Switch Selectable. If selected, will reduce motor current to 1 amp after no motion

Switch Selectable. If selected will reduce current to 75% of drive setting if no step

pulses are received for 10 ms. Full current level will resume upon receipt of next

Switch Selectable. Configures the shape of the current waveform. Default is pure

sinusoid. Turning switch On changes waveform to -4% 3rd harmonic. Optimizes

has occurred for 20 minutes. Full current level will resume upon receipt of next

AC Power Input

Motor Current

Bus Voltage Standard Resolutions Low Resolution Option

Motor Compatibility

Type Inductance

Amplifier

Switching Frequency Protection Short Circuit Brownout (Under Voltage) **Over Temperature** Interlock Regen/Over Voltage

Rest (Current Settings)

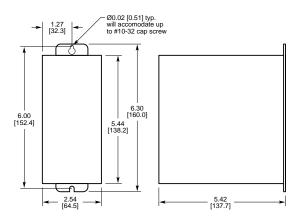
Idle (Current Settings)

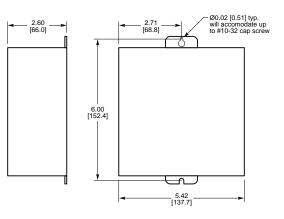
Waveform

Step Motor Systems

Command Interface

Inputs


Inputs	Step, direction, and shutdown are optically isolated. (6.5 ma min, 15 ma max) CW/CCW mode is optional & must be ordered from the factory.
Step	250 nsec min width, 2 Mhz max pulse rate, triggered on rising edge
Direction	Logic Low = CW rotation, High = CCW rotation. Direction of motor rotation
	(CW/CCW) is determined by looking down the motor towards the load. A 0.4 μ s set up time is required after a direction change before next step pulse is sent to the drive.
Shutdown	Current Conducting = Amp Disabled, Current not Conducting = Amp Enabled
Fault Output	Optically isolated NPN, Collector (Fault+) and Emitter (Fault-) connections available.
	Fault output is normally ON (current flowing)
LED Indications	Steps Received, Direction Received, Over-Voltage, Thermal Shutdown, Under Voltage, Interlock, Regen, Short Circuit
Environment	
Operating Ambient Temp. Storage Temperature Humidity Dimensions	Max. ambient temperature of 50°C (122°F) @ 6 amps current setting -40°C to 80°C (-40°F to 176°F) 0% to 90% non-condensing 5.4 x 5.4 x 2.5 inches



Mounting Dimensions in [mm]

Minimum Width (Standard)

Minimum Depth (must order as an option)

Model	Description	Options	Description
NextStep®	Single axis, 7.9 amp microstepping drive 120 VAC input voltage	LRES	Low drive resolution
NextStep [®] -240	Single axis, 3.9 amp microstepping drive 240 VAC input voltage	CW	CW/CCW option
		MD	Minimum depth mounting option

To confirm your selection, review the checklist on page G-6.

Step Motor Systems

Impulse Microstepping Drive

IDC introduces the Impulse microstepping drive as the newest addition to their family of high performance microstepping drives and controls. The Impulse microstepping drive uses the power of a Digital Signal Processor (DSP) to obtain the ultimate performance out of a stepping motor. Five new advanced motor control functions now are made possible with each providing unparalleled performance. Having 4 amps of available current, up to 34 frame size stepping motors can be powered. With our complete line of motors, electric cylinders, rodless actuators, and precision positioning tables, IDC has the IDeal system for your application.

Overview

CC, C Mus certified

The Impulse Microstepping Drive

Five Key Features

- Open Loop Stall Detect[™] (OLSD[™]) Detect a motor stall without an encoder or resolver
- Multi-Stepping[™] Low resolution step input = 25,600 microsteps out
- Dynamic SmoothingTM Rounds the edges of the move profile (pseudo-S curve)
- Xtreme Smoothness™ Eliminates the motor's natural resonance speeds
- Motion Node option Move capabilities

TWO VERSIONS

Other Features

- Anti-Resonance Best performing and largest range in the industry (7.2°)
- Programmable jog function with dual speed settings
- Current reduction modes with programmable time and reduction amount
- 4 programmable inputs -Jog+, Jog-, Jog Speed, EOT, Move Select, Warm Boot, Stop, Kill
- Programmable output Brake, In Motion, Stalled (in addition to fault output)
- All I/O user configurable to active high or active low operation

- Input resolution, programmable from 200-100,000 step/rev in increments of 200
- DIN rail mountable
- Internal fan powered cooling tunnel
- Ultra compact size and ability to mount tightly together
- 160 VDC Bus voltage for more torque at higher speeds
- Built in regenerative circuit
- Diagnostic LED
- Configurable with Application Developer software or FP100 keypad (shown above)

2

Avoid the Chance of an Undetected Stall with Open Loop Stall Detect™

Open Loop Stall Detect™

- Know when the motor stalls
- Eliminate cost of encoder or resolver
- Reduces overall length of motor
- Simplifies wiring
- Reduces setup time

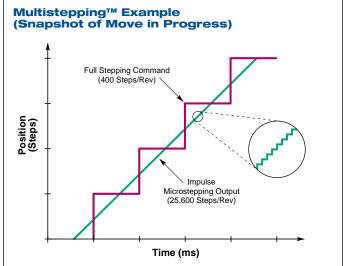
The Impulse eliminates the need for feedback to detect motor stalls. No encoder or resolver is required! The Impulse's DSP has the brains and processing power to know when a motor stall occurs. It achieves this in a true open loop configuration. The drive's advanced algorithms continually monitor the back EMF of the motor and use a proprietary method to accurately determine if a motor slips even one tooth count.

Encoders

Resolvers

The motor only needs to be rotating at 0.5 rev/sec or higher in order to generate sufficient back EMF. There are no complicated or time consuming tests or setup configuration that need to be performed to determine gain settings. All of our motors have been thoroughly tested and configured, so that it simply works right out of the box. OLSDTM allows you to have the comfort of a closed loop system, but without the added cost.

Industrial Devices Corporation 707-789-1000 • www.idcmotion.com • 24 hour info by fax 916-431-6548


Obtain the Benefits of Microstepping with a Low Frequency Command Signal

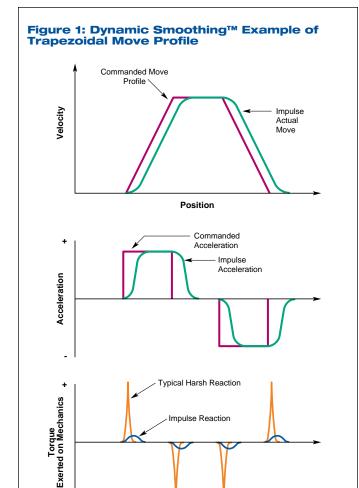
MultiStepping™

- Eliminates the cost of high frequency motion controller
- Gives motor more usable torque
- Dramatic reduction of vibration
- Simple and cost effective upgrade from full or half stepping to microstepping (no changes to original machine programming code required)

With the development of MultiStepping[™], you can now use a low frequency output signal and obtain the benefits of microstepping. The Impulse can internally interpolate a low input resolution and output high frequency microstepping to the motor. For example, if the input resolution is 200 steps/rev, MultiStepping[™] allows the Impulse to take multiple steps in between these large steps so that the motor is actually rotating at 25,600 steps/rev. Any input resolution that is a multiple of 200 can be used, since all the drive's settings are configured in the DSP. By microstepping, the motor's resonance is dramatically reduced and the motor will have more usable torque to move the load. By having more usable torque the motor will be capable of higher accelerations and faster velocities, which directly corresponds to increased throughput and overall better machine operation. Also, it provides much quieter and smoother operation. You can easily upgrade existing full of half stepping systems and get the advantages of microstepping without rewriting any software code or changing the motion controller.

Impulse Microstepping Drive

Step Motor Systems

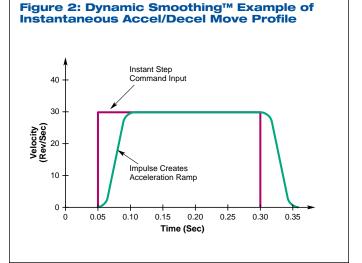

Profile Rounding Provides Smooth Operation

Dynamic Smoothing™

- Smooth motion
- Extends life of mechanics
- Reduce motion controller cost
- Simplify PLC programming

Dynamic Smoothing[™] makes programming a motion profile very simplistic and can extend the life of the machine's mechanics. It rounds off the edges of the commanded motion profile, like an S-curve. This softens the blows to the mechanics at the transition points, which is where significant mechanical wear takes place. Mechanical wear happens at these points because large amounts of torque are abruptly exerted to the mechanics in order to start or stop

the system. By rounding the motion profile, it eliminates the jarring to the system. This is analogous to a passenger riding in an automobile. If the driver suddenly presses the gas pedal, the passenger will be jerked back into the seat and conversely if the driver quickly slams on the brake, the passenger will be jerked forward. This puts the passenger under significant stress. A good driver would gradually press on the gas to ramp the car up to speed and also carefully apply the brake when it is time to stop. The passenger in this vehicle will be able to sustain a much longer ride (Figure 1). Of course, this adds a slight delay to getting to the end position but the end of move ringing is eliminated because of the



gentle stop, so the motor is actually settled in position sooner. Also, with Dynamic Smoothing[™] the motor can obtain higher accelerations and shorten the overall move time. The extent of the profile rounding is completely adjustable through

the use of a gain setting, so that the optimal setting for the machine can be found. Since the drive maintains an internal position counter and is only rounding the commanded profile no steps are ever lost.

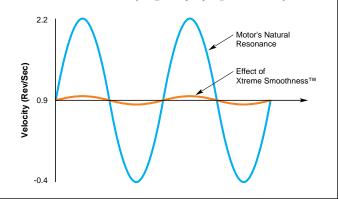
Dynamic Smoothing[™] can be taken one step further. Traditionally, a move profile requires an acceleration rate and deceleration rate in addition stream of pulses to the Impulse. The Impulse will create it's own accel and programmable control.

to the velocity and final position to be programmed. With the advent of Dynamic Smoothing[™], one doesn't even need to program an accel or decel ramp anymore. A generic PLC output can simply be used to send a decel ramps to correctly move the motor to the commanded position (Figure 2). This allows simplistic programming in a PLC or any other

Get Servo-Like Smoothness from a Stepping Motor

Xtreme Smoothness™

- Eliminates natural low speed motor resonance
- Allows smooth motor operation at low velocities
- Saves cost of gear reducer typically required to operate in the speed ranges of 1-4 rps


Never again will stepping motors be plagued with low speed resonance. All stepping motors have natural resonance speeds that cause the motor to vibrate and usable torque to be lost. Even with standard microstepping techniques, smoothness of motion is still compromised in the 1 to 4 rev/sec range. Torque loss and vibration at these velocities is very evident. If operation at these speeds is required, an expensive gear reducer typically will be needed. Many times this would be discovered after the machine had already been built. Even accelerating through these

ranges quickly can cause motor stalls under certain circumstances. The Impulse has the ability to eliminate these resonances altogether. So you'll never be caught with resonance speed problems again. Through the use of proprietary advanced waveform

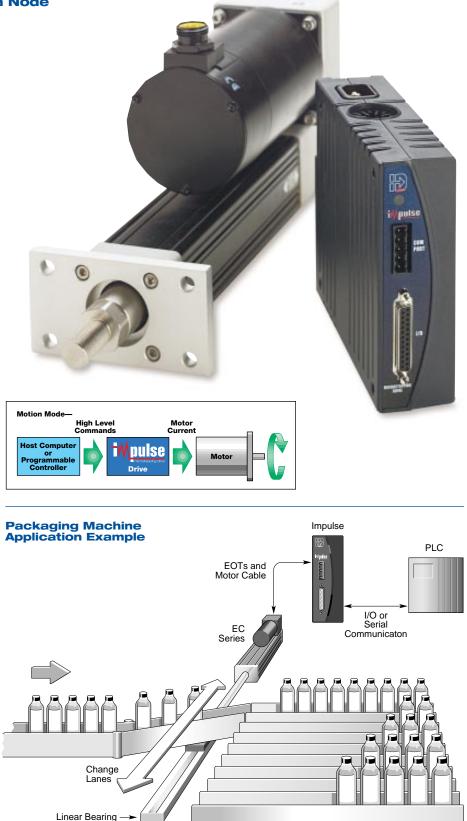
alteration techniques, the Impulse will turn even the most resonant motor into servo-like smoothness.

Velocity Ripple Example

At resonance speeds, the motor's rotor can actually be moving in the negative direction at times even though the average velocity is positive. Xtreme SmoothnessTM reduces this resonance frequency by up to a 50:1 factor.

Impulse Microstepping Drive

Step Motor Systems


Turn the Impulse into a Motion Node

Motion Node Option

- No programming language to learn
- Simple and cost effective method of controlling motion
- Designed for use with PLC

The Motion Node option adds user definable move capabilities to the Impulse. This can eliminate the need for a programmable motion controller to solve certain applications. The moves are simply configured by defining four parameters: acceleration, deceleration, position, and velocity. There is no programming language to be learned. It's as easy as simply filling in the four move parameter boxes. The Impulse has an internal position counter, so it always knows the position of the motor. Therefore, the moves can be incremental or absolute or even a mix of each. A homing routing also can be defined.

There are two methods of triggering the moves. They can be either triggered via binary input selects or over the communication port using RS232 or RS485. When using the binary input select method, up to seven preset moves can be stored in the Impulse. The first three inputs are then configured for the move select function and the fourth input is typically used for homing and EOT switches. When using the RS232/485 communication port, the preset moves can simply be triggered with a command. The host also can download and execute new moves to the Impulse continually, so that there is no limit on the number of positions attainable.

Power Requirements

Current Output Range

Motor Inductance Range

Input Resolution

Step & Direction Inputs

Input Voltage Input Current Setup Time (Direction) Max. Frequency (Step)

Shutdown Input

Single-Ended Mode Input Voltage (VDC) Differential Mode (VDC between + and -) Input Current (any terminal @ 0 V to Gnd)

Digital Inputs

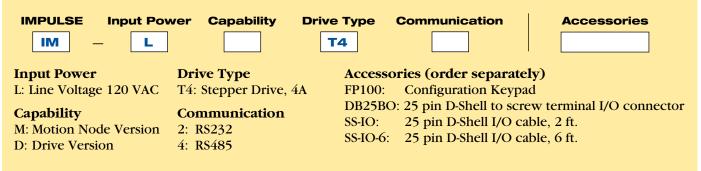
Input Voltage

Digital Outputs

Current Sink (ON state, Max.) Output Voltage (ON state @ 100 mA Max.) Off Voltage (OFF state)

Environmental

Operating Ambient Temperature Storage Temperature Relative Humidity (Max.) Altitude Above Sea Level


Thermal Characteristics

Cooling Heat Dissipation @ 4 A (typical) Dimensions (inches [mm])

Weight

*External current-limiting resistor required 12 V and 24 V power supply connections. Use 560 Ω , 1/4 W resistor for 12 V connection. Use 1.3 K Ω resistor for 24 V connection.

How To Order

Note: Application Developer configuration software included.

90 to 120 VAC single phase, 50/60 Hz, 500 VA max @ 4A

0.75 to 4.0 Amps

2 to 80 mH

200 to 100,000 in increments of 200

5 to 24* VDC 5 to 15 mA 250 ns 2 MHz

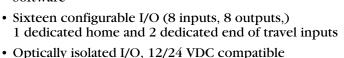
HIGH: 3.5 V min. to 5 V max.; LOW: 0 V min. to 1.5 V max. HIGH: 2 V min. to 5 V max.; LOW -5 V min. to -2 V max. -1 mA to 15 mA

HIGH: 3 V min. to 24 V max.; LOW: 0 V min. to 1.5 V max.

100 mA 0.4 V 24 V

0 to 50°C -40 to 80°C 95% non condensing 10,000 ft. [3,048 m]

Internal fan 32 W H = 5.60 [142]; W = 1.78 [45]; D = 6.37 [162] 1.75 lbs. [0.794 kg] Please see our 800+ page catalog for specifications on our mechanical system and motor offerings. Our complete catalog is online at www.idcmotion.com.



IDC's SmartStep is a complete, packaged microstepping drive/control that provides a user friendly system, as well as many compelling features and benefits. Consider a SmartStep when your application requires:

- **High Throughput.** The SmartStep has the same outstanding dynamic performance as the NextStep microstepping drive which incorporates the latest in Anti-Resonance technology to maximize the torque, and optimize the performance of step motors.
- Ease of Integration. The SmartStep uses IDC's IDeal[™] programming language, and Application Developer software package which simplifies system set-up and integration.
- **Small Panel Space.** The SmartStep has an internal heatsink and fan which keeps the panel space required for each unit small, and allows multiple units to be stacked together in multi-axis applications.
- **Smoother performance** across the entire motion profile.
- Up to 8 amps of motor current. The SmartStep is compatible with both standard and enhanced 23 frame to 42 frame step motors.

Additional SmartStep Features

- CE rated
- Flash memory allows the SmartStep to be completely reconfigured from a file obtained via the Internet for easy upgrades of both hardware and firmware
- 60K memory, up to 400 programs standard
- RS-232 communications standard, RS-485 optional
- Operates from 120 VAC standard, or 240 VAC optional
- All system configuration and drive settings are software configurable, which means there are no switches to set
- High Speed Registration input
- Faster microprocessor and data bus improves the SmartStep's computational horsepower compared to the \$6961
- Go Immediate Mode. This mode of operation allows the controller to multitask between motion control and I/O operations
- User scaling of position, velocity, and acceleration
- Descriptive variables, math and conditional branching
- Accepts encoder feedback for Stall Detection, Closed Loop operation, and Position Maintenance
- 1-99 Axis of immediate control via host RS-232C communication

- Compatible with IDC's S series step motors, and P/K series enhanced step motors. See page G44 for more information on IDC step motors
- A handful of accessories simplify integration. See page G18 for information.

• Compatible with IDC's Application Developer

For 23 frame step motor applications IDC has developed the SmartStep23. Some of the features included in the SmartStep23 are:

- The SmartStep23 provides up to 3 amps of current which makes it ideal for 23 frame step motor applications
- Same outstanding dynamic performance as the NextStep microstepping drive
- Operates from 120 VAC

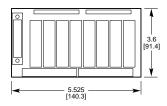
Software

• All the same features and benefits found in the SmartStep

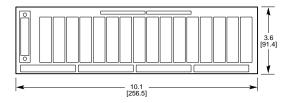
Compatible Actuators:

EC2S, EC3S, EC5S R2S, R3S, R4S Positioning Tables

SmartStep

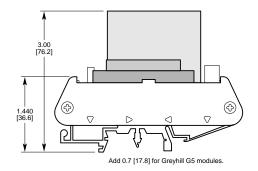

SmartStep

Overview


Optional Keypad

- Both a programming tool and an operator interface
- Menu-Driven set up, On line help function, diagnostic screens, and trace mode provide straightforward set up, troubleshooting, and program debugging
- Easy to read back-lit 40 character display
- · Connects to control or mounts remotely
- Scratch proof, large keys
- Displays current position and I/O status
- Keypad is protected to Nema 4 (IP65) when panel mounted
- See page G-37 for more information on the keypad.

OPTO44 Dimensions

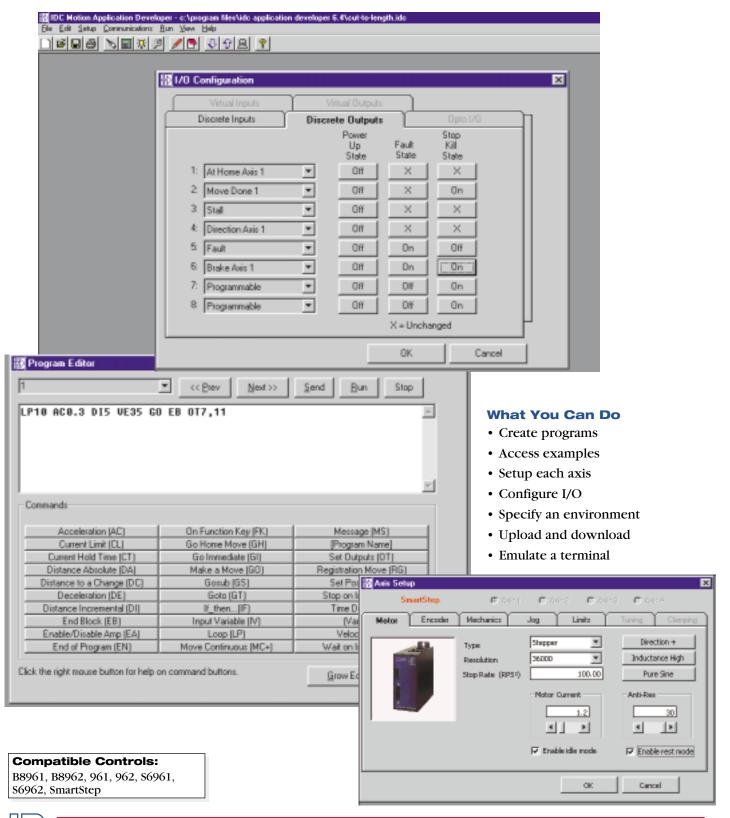


OPTO88 Dimensions

Note: OPTO44 and OPTO88 racks parallel all 16 I/O points to a second set of screw terminals so unconditioned I/O may still be used.

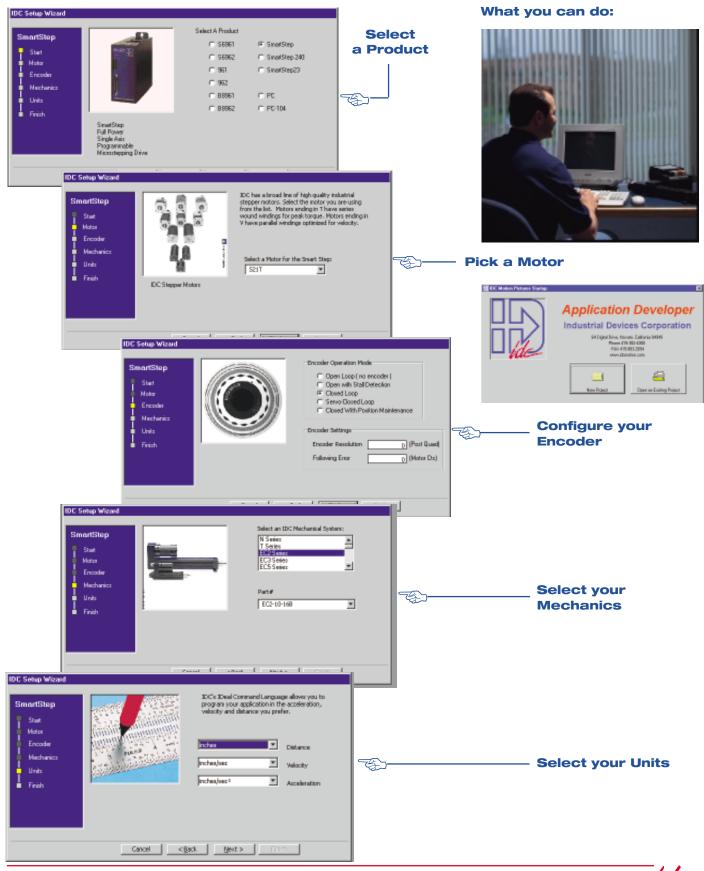
OPTO44/88 Rack Dimensions

- SS-PNP-BO converts connections to screw terminals and conditions outputs to PNP signals
- The DB25BO converts connections to screw terminals
- SS-I/O cable is available as an accessory for wiring the SmartStep to a PLC or industrial PC



Application Developer Software

For those who prefer RS-232C communications, IDC provides Application Developer, a Windowsbased application development tool.



It helps you quickly setup your system, and create programs using your PC. Using Application Developer allows you to download a finished application, or retrieve an existing program from any IDC Smart product.

IDC Setup Wizard Makes Application Configuration Easy!

IDeal[™] Command Language

Our Smart controls are sophisticated and fully featured-quickly and easily programmed with the intuitive IDeal[™] programming language. Below is a partial list of the IDeal command language:

Motion Commands

AC	Acceleration
DA	Distance Absolute
DC	Distance to Change
DE	Deceleration
DI	Distance Incremental
GH	Go Home
GI	Go Immediate
GO	Start Move
GP	Go Point (Linear
	Interpolation)
MC	Move Continuous
RG	Registration
VE	Velocity
Progra	m Flow Commands
BR	Break
EB	End Block
EN	End Routine
FK	Function Key
GS	Go to Subroutine
GT	Go to Program
IF	If Conditional
LP	Loop
LU	Loop Until
LW	Loop While
ST#	Stop on Command
TD	Time Delay
WT	Wait
I/O & I	Display Commands
IV	Input Variable
OT	Outputs On/Off
MS	Message to Keypad
""	Message out Serial Port
Miscel	laneous Commands
{}	Comments
EA	Enable Amplifier
SP	Set Position
SQ	Square Root
ST	Stop Move on Input

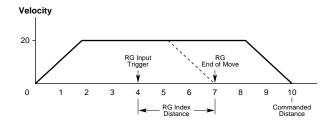
modiate Commande

Serial	Immediate Commands	
CB	Clear Buffer	
Κ	Kill	
S	Stop	
IS	Input Status	
OS	Output Status	
PAC	Tell Commanded Position	
PAE	Tell Encoder Position	
RS	Reset	
SA	Axis Status	
SD	Drive Status	
SS	System Status	
SW	Firmware Version	
UN	Unit Number	
Serial Supervisory Commands		

- Auto Address AA
- DP **Delete Program**
- Download Programs to DR RAM
- **Enable Terminal Echo** EC
- EP **End Program**
- EX End Load All
- LA Load All
- LS List Programs
- **Original Configuration** OC
- **Define Program** PR
- PW Password
- RN Run Program
- UA Upload All
- **Upload Programs** UL

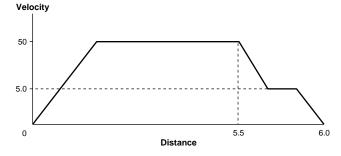
Setup Commands

- AM Acceleration Maximum
- AU Accel/Decel Units
- DF **Display** Format
- DU **Distance Units**
- EM Encoder Mode
 - GR Gear Ratio
- HE Home Edge
- HF Home Final Direction
- Homing Method HM
 - HO Home Offset
- HS Home Switch Type
- ID Input Definition
- MD **Motor Direction**
- VU Velocity Units



Programming Example: Registration

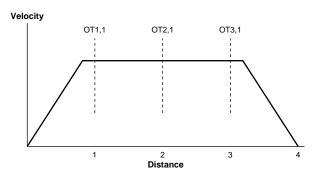
A customer wishes to index a distance of 3 inches from the position where the registration input is triggered. The registration input is activated while the motor is running at a constant velocity of 20 in/sec. The absolute maximum distance the system should travel is 10 inches.


- DA10 {Set Maximum distance to 10 inches}
- VE20 {Set Velocity to 20 in/sec}
- AC.2 {Set Acceleration/Deceleration time to 0.2 sec}
- RG3 {Set Registration distance to 3 in.}
- GO {Start Move}

Programming Example: Fast In-Slow Feed Move

A customer wishes to index a distance between 0 and 5.5 inches as fast as possible to maximize machine throughput, but would like to slow down before coming to a stop to maximize repeatability.

- AC.05 {Set Acceleration time to 0.05 sec}
- DE.09 {Set Deceleration time to 0.09 sec}
- VE50 {Set starting Velocity to 50 in/sec}
- DA6 {Set move Distance to 6 in}
- DC5.5 {Set the Distance to change velocity to 5.5 in}
- VE5 {Change Velocity to 5 in/sec}
- GO {Start Move}

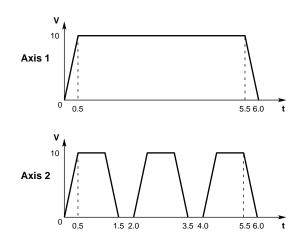


Step Motor Systems

Programming Example: Turning On an Output On-the-Fly

A customer would like to turn on outputs while moving at distances of 1 inch, 2 inches, and 3 inches.

{Set Acceleration to 0.5 sec}
{Set Velocity to 10 in/sec}
{Set move Distance to 4 in}
{Set point to turn on}
{Output 1}
{Set point to turn on}
{Output 2}
{Set point to turn on}
{Output 3}
{Start Move}



Application Developer Software

Programming Example, Go Immediate Mode IDC Solution: S6962

A customer requires a very long move on axis 1, while simultaneously making 3 short moves on axis 2 with time delays of 0.5 seconds between the moves. The time delay of 0.5 seconds between axis 2 moves is important to the overall machine process. Solving this application successfully requires executing operations while both axes are moving such as: asserting outputs, checking status of inputs, doing math, and sending ASCII text out of the RS-232 port.

(VAR LP	R1)=10	{Intialize Variable} {Beginning of Loop Block} {Define Two Axis Move}
	DI55,10	{Define Two Axis move}
	VE10,10 AC.5,.5	
	GI	{Start Go Immediate Move Both Axes}
	MS1,""	{Clear Screen}
	,	
	MS1,(AI9)	{Write Analog Input 9 to the Screen While Moving}
	WT,#2	{Wait for Axis 2 to Stop Moving}
	TD.5	{Time Delay of 0.5 seconds}
	DI,10	{Define Axis 2 Move of 10 units}
	GI	{Start Axis 2 Go Immediate Move}
	IF8,1	{If Input 8 is on}
	OT10,1	{Turn on Output 10}
	TD.1	{Time Delay of 0.1 seconds}
	OT10,0	{Turn off Output 10}
	EB	{End of If Block}
	WT,#2	{Wait for Axis 2 to Stop Moving}
	TD.5	{Time Delay of 0.5 seconds}
	DI,10	•
	GI	{Start Axis 2 Go Immediate Move}
	(DIST)=(VAR1)*1000	{Do Variable Math while Moving}
	(TERM)=(DIST)	{Send Value of DIST Variable out of Serial Port}
	WT#1,#2	{Wait for Axis 1 and 2 to Stop Moving}
	OT1,1	{Turn On Output 1}
	DA0,0	(rum on output r)
	GO	{Move Both Axes Back to Starting Position}
EB	00	{End of Loop Block, Restart Loop}
EN		{End Program}
THA		Lind i rogranny

Programming Example

A customer wants to cut out signs. First a STOP sign, always the same size and shape.

[STOP] Name the program STOP AC.5,.5 VE10,10 SP0.0 DA2 GO DA3.414.1.414 GP DA,3.414 GO Move Y axis to "D" DA2,4.828 GP DA0 GO DA-1.414,3.414 GP DA,1.414 GO Move Y axis to "H" DA0.0 GP OT1 TD.1 OT0 Next, the customer wants to make a (triangular) YIELD sign.

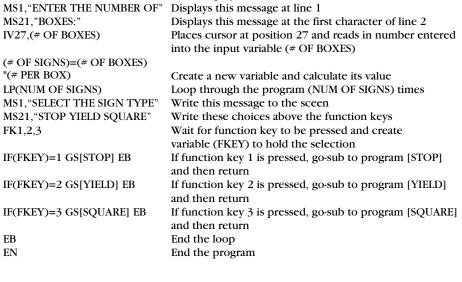
Set acceleration times to 0.5 seconds Set velocities to 10 inches/sec Set current position as the origin Move X axis 2 inches to "B" Move both axes together, to "C" Move both axis together to "E" Move X axis back to zero, "F" Move both axis to "G" Move both axis back to zero A Turn on programmable output #1 Time delay 0.1 second Turn off programmable output #1

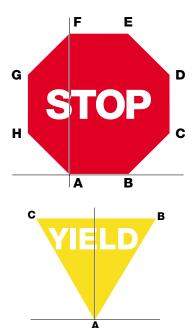
[YIELD]

SP0.0 Set current position to zero DA2,3 GP Move both axes to "B" DA-2 GO Move X axis to "C' DA0.0 GP Move both axes back to zero "A" The customer now wants to make rectangular signs of varying length and width. An operator will be prompted to enter these parameters.

[SOUARE]

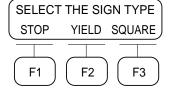
MS." ' Clear display MS1,"ENTER THE SIGN" Write a message prompting the operator MS21"HEIGHT:" for the sign's height Position the cursor, assign input to variable HEIGHT IV28,(HEIGHT) MS21,"WIDTH:" Prompt operator for sign width IV27,(WIDTH) Position the cursor, assign input to variable WIDTH SP0,0 Set the current position to the origin 0,0 DA,(HEIGHT) GO Move Y axis, distance specified by variable HEIGHT DA(WIDTH) GO Move X axis, distance specified by variable WIDTH DA,0 GO Move Y axis back to 0 Move X axis back to 0. Rectangle complete. DA0 GO To simplify the operator's job, the customer makes the product selection process menudriven; counting the number of signs and selecting the type.


The name of the program


Clear display

Set value for numbers of BOXES

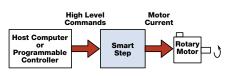
[MAIN] (# PER BOX)=2 MS,"" MS21,"BOXES:" IV27,(# OF BOXES)

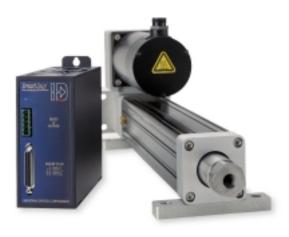

*(# PER BOX) LP(NUM OF SIGNS) MS1, "SELECT THE SIGN TYPE" MS21, "STOP YIELD SQUARE" FK1,2,3 IF(FKEY)=1 GS[STOP] EB

ENTER THE SIGN HEIGHT

ENTER THE SIGN WIDTH __

SmartStep Indexer and Drive


Overview


IDC's SmartStep is a complete, packaged microstepping drive/control that provides a user friendly system, as well as many compelling features and benefits. Consider a SmartStep when your application requires:

- **High Throughput.** The SmartStep has the same outstanding dynamic performance as the NextStep[®] microstepping drive which incorporates the latest in Anti-Resonance technology to maximize the torque, and optimize the performance of step motors.
- Ease of Integration. The SmartStep uses IDC's IDeal[™] programming language, and Application Developer software package which simplifies system set-up and integration.
- **Small Panel Space.** The SmartStep has an internal heatsink and fan which keeps the panel space required for each unit small, and allows multiple units to be stacked together in multi-axis applications.
- **Smoother performance** across the entire motion profile.
- Up to 8 amps of motor current. The SmartStep is compatible with both standard and enhanced 17 frame to 42 frame step motors.

Additional SmartStep Features

- C E rated
- Flash memory allows the SmartStep to be completely reconfigured from a file obtained via the Internet for easy upgrades of both hardware and firmware
- 60K memory, up to 400 programs standard
- RS-232 communications standard, RS-485 optional
- Operates from 120 VAC standard, or 240 VAC optional
- All system configuration and drive settings are software configurable, which means there are no switches to set
- High Speed Registration input
- Faster microprocessor and data bus improves the SmartStep's computational horsepower compared to the \$6961
- Go Immediate Mode. This mode of operation allows the controller to multitask between motion control and I/O operations
- User scaling of position, velocity, and acceleration
- Descriptive variables, math and conditional branching
- Accepts encoder feedback for Stall Detection, Closed Loop operation, and Position Maintenance
- 1-99 Axis of immediate control via host RS-232C communication

- Compatible with IDC's Application Developer Software
- Sixteen configurable I/O (8 inputs, 8 outputs,) 1 dedicated home and 2 dedicated end of travel inputs
- Optically isolated I/O, 12/24 VDC compatible
- Compatible with IDC's S series step motors, and P/K series enhanced step motors. See page G-52 for more information on IDC step motors
- A handful of accessories simplify integration. See page G-30 for information.

For 17 or 23 frame step motor applications IDC has developed the SmartStep23. Some of the features included in the SmartStep23 are:

- The SmartStep23 provides up to 3 amps of current which makes it ideal for 17 or 23 frame step motor applications
- Same outstanding dynamic performance as the NextStep microstepping drive
- Operates from 120 VAC
- All the same features and benefits found in the SmartStep

Compatible Mechanics:

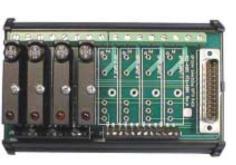
EC2-S, EC3-S, EC4-S, EC5-S NV-S, N2-S, R2A-S, R3-S, R4-S Positioning Tables

Specifications

SmartStep Indexer and Drive

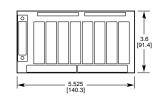
	SmartStep	SmartStep23	SmartStep-240
AC Power Input	90-120 VAC Single Phase, 50/60 Hz, 500 VA max,	90-120 VAC Single Phase, 50/60 Hz, 250 VA max,	100-240 VAC Single Phase, 50/60 Hz, 500 VA max,
Motor Current	 @ 7.9 amp setting 0-7.9 amps, 0.1 amp increments If current setting is higher than 6 amps, drive will fold back current to 6 amps when the motor is at rest 	@ 3.0 amp current setting0-3 amps, 0.1 amp increments	@ 3.9 amp setting0-3.9 amps, 0.1 amp increments
Bus Voltage	160 VDC nominal	160 VDC nominal	320 VDC nominal
System Resolution	36,000 steps/motor rev		
Motor Compatibility			
Type Inductance	2 phase, hybrid permanent magnet; 0.9°, 1.8° or 7.2° full step 2-60 mH for SmartStep and SmartStep23; 8-240 mH for SmartStep-240.		
Amplifier			
Switching Frequency Protection	20 kHz		
Short Circuit	Amp disabled if phase to phase		
Brownout (Under Voltage)	Amp disabled if supply drops		240 version)
Over Temperature	Amp disabled if heatsink exce		
Interlock Regen/Over Voltage	Amp disabled if interlock con Amp disabled if regen conditi voltage, or 440 VDC for 240 V	on causes bus voltage to exce	onnector ed 220 VDC for 120 VAC input
Current Settings			
Rest	Software selectable. If selecte occurred for 20 minutes. Full command. Reduces drive and	current level will resume upo	
Idle	Software selectable. If selected will reduce current to 75% of drive setting if no motion is commanded for 10 ms. Full current level will resume when motion is commanded. Reduces drive and motor temperature.		
Waveform			veform. Default is pure sinusoid. izes smoothness and step-to-step
Additional SmartStep S	pecifications		
Inputs	-	e, optically isolated, as little as	s 3.0 mA sinking
8 Programmable, Limits, Home	current required		
Incremental Encoder	-	available on SmartStep to pow	erencoder
Outputs	Open collector, 12 VDC or 24 VDC compatible, optically isolated, 100 mA max sink current per output. 350 mA total sink current		
8 Programmable LED Indications	x x	mA total sink current ; Red—Fault; Amber—FLASH :	fault
	Oreen—runctioning normany	, Keu—Fault, Alliber—FLASH	lault
Environment			
Operating Ambient Temp.	Max. ambient temperature of 40% to 20% (40% to 17%)	_	nt setting
Storage Temperature Humidity	-40°C to 80°C (-40°F to 176°F) 0% to 90% non-condensing)	
•			
Dimensions	5.9" (L) x 2.5" (W) x 6.3" (H)		

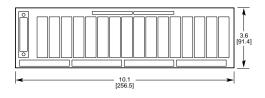
SmartStep Indexer and Drive


Accessories

SmartStep I/O Accessories

Optional Keypad

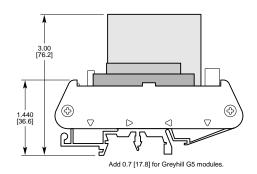

- Both a programming tool and an operator interface
- Menu-driven set up, online help function, diagnostic screens and trace mode provide straightforward set up, troubleshooting and program debugging
- Easy to read, backlit 40-character display
- Connects to control or mounts remotely
- Scratch-proof, large keys
- Displays current position and I/O status
- Keypad is protected to NEMA 4 (IP65) standards when panel is mounted with gasket
- See page G-38 for more information on keypad.


OPTO44 Board

OPTO rack that accepts up to 8 OPTO modules (up to 4 OPTO inputs and 4 OPTO outputs). OPTO I/O is useful when your application needs to switch on and off large voltages or currents (i.e., turning on a solenoid, switching on and off a 230 VAC brake, etc.). OPTO44 racks parallel all 16 I/O points to a second set of screw terminals so unconditioned I/O may still be used.

OPTO44 Dimensions

OPTO88 Dimensions



OPTO88 Board

OPTO rack that accepts up to 16 OPTO modules (up to 8 OPTO inputs and 8 OPTO outputs). OPTO I/O is useful when your application needs to switch on and off large voltages or currents (i.e., turning on a solenoid, switching on and off a 230 VAC brake, etc.). OPTO44 racks parallel all 16 I/O points to a second set of screw terminals so unconditioned I/O may still be used.

OPTO44/88 Rack Dimensions

0

Accessories

SmartStep Indexer and Drive

Step Motor Systems

DB25BO Breakout Board

This accessory converts the DB25 I/O connector on the SmartStep to screw terminals.

SS-IO and SS-IO-6 Cables

I/O cables that connect SmartStep to other devices or PLC.

SS-IO cable is 2 ft SS-IO-6 cables is 6 ft

SS-RS232 Cable

Cable for connecting SmartStep to PC (9-pin comm. port).

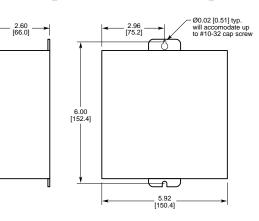
SS-PNP-BO Breakout Board

Screw terminal breakout board that converts the SmartStep's sinking outputs to sourcing outputs.

PCS-5004 Cable

PC-keypad cable for copying programs between keypad and PC (5 VDC power supply not included).





Specifications

Mounting Dimensions in [mm] Minimum Width (Standard)

Minimum Depth (must order as an option)

Model	Description		Option	Description
SmartStep SmartStep-24	Single axis, 7.9 amp programmable microstepping drive/ control, operates from 120 VAC 240 Single axis, 3.9 amp programmable microstepping drive/ control, operates from 240 VAC		RS485 FP MD DB25	RS–485 option Front Panel option Minimum Depth Option Includes DB25BO
SmartStep23		mmable microstepping drive/		Breakout Board
SmartSte Model	p Accessories Description	OPTO44 Position* 1 2 3 4 5 6 7 8		onfirm your selection, ew the checklist on page G-6.
OPTO44	OPTO breakout board (4I/4O). First 4 slots must be inputs; last 4 slots must be outputs.	OPTO88 Position* 1 2 3 4 5 6 7 8 9 10 11 12 1	1 <mark>3 14 15 16</mark>	ò
OPTO88	OPTO (8I/8O). First 8 slots must be inputs; last 8 slots must be outputs.	Inputs CodeI/O Module DescriptionADC/AC In, 10-32 VDC, 12-32 VBDC In, TTL		
DB25BO	25 pin D-Shell to screw terminal I/O connector for SmartStep	C DC In, 35-60 VDC D AC In, 90-140 VAC E AC In, 180-240 VAC		
SS-IO	25 pin D–Shell I/O cable	I Input test switch J Analog In, 0–10 volts		
SS-RS232	RS–232 cable for PC to SmartStep	K Analog In, 4–20 mA X Empty		
SS-PNP-BO	25 pin D-Shell to screw terminal adapter that converts outputs to PNP logic	Outputs Code Output Module Descrip F DC Out, 5-60 VDC, 3 Amps	otion	
PCS-5004	PC to keypad RS-232 cable	G AC Out, 12-140 VAC, 3 Amps H AC Out, 24-280 VAC, 3 Amps X Empty * If no OPTO modules are desired, lea	ave blank.	

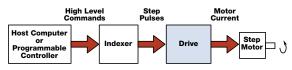
G-30

S6002 Microstepping Drive

Overview

Features	Benefits
Anti-Resonance circuitry.	Significantly reduces chance of stalling.
• 120 VAC power input.	Convenient power, no external transformer required.
• Step and Direction or CW/CCW inputs.	Works with popular stepper controls.
• Short circuit protected (phase to phase and phase to ground).	Prevents failure due to mis-wired, or damaged motors.
Brownout and overtemperature protected.	Less concern for unpredictable extremes.
• Isolated switchmode power amp.	Highly efficient, lower electrical noise than other drives.
Optically isolated I/O.	Excellent noise immunity.
• LED status indicators.	Simple troubleshooting.
• Built-in and external re-gen power dump.	Protects system, allows extreme inertial loads when you need it.
• 2.5" x 9" footprint, 5.84" deep.	Compact. Same size for single or two-axis drive.

The S6002 is a two-axis microstepping drive which incorporates the latest breakthroughs in microstepping technology to provide the user with superior step motor/drive performance. This drive accepts either differential step and direction or clockwise/ counterclockwise control signals, and can interface with controls from IDC or other suppliers. All S6000 Series products contain microstepping drives capable of resolutions up to 25,400 steps per revolution.


Our drives have been carefully engineered for exceptional reliability, dynamic performance and repeatability. An extremely efficient isolated switchmode power amplifier means greater power density and less electrical noise than other drives.

Anti-Resonance Circuitry

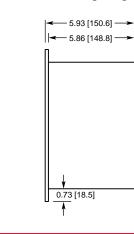
Many step motor users are familiar with mid-range instability, or resonance, which under some conditions can cause a step motor to stall between 13 and 18 rps. Microstepping technology alone does not address mid-range instability. However, our S6000 drives use anti-resonance circuitry to virtually eliminate it.

Protection and Diagnostics

LEDs indicate when power is on, step inputs are received, and when a fault condition exists. Internal circuitry protects against damage caused by a mis-wired or damaged motor (short circuit protection), as well as allowing considerable regenerative energy to be dissipated.

Compatible Mechanics: EC2-S, EC3-S, EC4-S, EC5-S NV-S, N2-S, R2A-S, R3-S, R4-S

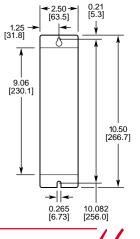
Positioning Tables



S6002 Microstepping Drive

Power Input	105-132 VAC Single Phase, 50/60 Hz
	1000 VA max @ 6 Amp setting
Motor Output	
Current	0.1 to 6.0 Amp, in 0.1 Amp increments (rotary switch selectable)
Voltage	160 VDC Bus Voltage
Resolution	Switch selectable: 200; 400; 1000; 5000; 10,000; 18,000; 25,000; 25,400
Motor Compatibility	
Туре	2 phase, hybrid permanent magnet, 0.9°, 1.8°, or 7.2° full step
Inductance	2 mH to 60 mH per phase (rotary switch selectable)
Amplifier	
Protection	
Short Circuit	Amp disabled if phase-to-phase or phase-to-ground short detected.
Brownout	Amp disabled if supply drops below 90 VAC
Over-temperature	Amp disabled if heat sink temperature exceeds 65°C
Standby	Switch selectable. Reduces motor current to 75% of preset value if no step pulses are received for 1 second. Rated current levels resume upon receipt of next step
	pulse. Reduces motor heating.
Waveform	Switch selectable. Configures the shape of the current waveform. Optimize
	smoothnesss and step-to-step accuracy.
Command Interface	
Inputs	Step, Direction and Shutdown are Optically Isolated
	6.5 mA min, 15 mA max. Step and direction can be configured as CW/CCW step
	inputs through switch selection.
Step	400 nsec min. width, 1.25 MHz max pulse rate, triggered on rising edge
Direction	Logic High = CW rotation, Low = CCW rotation, $0.4 \mu s$ set-up time required after
	direction change before next step pulse
Shutdown	Logic High = amp disabled, Low = normal operation
Fault Output	Optically isolated NPN, Collector (Fault+) and Emitter (Fault-) connections available. Output Off = drive not faulted; Output On = drive faulted
Environmental	available. Output on – unve not named, output on – unve named
Operating Temperature	Thermal shutdown occurs if heat-sink temperature exceeds 65°C (149°F). Heat-sink
1	temperature is a function of motor current, motor regen, and ambient temperature.
	Severe applications may require -FK1 fan kit option. Most applications will not require the -FK1 if the <i>total</i> motor current is less than 6 amps (sum the current
	setting for the two drives). See page G-44 for more information.
Storage Temperature	-40°C to 80°C (-40°F to 176°F)
Humidity	0% to 90% non-condensing

S6002 Mounting Dimensions


Side View in [mm]

၀ +5V

≹10К

Front View in [mm]

G-17 Ide

Step Motor Systems

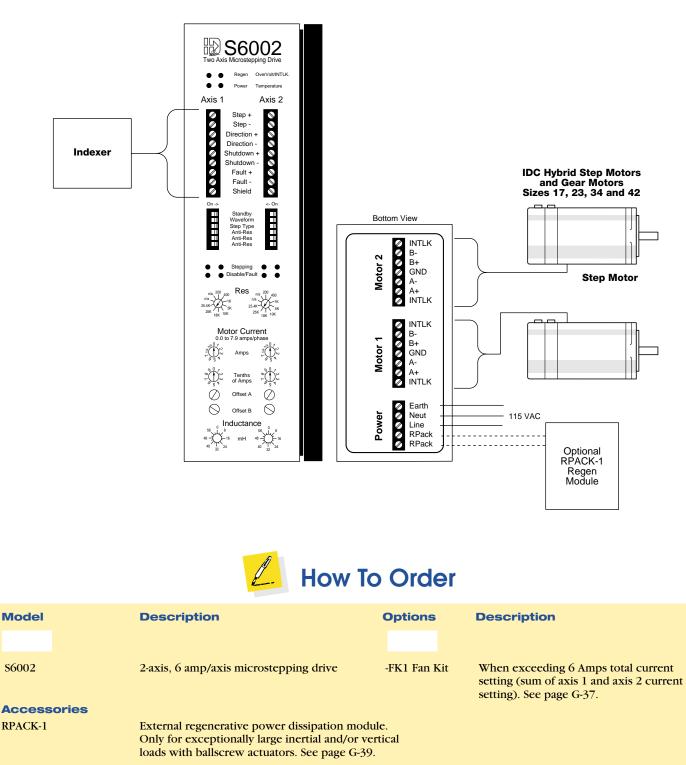
9 +5V ₹330 Step -۸۸۸ 240 IN6263 ¥ 1 2 HPCL-2631 Step φ +5V ∫ ≷330 Direction -240 6 IN6263 1 3 ¥ HPCL-2631 Direction ILD2 Shutdown ۸۸۸ 680 ο +5V Shutdown \$330 4 4N35 Fault 1 5 4 Fault <u>[Ú11</u> NC

Internal to S6001/S6002

6

External -

BS170


System Configuration

S6002 Microstepping

Drive

Step Motor

Systems

霥

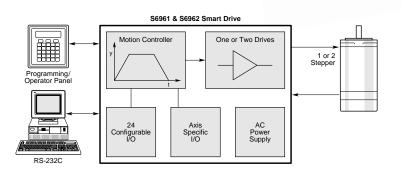
•

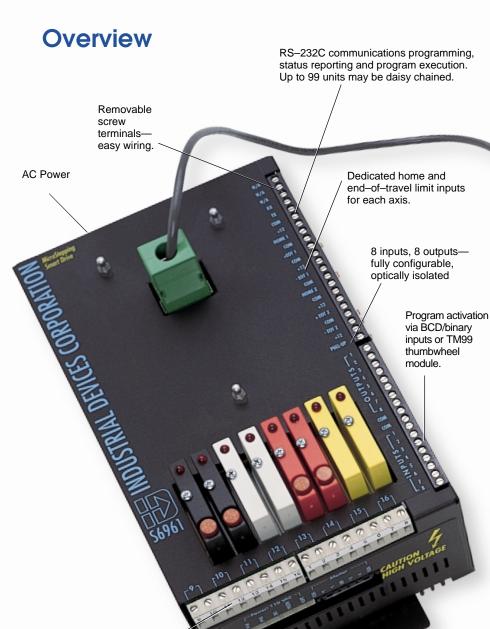
Step Motor Systems

To confirm your selection, review the checklist on page G-6.

S6961/2 Smart Drive

Programmable Smart Drives


IDC's Programmable Smart Drive Positioning Controls offer tremendous application flexibility. They provide exceptional value and performance relative to similar competitive integrated control solutions.


A single compact package combines a one- or two-axis motion controller, drive(s), OPTO modules, an AC input power supply plus an optional, detachable front panel. Our Smart Drive Systems feature the same outstanding dynamic performance as our stepper and brushless drives.

Our powerful and intuitive IDeal[™] programming language will dramatically reduce the time it takes to get your machine running. 6K user memory is available for up to 199 motion programs (30K, 400 programs optional). Our IDCMotion[™] Application Development Software is included to program from your PC.

These controls are designed, built, tested and supported by IDC—a complete motion control solution from one reliable source.

8 bi-directional I/O plugscompatible with OPTO-22 (and others) G4 digital modules and Grayhill G5 analog and temperature modules eliminate wiring external signal conditioning boards.

One or two axes of hybrid step motors

0

G-32

Large, scratch–proof keys have excellent audible and tactile feedback.

Models	S6961 & S6962	
Motor Type	Hybrid, Permanent Magnet Step Motors	
Number of Axes	1 & 2	
Compatible Mechanics	NV-S, N2-S, EC2-S, EC3-S, EC4-S, EC5-S	
	R2A-S, R3-S, R4-S, Tables	
Shaft Power Continuous/Peak	600 Watts	
AC Power	120 VAC	
Control Method	Microstepping	
Other Features	Anti-Resonance Technology provides excellent motor performance	
	Open or Closed Loop	
	Registration, Linear Interpolation, Go Immediate Mode, Optional Analog I/O	

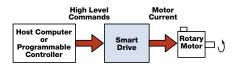
p Motor Systems

\$6961/2

S6961/2 Smart Drive

Overview

IDC's S6961 (1-axis) and S6962 (2-axes) Microstepping Smart Drives are user friendly systems that offer you many compelling features and benefits. Consider these systems when your motion control application requires:


- A well integrated motion controller, microstepping drive, operator interface, power supply, 30 I/O, and built-in OPTO 22 I/O rack
- A simple Machine Controller
- Configurable I/O
- Go Immediate Mode. This mode of operation allows the controller to multitask between motion control and I/O operations. Immediate Mode also allows each axis to move completely independently of the other axis
- Interrupts
- Linear interpolation and registration
- Accepts encoder feedback for stall detect, closed loop operation and position maintenance
- · Coordinated motion between two axes
- 1-99 axes of immediate control via host RS-232C communication
- Optional analog I/O for:
 - Reading an analog input proportional to temperature, distance, or pressure
 - Setting an analog output to control position of another axis of motion (for use with a D2500, H3501/4501, or B8501 analog position controls)

Optional Keypad

- Both a programming tool and an operator interface
- Menu-driven setup, on-line Help Function, Diagnostic Screens, Trace Mode provides straight forward set up, troubleshooting and program debugging
- Easy to read backlit 40 character display
- · Attaches to control or mounts remotely
- Scratch-proof, large keys
- Displays current position and I/O status
- Keypad is protected to Nema 4 (IP65) when panel mounted

Drive Performance

• The S6961 and S6962 feature the same outstanding dynamic performance and reliability as our S6002 micristepping drive, described on page G-21

Motion Control

- 6K memory for up to 199 user programs (30K, 400 programs optional)
- User scaling of position, velocity, and acceleration
- Descriptive variables, math and conditional branching
- High-speed interrupt driven inputs-registration
- S6962-linear interpolated vector moves
- Windows Application Developer software included. See page G-35

OPTO Compatible I/O

- Accepts OPTO-22 (G4) digital modules and Grayhill (G5) analog and temperature modules
- 100% solid state, opto-isolation to 4000 volts
- 8 positions, all bidirectional
- Specify (intermix) OPTO I/O modules: for AC, DC, analog, and temperature signals

Compatible Mechanics:

EC2-S, EC3-S, EC4-S, EC5-S NV-S, N2-S, R2A-S, R3-S, R4-S Positioning Tables

S6961/2 Smart Drive

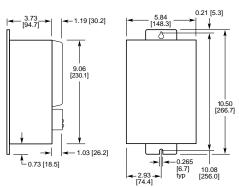
105-132 VAC single phase, 50/60 Hz S6961: 500 VA Max @ 6 amp setting S6962: 500 VA max @ 6 amp setting

0.1 to 6 amp in 0.1 amp increments 160 VDC motor bus voltage

2 phase, hybrid permanent magnet, 1.8° full step 2 mH to 60 mH per phase

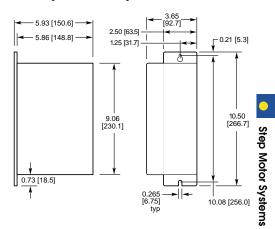
±2,147,483,647 steps; absolute position and incremental 0 to 50 rev/sec (0-3000 rpm) 8 positions support OPTO-22 (G4) digital, Grayhill (G5) analog and temperature modules

24 VDC max, optically isolated internally pulled up to 12 VDC. Disconnect jumper to 12 VDC supply, & connect pull up to +24 VDC to make I/O 24 VDC Optically isolated, differential 5 VDC, 2 mHz max (post-quadrature); 5 VDC, 200 mA available total to power encoder

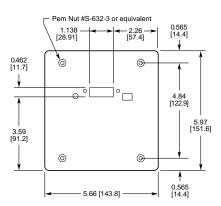

Open collector, 24 VDC max, optically isolated, internally pulled up to 12 VDC, sink current of 100 mA max. Disconnect jumper to 12 VDC supply, and connect pull up to +24 VDC to make I/O 24 VDC Same amplifier specs as the S6002; see page G-21 for more information.

Thermal shutdown occurs if heatsink temperature exceeds 65°C 0% to 90% non-condensing

Mounting Dimensions


(\$6961 and \$6962)

Minimum Depth Mounting in [mm]



Minimum Width Mounting in [mm]

(Front panel and opto modules removed)

Remote Mounting Front Panel (Rear View) in [mm]

Input Power

Motor Output

Current Voltage

Motor Compatibility Type

Inductance

Motion Position Range

Velocity Range OPTO Compatible I/O

Inputs

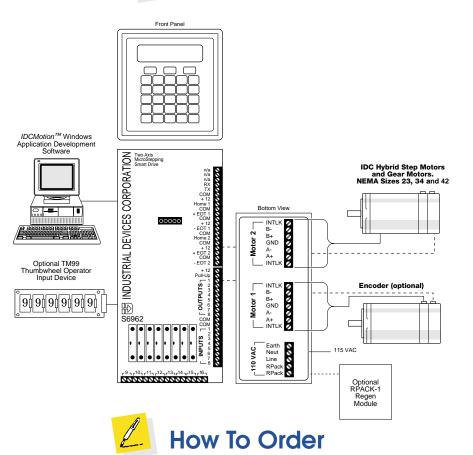
8 programmable, End-of-Travel Limits, Home

Incremental Encoder

Outputs

8 Programmable

Amplifier


Environmental

Operating Temperature

Humidity

S6961/2 Smart Drive

To confirm your selection,

review the checklist on page G-6.

•

Specifications

IDC controls are designed for convection cooling. The shape and size of our heatsinks are the result of thermal analysis and experimentation.

All of our controls have built-in temperature protection. Thermal sensors inside the S6000 controls will activate at a conservative heatsink temperature of 55°C. Thus, IDC controls will not be damaged when overtemperature conditions occur.

A number of factors affect the internal temperature of a control and whether or not it needs additional cooling:

- Ambient temperature
- Air flow
- Duty cycle
- Power delivered (the RMS current output)
- Number of axes per control
- Regenerative energy returned from the load
- Whether or not standby current is enabled

Adequate ventilation in the enclosure does a lot to cool our controls. Most often, a single fan in your enclosure or panel will circulate enough air.

When is a Fan Kit Needed?

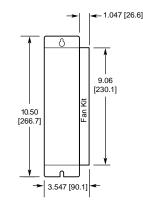
Here are a few general guidelines to indicate when a fan kit may be necessary for your high performance application.

S6000 Series Controls:

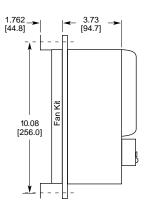
- With very high regenerative loads.
- When the total motor current exceeds 6A (sum current of both axes with \$6002 and \$6962).

For example, the fan is needed when driving an S42 motor, or when driving two S32 or larger motors.

Ordering information


• The Fan Kit is available as an option on the controls listed above by adding an -FK1 suffix to the control model number.

FK1 - for use with all S Series applications.


If you are in doubt as to whether a fan kit will be needed for your application, simply leave sufficient panel space for the control with fan kit and test the control without a fan. If your control needs forced air cooling, the fan kit can be purchased separately and easily retrofitted in the field.

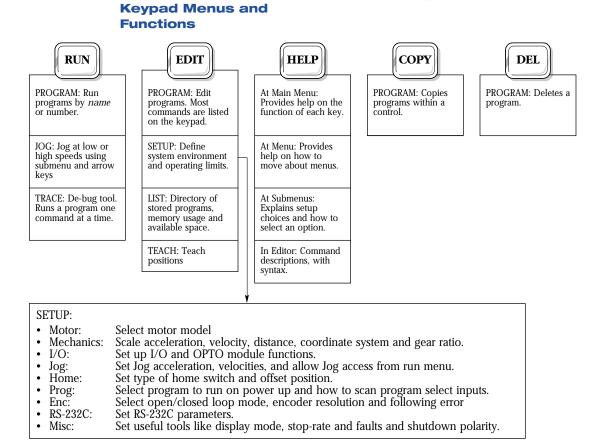
Dimensions in [mm]

Front View (S6002)

Side View (S6961, S6962)

Model	Description
FANKIT-1	120 VAC Fan Kit The Fan Kit is available as an option on the controls listed above by adding an -FK1 suffix to the control model number. If you are in doubt as to whether a fan kit will be needed for your application, simply leave sufficient panel space for the control with fan kit and test the control without a fan. If your control requires forced air cooling, the fan kit can be purchased separately and easily retrofitted in the field.

Industrial Devices Corporation 707-789-1000 • http://www.idcmotion.com • 24 hour info by fax 916-431-6548



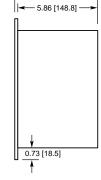
FP220 Removable Front Panel

All of IDC's programmable Smart Drives and stand-alone motion controllers, which use the IDeal[™] programming language, can be programmed and operated from the FP220 removable front panel (keypad). The FP220 makes a great operator-machine interface, as it provides the user with many features and benefits. Some of the features of the FP220 are:

- Remote mountable
- Menu-driven set up and Help
- NEMA 4 (IP65) standard
- Scratch-proof, large keys
- Easy to read, backlit 2 line, 40 character display
- Displays current position and I/O status
- Great for machine diagnostics and troubleshooting
- For mounting dimensions, see page G-35.

Model	Description
FP220	Removeable front panel; comes with 6-ft* communications cable * Longer cables are available.

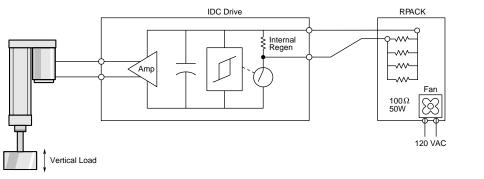
G-38



RPACK Regen Pack Option

When a large inertial load is decelerated or a vertical load is lowered, the mechanical energy that is not dissipated as heat in the actuator or drive is "regenerated" by the motor and transferred back into the drive's power supply. This causes the drive's power supply voltage to increase. Without circuit protection, this voltage increase can damage a drive. Without a means of dissapating this energy, such applications cannot be solved.

All IDC servo drives are fully protected against excessive regenerative energy. First, they are overvoltage and short circuit protected. Second, they are capable of dissipating regenerative energy both internally, and in extreme cases, externally using our model RPACK-1. Our drive's LEDs will even indicate when excessive regenerative energy is present in your application.


An RPACK allows you to make more aggressive moves in high inertia, low friction applications. Each RPACK provides connections for hook-up to either servo or stepper drives for a total dissipation of 240W continuous and 1000W peak (for 3 seconds).

5.93 [150.6]

Front View

Side View

Regen Capacity

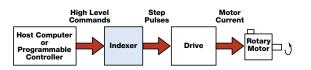
(watts or joules)	1-Axis S6000 Series	2-Axis S6000 Series	
Internal without fan			
Continuous	20	20	
Peak (3 sec)	300	600	
Internal with fan			
Continuous	60	60	
Peak (3 sec)	300	600	
RPack (additional)			
Continuous	240	240	
Peak (3 sec)	1,000	1,000	
When to use an RPack-1	 Almost never needs an external RPACK-1 		
	Only recommended if your	drive faults due to excessive	
	regenerative energy		

Model	

Description

RPACK-1 Regen Pack, 120 VAC Fan

Industrial Devices Corporation 707-789-1000 • http://www.idcmotion.com • 24 hour info by fax 916-431-6548


961/2 Standalone Motion Controller

Overview

IDC's 961 (single axis) and 962 (two axis) indexers output step and direction or CW/CCW control signals to one or more drives. The 961 and 962 use IDC's IDeal[™] command language, insuring a user-friendly programming environment. These indexers can be used with any stepper drive or any digital servo drive that accepts an industry standard step and direction control signal (either differential or single ended). Consider the 961/2 for your motion control application when you require:

- A mix of servo and stepper drives. The 962 is an ideal solution when your application requires coordinated motion between two axis: one of which requires a high power brushless servo, and the other requires a low power stepper.
- Multiple drives to be run from one command signal. This is very useful when an application calls for multiple drive/motor systems to always do identical moves.
- The motion controller to be separate from the drive for E-Stop reasons. Using a 961/2 with a separate drive allows power to be cut from the drive without cutting power to the motion controller.
- A non-IDC drive/motor system, but would like to implement a user friendly motion controller.

Drive Compatibility

The 961 and 962 easily interface to a wide variety of step motor, and digital servo, drives which accept industry standard step and direction control signals. The 961/2 accept incremental encoder feedback, providing closed loop, and stall detect features. The frequency range of the 961/2's step output signal allows you to control drives ranging from the simplest full-step step motor drive to high speed digital brushless servo drives.

OPTO-Compatible I/O

- Accepts OPTO22 (G4) digital modules and Grayhill (G5) analog and temperature modules.
- 100% solid state, opto-isolation to 4000 volts
- 8 positions, all bidirectional
- Specify (intermix) factory installed AC, DC, and analog I/O modules

Optional Keypad

- Both a programming and operator interface
- Menu-driven setup, help functions, diagnostic screens, and trace mode to facilitate easy setup, programming and troubleshooting
- Easy to read, backlit 40 character display
- Commands listed on keys for easy reference
- Attaches to the control or mounts remotely
- Keypad is NEMA 4 (IP65) when panel mounted

Motion Control

- 6K of memory for up to 199 user programs (30K, 400 programs optional)
- Up to 2 axis of incremental encoder feedback
- User scaling of position, velocity, and acceleration
- Variable math and conditional branching
- IDCMotion[™] Windows Application Development software included
- 50K resolution

(depending on drive resolution setting). Optically isolated, TTL level, internal 1.0k

±0-2,147,483,647 steps. Absolute and

8 Positions support OPTO-22 (G4) digital.

and Gravhill (G5) analog and temperature

Optically isolated, differential 5VDC, 2 MHz

modules (see ordering information).

pulled up to internal isolated 12VDC supply. 12 mA current required.

max (post-quadrature). 5VDC, 200mA

Open collector, sink current per output

IDeal[™] programming language. Program from the front panel, or via your PC using our Windows-compatible IDCMotion[™]

Application Developer software (included).

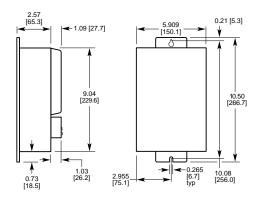
100 mA max, 350 mA max total sink current

pull-up to +5 VDC.

1 to 1,250,000 steps/sec

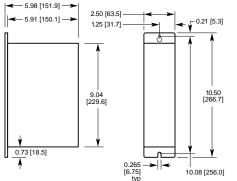
power available total.

(sum of all outputs)

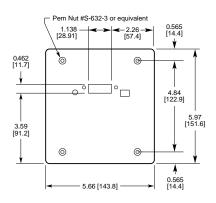

1 to 20,000,000 steps/sec²

incremental

961/2 Standalone Motion Controller


Step Motor Systems

Minimum Depth Mounting Dimensions in [mm]



Minimum Width Mounting Dimensions in [mm]

Front panel and opto modules removed.

Remote Mounting Front Panel (rear view) in [mm]

Input Power	120 VAC single phase, 50/60 Hz		
	2.0 Amps max.		
Serial Interface	RS-232C, 3 wire implementation (Tx, Rx and Gnd), 9600 Baud, 8 data bits, 1 stop bit, no parity.		
Environmental			
Ambient Temperature	0-50°C.		
Humdity	0% to 90% non-condensing.		
Drive Signals			
Step, Direction & Shutdown	Optically isolated. Low signal <0.8 VDC,		
Outputs	high signal >3.5 VDC, ±60 mA. Active high. Step pulse width is 0.8 to 10msec		

Drive Fault Input

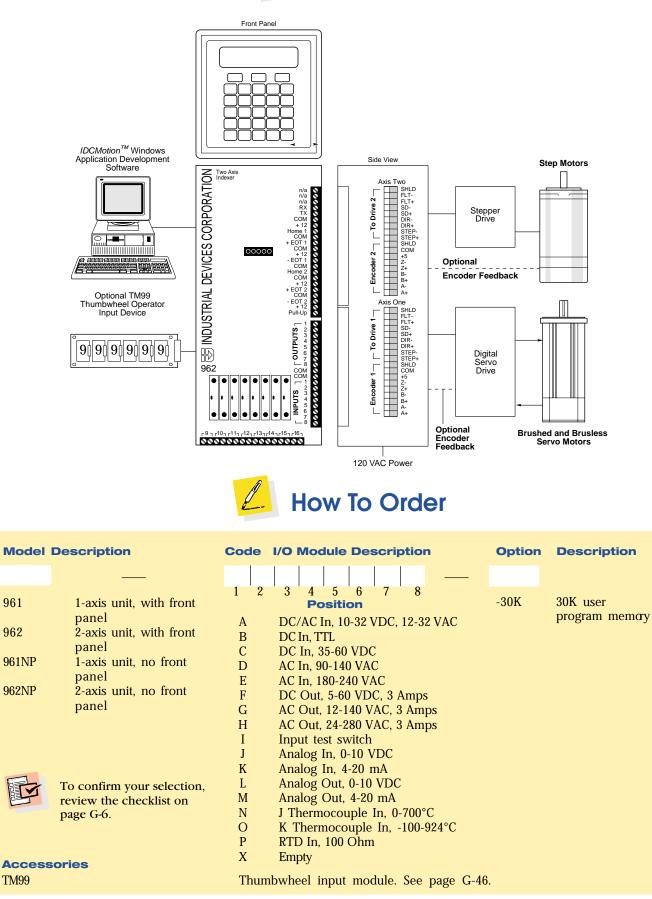
Position Range

Velocity Range Acceleration Range OPTO-compatible I/O

Inputs

8 Programmable, Limits, Home 24 VDC max, Optically isolated, can be

Incremental Encoder


Outputs

8 Programmable

Programming

961/2 Standalone Motion Controller

961

962

0

TM99

Step Motors

Features

- Sizes 17, 23, 34 and 42
- Optimized for use with IDC's microstepping controls
- Bipolar current ratings for use with IDC's microstepping controls
- High torque-to-inertia, yielding high acceleration
- 120°C rated Class B winding
- 12-ft motor cables standard
- Encoder optional (sizes 23, 34, 42); see page G-61
- Quick disconnect motor cabling option (sizes 34 and 42)

Model	Holding Torque oz-in [N-m]	Recommended Current/Phase Series [Parallel]	See page
S12	30 [0.25]	1.0 [2.0]	G-47
S21	65 [0.46]	1.2 [2.4]	G-48
S22	100 [0.71]	1.5 [3.0]	G-49
S23	125 [0.88]	1.75 [3.5]	G-50
\$32	300 [2.1]	2.8 [5.6]	G-53
\$33	400 [2.8]	3.5 [7.0]	G-54
P21	100 [0.7]	0.7 [13]	G-51
P22	200 [1.4]	1.0 [2.0]	G-52
P31	450 [3.2]	1.5 [3.0]	G-55
P32	920 [6.5]	1.6 [3.3]	G-56
P33	1260 [8.9]	2.0 [4.0]	G-57
P41	1250 [8.8]	2.8 [5.7]	G-58
P42	2300 [16.2]	3.3 [6.6]	G-59
K42	3000 [21.2]	3.2 [6.4]	G-60

Motor Models	Options	Description
S12	None	EMK - 1000 line encoder option with 12-ft, jacketed cable
S21, S22, S23	EMK	EM - 500 line encoder option with 12-ft, jacketed cable
P21, P22	EM	EQK - 1000 line encoder with 12-ft quick disconnect cable – EQ - 500 line encoder with 12-ft quick disconnect cable
\$32X, \$33X	EMK EM C25	EQ = 500 line encoder with 12-ft quick disconnect cable EQK25 - 1000 line encoder with 25-ft quick disconnect cable EQ25 - 500 line encoder with 25-ft quick disconnect cable C25 - 25-ft quick disconnect motor lead cable
P31X, P32X, P33X P41X, P42X K42X	EMK EM EQK EQ EQK25 EQ25 C25	A 30% torque safety margin is recommended when applying step motors.

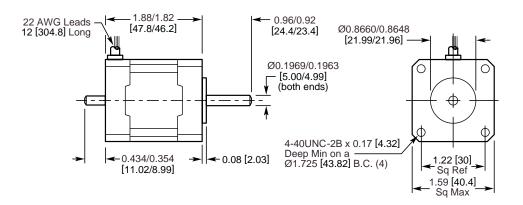
Replace the Xs in the above part numbers with N, T or V:

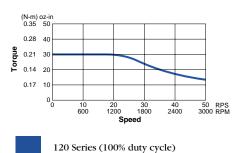
N = 8 leads, 12 inches long

T = Series wired motor and 12-foot quick-disconnect cable included

V = Parallel wired motor and 12-foot quick-disconnect cable included

To confirm your selection, review the checklist on page G-6.


•


S12 Step Motor

S12 Step Motor in [mm]

Motor Performance

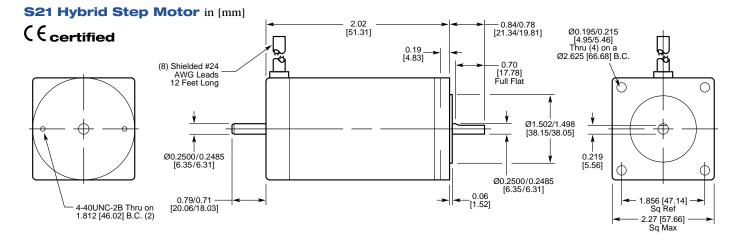
	S12
Motor and Encoder Data	Series
Continuous Stall Torque oz-in [N-m]	30 [0.25]
Recommended Current/Phase Amps	1.0
Inductance mH	8.8
Max. Motor Winding Temp. °F [°C]	212 [100]
Rotor Inertia oz-in-s ² [kg-m ²]	5.1x10 ⁻⁴ [3.6x10 ⁻⁶]
Axial Shaft Load lbs [N]	10 [44]
Radial Shaft Load @ 0.50" [13 mm]	5 [22]
Motor Weight lbs [kg]	0.66 [0.3]
Step Angle (full step) degrees	1.8
How to order	G-46

A 30% torque safety margin is recommended when applying step motors.

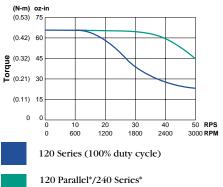
Warning: Do not run S12 motor with a NextStep 240 drive or SmartStep 240. Motors will exceed their rated temperatures and be damaged.

Applying Gearmotors

• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance


Performance Planetary Gearmotors

In-line		
Gear Ratio in [mm]	L	A x B
3 to 10	4.51 [114.6]	2.79 x 6.85 [70.9 x 174.0]
16 to 100	5.04 [128.0]	2.79 x 7.39 [70.9 x 187.7]
160 to 700	5.65 [143.5]	Above 100:1, not available


•

S21 Step Motor

Motor Performance

* 50% duty cycle max above 5 rps (300 rpm)

Warning: Do not run S21, S22 or S23 motors wired in parallel with a NextStep 240 drive or SmartStep

A 30% torque safety margin is recommended when applying step

240. Motors will exceed their rated temperatures and be damaged. All motors should be wired in series when run with the NextStep 240 or SmartStep 240.

Applying GearmotorsSee page I-1 for IDC gearmotor

information and for how to determine gearmotor performance

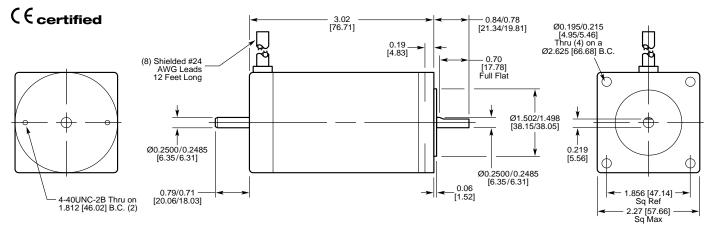
Motor and Encoder Data	S21 Series	S21 Parallel
Continuous Stall Torque oz-in [N-m]	65	[0.46]
Recommended Current/Phase Amps	1.2	2.4
Inductance mH	18	4.5
Max. Motor Winding Temp. °F [°C]	248	[120]
Rotor Inertia oz-in-s ² [kg-m ²]	1.66x10 ⁻³	[1.17x10 ⁻⁵]
Axial Shaft Load lbs [N]	10	[44]
Radial Shaft Load @ 0.75" [19 mm]	15	[66]
Motor Weight lbs [kg]	1.6	[0.73]
Step Angle (full step) degrees	1	1.8
How to order	G	-46

Performance Planetary Gearmotors

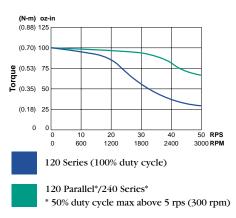
In-lin		
Gear Ratio in [mm]	L	A x B
3 to 10	4.8 [121.4]	3.61 x 8.51 [91.4 x 216.2]
16 to 100	5.6 [142.5]	3.61 x 9.34 [91.4 x 237.2]
160 to 700	6.4 [162.6]	Above 100:1, not available

Value Planetary Gearmotors

In-lin		
Gear Ratio in [mm]	L	A x B
3 to 10	5.1 [129.5]	3.61 x 8.80 [91.4 x 223.5]
16 to 100	6.0 [153.4]	3.61 x 9.10 [91.4 x 246.4]


motors.

0



Performance

S22 Hybrid Step Motor in [mm]

Motor Performance

Motor and Encoder Data	S22 Series	S22 Parallel
Continuous Stall Torque oz-in [N-m]	100 [0.71]	
Recommended Current/Phase Amps	1.5	3.0
Inductance mH	18	4.5
Max. Motor Winding Temp. °F [°C]	248	[120]
Rotor Inertia oz-in-s ² [kg-m ²]	3.31x10 ⁻³ [2.34x10 ⁻⁵]	
Axial Shaft Load lbs [N]	10 [44]	
Radial Shaft Load @ 0.75" [19 mm]	15 [66]	
Motor Weight lbs [kg]	2.4 [1.1]	
Step Angle (full step) degrees	1.8	
How to order	G-46	

A 30% torque safety margin is recommended when applying step motors.

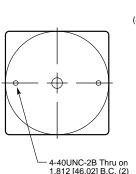
Warning: Do not run S21, S22 or S23 motors wired in parallel with a NextStep 240 drive or SmartStep 240. Motors will exceed their rated temperatures and be damaged. All motors should be wired in series when run with the NextStep 240 or SmartStep 240.

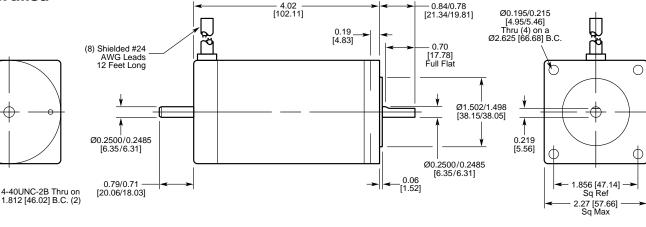
Applying Gearmotors

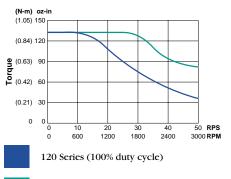
• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance

Performance Planetary Gearmotors

In-line		
Gear Ratio in [mm]	L	A x B
3 to 10	5.8 [146.8]	3.61 x 9.51 [91.4 x 241.6]
16 to 100	6.6 [168.0]	3.61 x 10.34 [91.4 x 262.6]
160 to 700	7.4 [188.0]	Above 100:1, not available


L	A x B
6.1 [155.0]	3.61 x 9.80 [91.4 x 248.9]
7.0 [178.0]	3.61 x 10.70 [91.4 x 271.8]


S23 Step Motor


S23 Hybrid Step Motor in [mm]

Motor Performance

120 Parallel*/240 Series* * 50% duty cycle max above 5 rps (300 rpm)

A 30% torque safety margin is recommended when applying step motors.

Warning: Do not run S21, S22 or S23 motors wired in parallel with a NextStep 240 drive or SmartStep 240. Motors will exceed their rated temperatures and be damaged. All motors should be wired in series when run with the NextStep 240 or SmartStep 240.

Applying Gearmotors

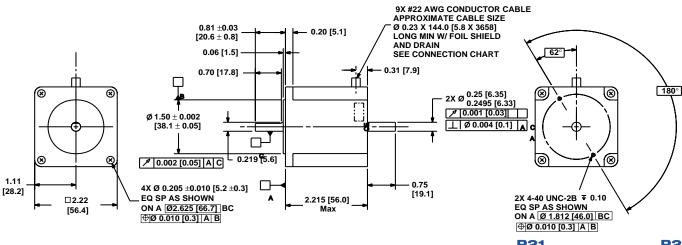
• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance

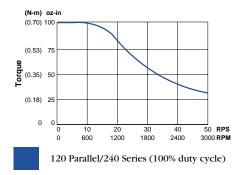
Motor and Encoder Data	S23 Series	S23 Parallel
Continuous Stall Torque oz-in [N-m]	125 [0.88]	
Recommended Current/Phase Amps	1.7	3.5
Inductance mH	18	4.5
Max. Motor Winding Temp. °F [°C]	248	[120]
Rotor Inertia oz-in-s ² [kg-m ²]	4.97x10 ⁻³ [3.51x10 ⁻⁵]	
Axial Shaft Load lbs [N]	10 [44]	
Radial Shaft Load @ 0.75" [19 mm]	15 [66]	
Motor Weight lbs [kg]	3.2 [1.5]	
Step Angle (full step) degrees	1.8	
How to order	G-46	

Performance Planetary Gearmotors

In-lin		Right-angle
Gear Ratio in [mm]	L	A x B
3 to10	6.8 [172.2]	3.61 x 10.51 [91.7 x 266.9]
16 to 100	7.6 [193.3]	3.61 x 11.34 [91.7 x 288.0]
160 to 700	8.4 [213.4]	Above 100:1, not available

In-lir		Terrer Bergin Right-angle
Gear Ratio in [mm]	L	A x B
3 to 10	7.1 [180.0]	3.61 x 10.80 [91.7 x 274.3]
16 to 100	8.0 [203.0]	3.61 x 11.70 [91.7 x 297.2]




P21 Step Motor

P21 Motor in [mm]

Motor Performance

	P21	P21
Motor and Encoder Data	Series	Parallel
Continuous Stall Torque oz-in [N-m]	100	[0.70]
Recommended Current/Phase Amps	0.7	1.3
Inductance mH	79	20
Max. Motor Winding Temp. °F [°C]	2.48 [120]	
Rotor Inertia oz-in-s ² [kg-m ²]	0.0035 [2.48 x10 ⁵]	
Weight lb [kg]	1.9 [0.86]	
Axial Shaft Load lbs [N]	10 [44]	
Radial Shaft Load @ 0.75" [19 mm]	15 [66]	
How to order	G-46	

A 30% torque safety margin is recommended when applying step motors.

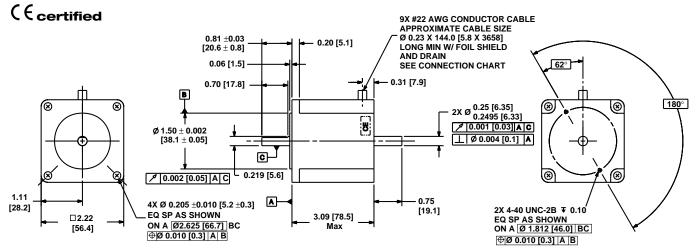
Please note: In order to get the performance curve shown above, motors should be wired in parallel when the drive is operated from 120 VAC; and motors should be wired in series when the drive is run off 240 VAC.

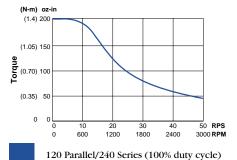
Applying Gearmotors

• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance

Performance Planetary Gearmotors

In-lin		
Gear Ratio in [mm]	L	АхВ
3 to10	4.95 [125.6]	3.61 x 8.70 [91.7 x 220.9]
16 to 100	5.78 [146.7]	3.61 x 9.53 [91.7 x 241.9]
160 to 700	6.57 [166.8]	Above 100:1, not available


In-lin		
Gear Ratio in [mm]	L	AxB
3 to 10	5.3 [134.5]	3.61 x 8.99 [91.7 x 228.3]
16 to 100	6.21 [157.6]	3.61 x 9.89 [91.7 x 251.1]


P22 Step Motor

P22 Motor in [mm]

Motor Performance

	P22	P22
Motor and Encoder Data	Series	Parallel
Continuous Stall Torque oz-in [N-m]	200 [1.4]	
Recommended Current/Phase Amps	1.0	2.0
Inductance mH	64	16
Max. Motor Winding Temp. °F [°C]	248 [120]	
Rotor Inertia oz-in-s ² [kg-m ²]	0.0061 [4.32 x10 ⁵]	
Weight lb [kg]	2.7 [1.23]	
Axial Shaft Load lbs [N]	10 [44]	
Radial Shaft Load @ 0.75" [19 mm]	15 [66]	
How to order	G	-46

Performance Planetary Gearmotors

L	АхВ	
6.8 [172.2]	3.61 x 9.58 [91.4 x 243.3]	
7.6 [193.3]	3.61 x 10.41 [91.4 x 264.4]	
8.4 [213.4]	Above 100:1, not available	
	7.6 [193.3]	

Value Planetary Gearmotors

_

Gear Ratio in [mm]	L	АхВ
3 to 10	7.1 [180.0]	3.61 x 9.87 [91.4 x 250.7]
16 to 100	8.0 [203.0]	3.61 x 10.77 [91.4 x 273.6]

A 30% torque safety margin is

performance curve shown above, motors should be wired in parallel when the drive is operated from 120 VAC; and motors should be wired in series when the drive is run off 240 VAC.

Applying Gearmotors

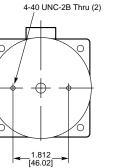
• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance

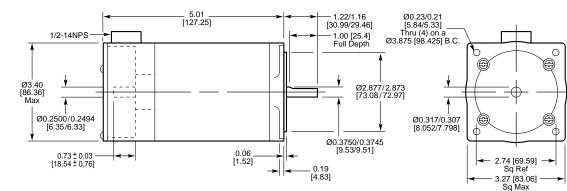
ide

S32 Step Motor

12 foot, 5 conductor quick disconnect cable wired in series

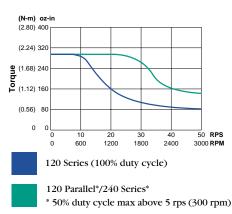
12 foot, 5 conductor quick disconnect cable wired in parallel


x = N 12 inch, 8 conductor flying leads


Step Motor

Systems

S32X Hybrid Motor in [mm]



т

V

Motor Performance

A 30% torque safety margin is recommended when applying step motors.

Warning: Do not run S32 or S33 motors wired in parallel with a NextStep 240 drive or SmartStep 240. Motors will exceed their rated temperatures and be damaged. All motors should be wired in series when run with the NextStep 240 or SmartStep 240.

Applying Gearmotors

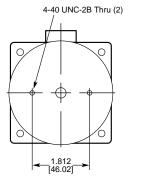
• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance

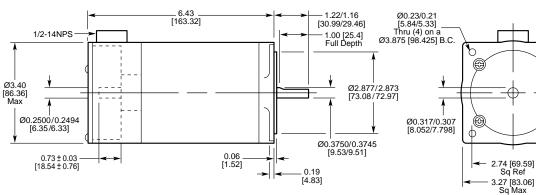
Motor and Encoder Data	S32 Series	P	S32 Parallel
Continuous Stall Torque oz-in [N-m]	300 [2.1]		
Recommended Current/Phase Amps	2.8		5.6
Inductance mH	10 2.5		2.5
Max. Motor Winding Temp. °F [°C]	248 [120]		
Rotor Inertia oz-in-s ² [kg-m ²]	0.017[1.21x10 ⁻⁴]		
Axial Shaft Load lbs [N]	10 [44]		
Radial Shaft Load @ 0.75" [19 mm]	20 [89]		
Motor Weight lbs [kg]	5.1 [2.3]		
Step Angle (full step) degrees	1.8		
How to order	G-46		

Performance Planetary Gearmotors

In-line		T Right-angle
Gear Ratio in [mm]	L	АхВ
3 to 10	9.2 [234.0]	5.20 x 14.17 [132.1 x 359.9]
16 to 100	10.3 [262.0]	5.20 x 15.3 [132.1 x 388.6]
160 to 700	11.6 [293.0]	Above 100:1, not available

	Right-angle
L	A x B
9.6 [243]	5.20 x 14.54 [132.1 x 369.3]
10.8 [275]	5.20 x 15.81 [132.1 x 401.6]
	L 9.6 [243]




S33 Step Motor

S33X Step Motor in [mm]

CEcertified

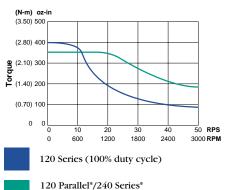
x = N

т

V

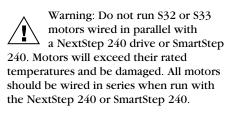
12 inch, 8 conductor flying leads

12 foot, 5 conductor quick disconnect cable wired in series


12 foot, 5 conductor quick disconnect cable wired in parallel

0

¢


(A)

Motor Performance

* 50% duty cycle max above 5 rps (300 rpm)

A 30% torque safety margin is recommended when applying step motors.

Applying Gearmotors

• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance

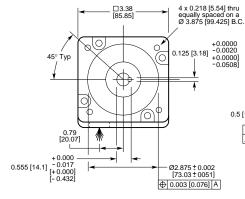
Motor and Encoder Data	S33 Series	S33 Parallel
Continuous Stall Torque oz-in [N-m]	400 [2.8]	350 [2.5]
Recommended Current/Phase Amps	3.5	7.0
Inductance mH	10	2.5
Max. Motor Winding Temp. °F [°C]	212 [100]	
Rotor Inertia oz-in-s ² [kg-m ²]	0.0265 [1.88x10 ⁻⁴]	
Axial Shaft Load lbs [N]	10 [44]	
Radial Shaft Load @ 0.75" [19 mm]	20 [89]	
Motor Weight lbs [kg]	8.3 [3.8]	
Step Angle (full step) degrees	1.8	
How to order		G-46

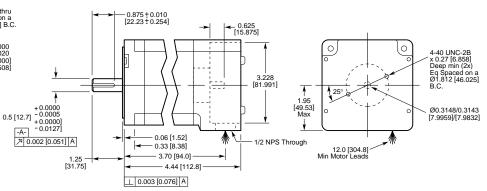
Performance Planetary Gearmotors

In-line		Right-angle
Gear Ratio in [mm]	L	АхВ
3 to 10	10.6 [270.0]	5.20 x 15.59 [132.1 x 396.0]
16 to 100	11.7 [297.0]	5.20 x 16.72 [132.1 x 424.7]
160 to 700	13.0 [331.0]	Above 100:1, not available

In-lir		
Gear Ratio in [mm]	L	АхВ
3 to 10	11.0 [279]	5.20 x 15.96 [132.1 x 405.4]
16 to 100	12.2 [310]	5.20 x 17.23 [132.1 x 437.6]

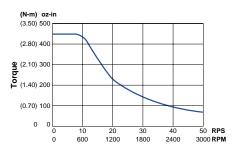
P31 Step Motor


12 foot, 5 conductor quick disconnect cable wired in series


12 foot, 5 conductor quick disconnect cable wired in parallel

Step Motor Systems

P31X Motor in [mm]


12 inch, 8 conductor flying leads

x = N

т

V

Motor Performance

120 Parallel/240 Series (100% duty cycle)

A 30% torque safety margin is recommended when applying step motors.

Please note: In order to get the performance curve shown above, motors should be wired in parallel when the drive is operated from 120 VAC; and motors should be wired in series when the drive is run off 240 VAC.

Applying Gearmotors

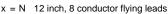
• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance

Motor and Encoder Data	P31 Series	P31 Parallel
Continuous Stall Torque oz-in [N-m]	450 [3.2]	
Recommended Current/Phase Amps	1.5	3.0
Inductance mH	56	14
Max. Motor Winding Temp. °F [°C]	212 [100]	
Rotor Inertia oz-in-s ² [kg-m ²]	0.0202 [1.4x10 ⁴]	
Axial Shaft Load lbs [N]	305 [1355]	
Radial Shaft Load @ 0.5" [12.7 mm]	65 [285]	
Motor Weight lbs [kg]	5.0 [2.27]	
Step Angle (full step) degrees	1.8	
How to order	G-46	

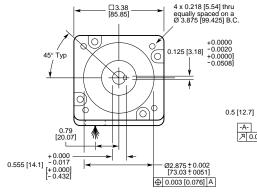
Performance Planetary Gearmotors

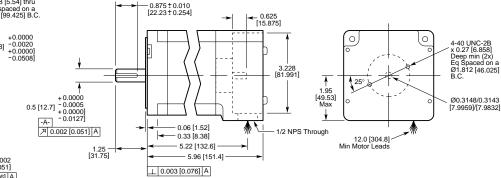
In-lin		
Gear Ratio in [mm]	L	A x B
3 to 10	8.6 [219.0]	5.20 x 13.60 [132.1 x 345.4]
16 to 100	9.8 [248]	5.20 x 14.73 [132.1 x 374.1]
160 to 700	11.0 [279]	Above 100:1, not available

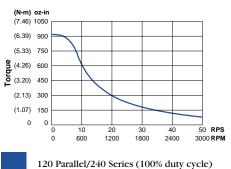
In-lin		
Gear Ratio in [mm]	L	A x B
3 to 10	9.0 [229.0]	5.20 x 13.97 [132.1 x 354.8]
16 to 100	10.3 [261]	5.20 x 15.24 [132.1 x 387.1]



P32 Step Motor




P32X Motor in [mm]



- T 12 foot, 5 conductor quick disconnect cable wired in series
- V 12 foot, 5 conductor quick disconnect cable wired in parallel

Motor Performance

Motor and Encoder Data	P32 Series	P32 Parallel
Continuous Stall Torque oz-in [N-m]	920 [6.5]	
Recommended Current/Phase Amps	1.6	3.3
Inductance mH	120	30
Max. Motor Winding Temp. °F [°C]	212 [100]	
Rotor Inertia oz-in-s ² [kg-m ²]	0.038 [2.7x10 ⁴]	
Axial Shaft Load lbs [N]	305 [1350]	
Radial Shaft Load @ 0.5" [12.7 mm]	65 [289]	
Motor Weight lbs [kg]	8.4 [3.81]	
Step Angle (full step) degrees	1.8	
How to order	G-46	

A 30% torque safety margin is recommended when applying step motors.

Please note: In order to get the performance curve shown above, motors should be wired in parallel when the drive is operated from 120 VAC; and motors should be wired in series when the drive is run off 240 VAC.

Applying Gearmotors

• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance

Performance Planetary Gearmotors

In-line		
Gear Ratio in [mm]	L	A x B
3 to 10	10.1 [257]	5.20 x 15.12 [132.1 x 384.1]
16 to 100	11.2 [285]	5.20 x 16.25 [132.1 x 412.8]
160 to 700	12.5 [318]	Above 100:1, not available

Value Planetary Gearmotors

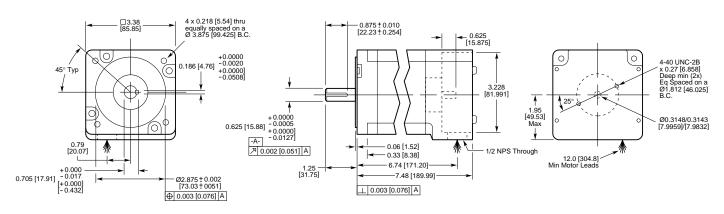
In-lin		
Gear Ratio in [mm]	L	A x B
3 to 10	10.5 [267]	5.20 x 15.49 [132.1 x 393.4]
16 to 100	11.7 [298]	5.20 x 16.76 [132.1 x 425.7]

0

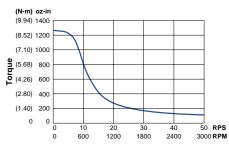
Step Motor Systems

P33 Step Motor

Step Motor Systems


P33

P33X Motor in [mm]



x = N 12 inch, 8 conductor flying leads

T 12 foot, 5 conductor quick disconnect cable wired in series V 12 foot, 5 conductor quick disconnect cable wired in parallel

Motor Performance

Motor and Encoder Data	Series	Parallel
Continuous Stall Torque oz-in [N-m]	1260 [8.9]	
Recommended Current/Phase Amps	2.0	4.0
Inductance mH	100	25
Max. Motor Winding Temp. °F [°C]	212 [100]	
Rotor Inertia oz-in-s ² [kg-m ²]	0.057 [4.0x10 ⁻⁴]	
Axial Shaft Load lbs [N]	305 [1350]	
Radial Shaft Load @ 0.5" [12.7 mm]	110 [489]	
Motor Weight lbs [kg]	11.9 [5.4]	
Step Angle (full step) degrees	1.8	
How to order	G	-46

P33

120 Parallel/240 Series (100% duty cycle)

A 30% torque safety margin is recommended when applying step motors.

Please note: In order to get the performance curve shown above, motors should be wired in parallel when the drive is operated from 120 VAC; and motors should be wired in series when the drive is run off 240 VAC.

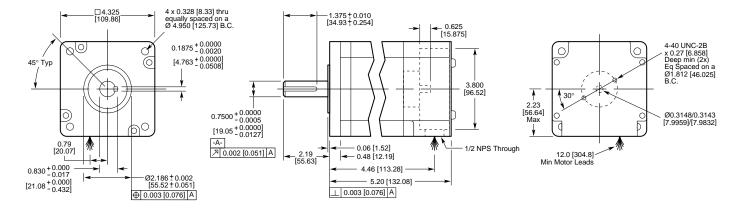
Applying Gearmotors

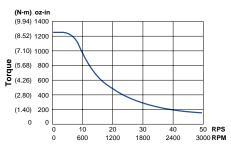
• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance

Performance Planetary Gearmotors

In-line		I Right-angle
Gear Ratio in [mm]	L	A x B
3 to 10	11.7 [297.2]	5.20 x 16.64 [132.1 x 422.7]
16 to 100	12.8 [325]	5.20 x 17.77 [132.1 x 451.4]
160 to 700	14 [356]	Above 100:1, not available

In-lir		
Gear Ratio in [mm]	L	A x B
3 to 10	12.0 [305]	5.20 x 17.01 [132.1 x 432.1]
16 to 100	13.2 [335]	5.20 x 18.28 [132.1 x 464.3]


P41 Step Motor


P41X Motor in [mm]

- x = N 12 inch, 8 conductor flying leads
 - T 12 foot, 5 conductor quick disconnect cable wired in series
 - V 12 foot, 5 conductor quick disconnect cable wired in parallel

Motor Performance

Motor and Encoder Data	P41 Series	P41 Parallel
Continuous Stall Torque oz-in [N-m]	125	50 [8.8]
Recommended Current/Phase Amps	2.8	5.7
Inductance mH	60	15
Max. Motor Winding Temp. °F [°C]	212 [100]	
Rotor Inertia oz-in-s ² [kg-m ²]	0.0783 [5.5x10 ⁴]	
Axial Shaft Load lbs [N]	404 [1790]	
Radial Shaft Load @ 0.5" [12.7 mm]	125 [550]	
Motor Weight lbs [kg]	11 [5]	
Step Angle (full step) degrees	1.8	
How to order	G-46	

120 Parallel/240 Series (100% duty cycle)

A 30% torque safety margin is recommended when applying step motors.

Please note: In order to get the performance curve shown above, motors should be wired in parallel when the drive is operated from 120 VAC; and motors should be wired in series when the drive is run off 240 VAC.

Applying Gearmotors

• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance

Performance Planetary Gearmotors

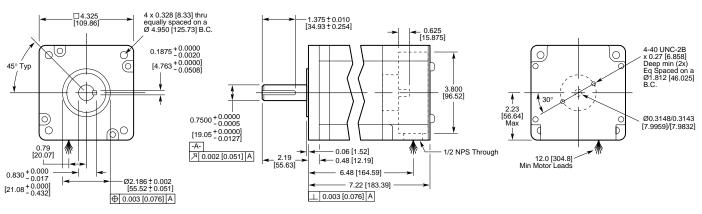
In-lin		
Gear Ratio in [mm]	L	A x B
3 to 10	9.9 [252]	5.95 x 16.59 [151.3 x 421.4]
16 to 100	11.5 [293]	5.95 x 18.22 [151.3 x 462.8]
160 to 700	13.1 [334]	Above 100:1, not available

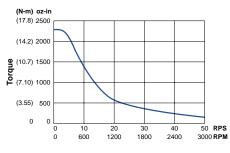
In-lir		
Gear Ratio in [mm]	L	A x B
3 to 10	10.4 [264]	5.95 x 17.05 [151.3 x 433.17]
16 to 100	12.0 [305]	5.95 x 18.65 [151.3 x 473.7]

P42 Step Motor

Step Motor Systems

D/2


P42X Motor in [mm]


x = N 12 inch, 8 conductor flying leads

012

- T 12 foot, 5 conductor quick disconnect cable wired in series V 12 foot 5 conductor quick disconnect cable wired in parallel
- V 12 foot, 5 conductor quick disconnect cable wired in parallel

Motor Performance

	P42	P42
Motor and Encoder Data	Series	Parallel
Continuous Stall Torque oz-in [N-m]	2300 [16.2]	
Recommended Current/Phase Amps	3.3	6.6
Inductance mH	84	21
Max. Motor Winding Temp. °F [°C]	212 [100]	
Rotor Inertia oz-in-s ² [kg-m ²]	0.155 [1.09x10 ³]	
Axial Shaft Load lbs [N]	404 [1790]	
Radial Shaft Load @ 0.5" [12.7 mm]	110 [489]	
Motor Weight lbs [kg]	18.4 [8.35]	
Step Angle (full step) degrees	1.8	
How to order	G	-46

Step Motor Systems

120 Parallel/240 Series (100% duty cycle)

A 30% torque safety margin is recommended when applying step motors.

Please note: In order to get the performance curve shown above, motors should be wired in parallel when the drive is operated from 120 VAC; and motors should be wired in series when the drive is run off 240 VAC.

Applying Gearmotors

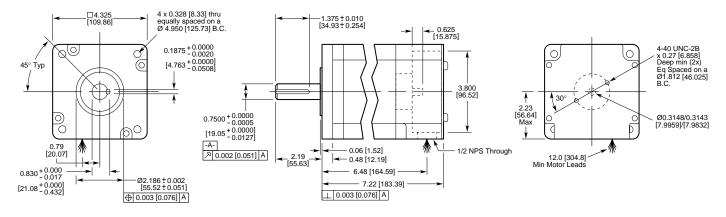
• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance

Performance Planetary Gearmotors

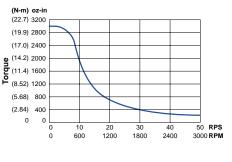
In-line		Right-angle
Gear Ratio in [mm]	L	AxB
3 to 10	12 [304]	5.95 x 18.61 [151.3 x 472.7]
16 to 100	13.6 [344]	5.95 x 20.24 [151.3 x 514.1]
160 to 700	15.2 [385]	Above 100:1, not available

In-lir		^{←−B} →→ A Right-angle
Gear Ratio in [mm]	L	A x B
3 to 10	12.4 [315]	5.95 x 19.07 [151.3 x 484.4]
16 to 100	14.0 [356]	5.95 x 20.67[151.3 x 525.0]

K42 Step Motor



K42X Motor in [mm]


(E, Sus certified

- т 12 foot, 5 conductor quick disconnect cable wired in series
- V 12 foot, 5 conductor quick disconnect cable wired in parallel

Motor Performance

120 Parallel/240 Series (100% duty cycle)

A 30% torque safety margin is recommended when applying step motors.

Please note: In order to get the performance curve shown above, motors should be wired in parallel when the drive is operated from 120 VAC; and motors should be wired in series when the drive is run off 240 VAC.

Applying Gearmotors

• See page I-1 for IDC gearmotor information and for how to determine gearmotor performance

Motor and Encoder Data	K42 Series		K42 Parallel
Continuous Stall Torque oz-in [N-m]		3000 [21.2]	
Recommended Current/Phase Amps	3.2		6.4
Inductance mH	60		15
Max. Motor Winding Temp. °F [°C]	212 [100]		
Rotor Inertia oz-in-s ² [kg-m ²]	0.156 [1.09x10 ⁻³]		^{r3}]
Axial Shaft Load lbs [N]	404 [1790]		
Radial Shaft Load @ 0.5" [12.7 mm]	110 [489]		
Motor Weight lbs [kg]	18.4 [8.35]		
Step Angle (full step) degrees	1.8		
How to order		G-46	

Performance Planetary Gearmotors

Gear Ratio in [mm]	L	A x B
3 to 10	12 [304]	5.95 x 18.61 [151.3 x 472.7]
16 to 100	13.6 [344]	5.95 x 20.24 [151.3 x 514.1]
160 to 700	15.2 [385]	Above 100:1, not available

In-lii		
Gear Ratio in [mm]	L	A x B
3 to 10	12.4 [315]	5.95 x 19.07 [151.3 x 484.4]
16 to 100	14.0 [356]	5.95 x 20.67 [151.3 x 525.0]

Specifications

The -EMK option provides an incremental 1000 line rotary encoder coupled to the rear shaft of our S, P and K Series step motors.

The -EM option provides an incremental 500 line rotary encoder coupled to the rear shaft of our S, P and K Series step motors.

An encoder is typically used with the SmartStep, S6961 and S6962 programmable step motor controls to provide stall detection and position maintenance. Encoders are also commonly used with displays to provide position information, or to provide position feedback to your own controller when using our NextStep[®] or S6002 drive.

-EM and -EMK are compatible with:

S, P and K Series step motors and gearmotors, sizes 23, 34 and 42

Electrical

Output Format	Incremental, dual square wave quadrature, with index.	
-EMK Pulses Per Revolution	1000 line (4000 post-quadrature), one index line	
-EM Pulses Per Revolution	500 line (2000 post-quadrature), one index line	
Supply Voltage	5VDC ± 5 %	
Current Requirements	140 mA	
Frequency	100 kHz pre-quadrature, max.	
Mechanical		
Outline Dimensions	Adds 1.0 inch to the length of 23 frame motors. No dimension change on 34 and 42 frame motors.	
Speed	6000 rpm max	
Weight	6 oz	
Cable	12-foot cable standard	
Environmental		
Operating Temperature	-10° to 70°C (S Series, P2X Series), -10° to 100°C (P3X, P4X & K Series)	
Storage Temperature	-20° to 70°C (S Series, P2X Series), -30° to 110°C (P3X, P4X & K Series)	
Housing	Drip-proof	
Vibration	10 to 200 Hz @ 5Gs (S & P2X Series), 5-2000 Hz @ 10 Gs (P3X, P4X & K Series)	
Shock	100G for 6 ms (S & P2X Series, 50 G for 11 ms (P3X, P4X & K Series)	
Notes:		
• S32, S33, P31, P32, P33, P41, P42, and K42 motors: the encoder is housed inside the rear plate • The encoder cable can be extended by the customer to a maximum of 100 feet if a high		

- housed inside the rear plate of the motor.
- The encoder adds 1.0 inch to the length of the S21, S22, S23, P21 and P22 motors.

Step Motor Systems

quality shielded, twisted pair cable

is used.

