

HEAD OFFICE

INMOTION TECHNOLOGIES AB Solkraftsvägen 13 SE-135 70 Stockholm SWEDEN Telephone: +46 (0)8 682 64 00 Telefax: +46 (0)8 682 65 80

Info@inmotech.com

http://www.inmotech.com

APPLICATIONS CENTERS

GREAT BRITAIN

Inmotion Technologies /Danaher Motion Bridge Mills Holmfirth Huddersfield HD9 3TW Telephone: +44 (0)1484 68 83 25 Telefax: +44 (0)1484 68 83 26

GERMANY

ACC Motion GmbH Zähringerstrasse 23 DE-77654 Offenburg Telephone: +49 (0)781 919 08-0 Telefax: +49 (0)781 919 08-29

ITALY

Danaher Motion Srl Via Brughetti Z.I. IT-20030 Bovisio Masciago (MI) Telephone: +39 0362 594 260 Telefax: +39 0362 594 263 SWEDEN Inmotion Technologies AB Solkraftsvägen 13 SE-135 70 Stockholm Telephone: +46 (0)8 682 64 00 Telefax: +46 (0)8 682 65 80

Inmotion Technologies AB Box 195 SE-234 23 Lomma Telephone: +46 (0)40 41 48 50 Telefax: +46 (0)40 41 48 55

SWITZERLAND

ACC Motion SA Wehntalerstrasse 6 CH-8154 Oberglatt Telephone: +41 (0)1 851 5010 Telefax: +41 (0)1 851 5020

ACC Motion SA La Pierreire CH-1029 Villars-Ste-Croix Telephone: +41 (0)21 863 6464 Telefax: +41 (0)21 863 6479

U.S.A. Inmotion Technologies 211 Overlock Drive Sewickley, PA 15143-2305 Telephone: +1 (412) 749 0710 Telefax: +1 (412) 749 0705

DMC²

Digital Motion Control System Part B

User's Manual 5.1

Art.No. 9032 0027 01 (B)

11.07.2001

Inmotion Technologies AB Stockholm, Sweden

© Inmotion Technologies AB, 2001. All rights reserved.

Table of Contents

Table of Contents	3
Software System	11
General	11
New features DMC ² 5.0	11
Remarks	
Definitions	11
System architecture	
DMC ² software development	
Timing and execution flow	
Event Triggered Programming	
DMC ² PL2 SW Flow	15
Function Block Diagram	
Load a new firmware release	
Boot mode command	
Startup message	22
PL2 Native position language	25
Introduction	25
General	
Argument types	
Abbreviated argument types	
Expression Operators	
Arithmetic Operators; Performs an Arithmetic Operation (32 bit signed	
operations)	
Equality and Relational Operators; Perform a Test Operation	
Relational Circular Operators; Perform a Test Operation	
Binary Operators, Perform a Binary Operation	
Mnemonic Operators	
Scaling mnemonic operators	
Compiler Extensions	
Compiler Symbols	
Predefined compiler symbols	
Special Compiler Functions	
Compiler directives	
Spline function compilation directives	
Conditional compilation directives	37
Multiline Macro	
Macro Definition	38
Macro Arg Specifiers	38
Macro Call (Expansion)	
PL2 Mnemonics	41
General	41
Standard set Mnemonics	
Trace Related Mnemonics	
LAN1/ LAN1 Related Mnemonics	
Anybus-S Related Mnemonics	
Indexed Addressing Mnemonics	
Text mode	
Text output	
Text input	
-	
Extended register groups	53

Introduction Group members. (group xx)	
Stack handling	
General Function	
Related Items	
Example Usage	
Group members (group 1)	
RD1, Resolver/Digital converter #1	
General	
Function	
Related items	
Example usage	
Group members (group 2)	
RD2, Resolver/Digital converter #2	63
RD2, General	63
Function	63
Related items	64
Example usage	64
Group members (group 3)	
Pg, Profile generator	
General	
Function	
Related items	
Example usage	
Improvements to 4.0	
Modify destination position while positioning	
Move to a target position 'behind' our current position	
Vary short motion profiles and/or vary high deceleration rates	70
Very short motion profiles and/or very high deceleration rates.	
Group members (group 4)	70
Group members (group 4) Motor, Motor interface	70 73
Group members (group 4) Motor, Motor interface General	70 73 73
Group members (group 4) Motor, Motor interface General Function	70 73 73 73
Group members (group 4) Motor, Motor interface General Function Related items	70 73 73 73 73
Group members (group 4) Motor, Motor interface General Function Related items Example usage	70 73 73 73 73 73
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5)	70 73 73 73 73 73 74
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members	70 73 73 73 73 73 74 76
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator	70 73 73 73 73 73 73 74 76 79
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General	70 73 73 73 73 73 73 74 76 79 80
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function	70 73 73 73 73 73 74 74 76 79 80 80
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items	70 73 73 73 73 73 74 76 79 80 80 80
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage	70 73 73 73 73 73 74 76 79 80 80 80 80
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6)	70 73 73 73 73 73 73 73 74 76 79 80 80 80 81
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox	70 73 73 73 73 73 73 74 76 79 80 80 80 81 86
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6)	70 73 73 73 73 73 73 74 76 79 80 80 80 81 86
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox	70 73 73 73 73 73 74 76 76 70 80 80 80 81 86 86
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General	70 73 73 73 73 73 73 73 74 76 79 80 80 80 81 86 86
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function	70 73 73 73 73 73 74 76 79 80 80 81 86 86 87
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function Related items	70 73 73 73 73 73 74 76 79 80 80 81 86 81 86 87 87 87
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function Related items Example usage Function Related items Example usage Function Related items Example usage Function Related items Example usage	70 73 73 73 73 73 74 76 79 80 80 81 86 86 86 87 87 87
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function Related items Example usage Function Related items Example usage Function Related items Example usage Function Related items Example usage Position lock CAM	70 73 73 73 73 73 74 76 79 80 80 80 80 81 86 86 86 87 87 87 88
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function Related items Example usage Position lock CAM Time locked CAM Master/Slave	70 73 73 73 73 73 74 76 79 80 80 80 80 80 81 86 86 87 87 88 88 88
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function Related items Example usage Position lock CAM Time locked CAM Master/Slave Incremental CAM	70 73 73 73 73 73 74 76 79 80 80 80 80 80 81 86 87 87 87 88 88 88
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function Related items Example usage Function Related items Example usage Position lock CAM Time locked CAM Master/Slave Incremental CAM Group members (group 7)	70 73 73 73 73 74 76 79 80 80 80 80 81 86 86 86 87 87 88 88 88 88 88 88
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function Related items Example usage Position lock CAM Time locked CAM Master/Slave Incremental CAM	70 73 73 73 73 74 76 79 80 80 80 80 80 81 86 86 86 87 87 87 88 88 88 88 88 88 89 93
Group members (group 4) Motor, Motor interface General Function Related items Example usage Group members (group 5) Induction motor specific members Reg, PID regulator General Function Related items Example usage Group members (group 6) Gear, Electronic gearbox General Function Related items Example usage Function Related items Example usage Function Related items Example usage Position lock CAM Time locked CAM Master/Slave Incremental CAM Group members (group 7) Tmr, System timers	70 73 73 73 73 74 76 79 80 80 80 80 81 86 86 86 87 88 88 88 88 88 88 88 88 88 88 89 93 93

Related items	. 93
Example usage	
Group members (group 8)	
Syslo, System I/O	
General	
Function	
Related items	
Example usage	
Group members (group 9)	
Int, Interrupt control	
General	
Function	
Related items	
Example usage	
Group members (group 10)	
In, Digital inputs	
General	
Function	
Related items	
Example usage	
Group member (group 11)	
Out, Digital outputs	
General	
Function	
Related items	
Example usage	
Group members (group 12)	
Vector, Interrupt vectors	
General	
Function	
Related items	
Example usage	
Group members (group 13) CAPTURE, Capture exact time of external events	110
Capital exact line of external events	110
General Compatibility DMC1 to DMC ²	110
Function	
Hardware change	
Related items	
Example usage	
Group members (group 14)	
Ana, Analog I/O	
General	
Function	
Related items	
Example usage	
Group members (group 15)	125
EEprom	
General	
Function	
Related items	
Example usage	
Group members (group 16)	
Comm, Serial communication	
General	
Function	

Related items1	
Example usage1	
Group members (group 17)1	
RD1Corr, Position corrector	
Function	
Related items	
Example usage	
Group members (group 18)	
OptAD, analog to digital converter.	
General1	135
Conversion resulotion1	
Calibration1	
Example usage1	
Amplifier gain setting1	
Example usage1	136
Group members (group 22)1	
LAN1, Local area network 11	
LAN1, Interrupt handling1	
LAN1, Double Buffering1	
LAN1, Specific Instructions1	
LAN1, Remote Frames in CAN1	
LAN1, Power Up1	
LAN1, High level communication protocols1	42
LAN1 communication scenarios	42
Group members (group 28)1	43
MsgObjLAN1, Helper for LAN11	149
Group members (group 29)1	149
LAN2, Local area network 2 1	152
General1	152
LAN2 commands1	
MsgObjLAN2, Helper for LAN21	153
MsgObjLAN2 commands1	153
MultDiv,	154
General1	154
Function1	154
Related items1	154
Example usage1	154
Group members (group 49)1	154
FlashMem1	156
Group members (group 50)1	156
ABIn	157
General1	157
Function1	157
Related Items1	157
Example Usage1	157
Group members (Group 52)1	
ABOut	
General1	
Function1	
Related Items1	100
	158
Example Usage1	158 158
Example Usage1 Group members (Group 53)1	158 158 158
Example Usage	158 158 158 159
Example Usage1 Group members (Group 53)1	158 158 158 159 159

Related items	159
Example usage	159
Group members (group 54)	160
ParArea,	161
General	161
Function	
Related items	
Example usage	
Group members (group 55)	161
XENDAT,	
General	163
Function	
Manual mode	
Automatic Serial Mode	163
Analog mode only	163
Combined serial and analog mode	163
Related items	
Example usage	164
Group members (group 56)	
Counter	
General	172
Function	
Related Items	
Example Usage	
Group members (Group 57)	
Identifier	175
General	
Function	
Related Items	
Example Usage	
Group members (Group 58)	
RDPDATA	
General	
Function	
Related Items	
Example Usage	
Group members (Group 59)	
SAnyBus	
General	
Function	
Related items	
Example usage	
Group members (group 60)	
AnyBus related PL instructions	
Manipulate the AnyBus input buffer	
Manipulate the AnyBus output buffer	
Transfers the AnyBus input buffer	
ABInMail	188
General	188
Function	188
Related Items	
Example Usage	
Group members (Group 61)	
ABOutMail	189
General	189
Function	189

Related Items	
Example Usage	
Group members (Group 62) ABFBus	
General	
Function	
Related Items	
Example Usage	190
Group members (Group 63)	
EN1-EN4, Encoder1-4	
General	
Backward compatibility note	
Function Related Items	
Example Usage	
Group members (Group 64-67)	
IENC	
General	
Function	193
Related Items	
Example Usage	193
Group members (Group 69)	
ModEn3-ModEn4	
General Function	
Related Items	
Example Usage	
Group members (Group 72-73)	
Communication protocol	
Communication protocol Introduction Protocol Format	199
Introduction	
Introduction Protocol Format	
Introduction Protocol Format Description	
Introduction Protocol Format Description Computer Mode PL2 On line commands.	
Introduction Protocol Format Description Computer Mode	
Introduction Protocol Format Description Computer Mode PL2 On line commands	
Introduction Protocol Format Description Computer Mode PL2 On line commands PL2 On line commands Command Line Editor (CLE) ECT.	
Introduction Protocol Format Description Computer Mode PL2 On line commands PL2 On line commands Command Line Editor (CLE) ECT Introduction	
Introduction Protocol Format Description Computer Mode PL2 On line commands PL2 On line commands Command Line Editor (CLE) ECT Introduction Definitions	
Introduction Protocol Format Description Computer Mode PL2 On line commands PL2 On line commands Command Line Editor (CLE) ECT Introduction Definitions Running ECT	
Introduction Protocol Format Description Computer Mode PL2 On line commands PL2 On line commands Command Line Editor (CLE) ECT Introduction Definitions	
Introduction Protocol Format Description Computer Mode PL2 On line commands PL2 On line commands Command Line Editor (CLE) ECT Introduction Definitions Running ECT The ECT desktop The ECT main menu File	
Introduction Protocol Format Description Computer Mode PL2 On line commands Command Line Editor (CLE) ECT Introduction Definitions Running ECT The ECT desktop The ECT main menu File Project	
Introduction Protocol Format Description Computer Mode PL2 On line commands PL2 On line commands Command Line Editor (CLE) ECT Introduction Definitions Running ECT The ECT desktop The ECT main menu File Project Options	
Introduction Protocol Format	
Introduction Protocol Format	
Introduction Protocol Format Description Computer Mode PL2 On line commands Command Line Editor (CLE) ECT Introduction Definitions Running ECT The ECT desktop The ECT main menu File Project Options Window Help Using the text editor	
Introduction Protocol Format Description Computer Mode PL2 On line commands PL2 On line commands Command Line Editor (CLE) ECT Introduction Definitions Running ECT The ECT desktop The ECT main menu File Project Options Window Help Using the text editor Selecting text	
Introduction Protocol Format Description Computer Mode PL2 On line commands PL2 On line commands Command Line Editor (CLE) ECT Introduction Definitions Running ECT The ECT desktop The ECT desktop The ECT main menu File Project Options Window Help Using the text editor Selecting text Edit	
Introduction Protocol Format Description Computer Mode PL2 On line commands PL2 On line commands Command Line Editor (CLE) ECT Introduction Definitions Running ECT The ECT desktop The ECT main menu File Project Options Window Help Using the text editor Selecting text	

Creating/Editing Source Code	
Exiting Edit	212
Compile	
Introduction	
Accessing Compile	
Setting up the Compiler	
Compiling source code	
Compiler output	
Test	
Introduction	214
Test setup	214
Test function	
Accessing the test system	216
Test menu	
File	216
Controller	216
Exiting the test enviroment	217

Software System

GENERAL

This section is intended to introduce the user to the fundamentals of the DMC^2 programming and software system. It contains the following parts:

- Definitions
 Important terms are explained.
- System architecture Overview of the DMC² software system.
- Timing and execution flow Timing and flow aspects important to the programmer.
- Event triggered programming The recommended programming technique for the DMC².
 - Function block diagram Functionality blocks are described.
- Load New Firmware
 Download new Firmware to DMC².

New Features DMC² 5.0

- Increased number of program lines , 8191.
- Increased number of user registers , 4096.
- Fieldbus support using Anybus-S modules from HMS.
- Endat interface for absolute encoders.
- Incremental encoder interface.
- Counter function for external event counting.
- Inverted conditional operators such as IfNot,IFAbsNot,added.
- Indexed subroutine call added.
- More connection possibilities for debug use.
- Software definition of rotational direction.
- Multiple commutation sources.

REMARKS

- The PL execution speed is much higher in a DMC2 (10 15 lines / servocycle), than in a DMC1, thus it is essential that PL2 program use explicit lines to wait for hardware, this may not have been a problem in the DMC1 because execution speed was between 4 and 1 PL lines/servo-cycle.
- DMC1 and new DMC² can only be synchronized with respect to I/O. The resolver can not be interchanged between DMC1 and new DMC², because the resolver system operates differently.

DEFINITIONS

PL2	The proprietary programming language for creating DMC ² application programs. Consists of PL2 statements. The language is register-based and line oriented. Most functions are accessed by manipulation of register values. Resides in FLASHPROM
Firmware	The system software of the DMC ² , performing hardware manipulation, interpretation of the PL2 code and execution of predefined functions.
Function block	Firmware functions that perform a certain predefined user function, e.g. creating a movement profile, based on preset

register values and PL2 statements.

- CompilerPC software tool running on the PC to compile (translate) a PL2
statement text file (.pl2) to a binary format file (.hee) suitable
for transmission to the DMC2. Communication between the PC
and the drive is assumed to be in the binary download format.Terminal
modeLine oriented compiler running in the DMC2 firmware allowing the
user to modify and insert statements in the application program in
- mode user to modify and insert statements in the application program in the DMC². NOTE that the interpreter performs functions similar to the compiler but on a line-by-line basis. It is executed in the drive itself and is accessed online.
- Interpreter The interpreter executes as part of the DMC² firmware and interprets PL2 commands. If an application program is running, statements are sequentially interpreted from the DMC² application program memory. If it is not running the interpreter still reacts to online statements as described above under terminal mode compiler.

SYSTEM ARCHITECTURE

DMC² SOFTWARE DEVELOPMENT

The DMC² software system can be divided into two main parts, firmware (FW) and PL2 code.

- The FW (firmware) functions as a computer operating system. It manages all direct interactions with the hardware and provides the application programmer with uniform, high level programming tools. The FW is stored in part of the FLASH in the DMC².
- PL2 code is the instructions written by the application programmer to achieve application specific behavior of the DMC². It is created as a text file in a PC environment, compiled and downloaded to the DMC and stored in the FLASHPROM for finalized application programs. While in text format the PL2 file may contain extensive comments and explanations. The downloadable files, however, are in a pseudo-machine language, stripped of all comments and labels.

The application programmer uses the following tools to create an application:

- ECT, Edit-Compile-Test, software package for PC-compatible computers. Allows the user to create application program text files, compile them and download the binary files to the DMC² as illustrated in Figure 1.
- ECT includes facilities for working on-line with the DMC². This combined with the DMC's built-in line compiler may sometimes be a useful complement to the normal development method.

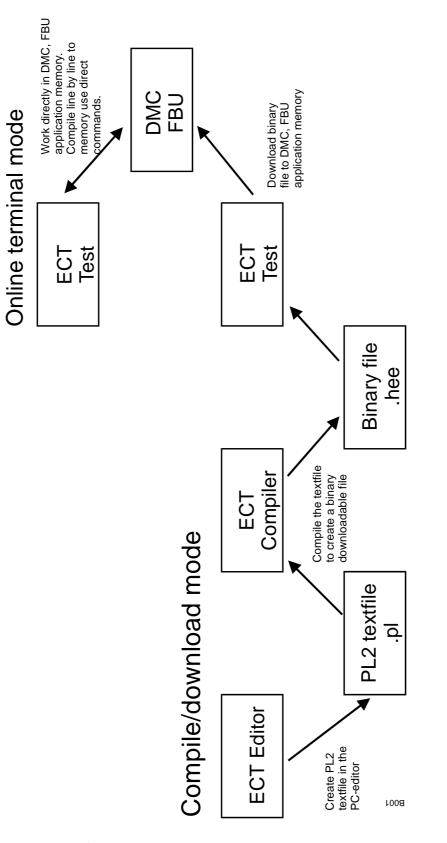


Figure 1. DMC² software development cycle.

TIMING AND EXECUTION FLOW

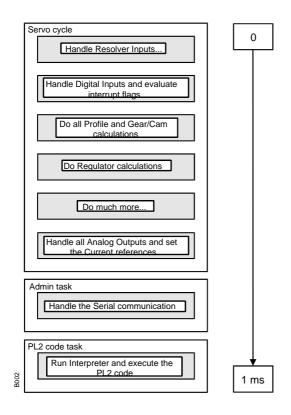
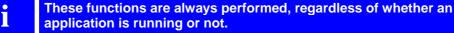



Figure 2. DMC servo cycle.

The firmware executes in two ways:

 One is clock dependent, executing once each system clock cycle. This is called a servo cycle. (Figure 2.). It handles all real time critical tasks, such as velocity and position measurement, regulators, motion profiles, cams and gear functions. It also updates real time outputs, i.e. analog outputs for monitoring purposes.

The rest of the firmware execution is done in background. One task is handling the serial communication. Another task is interpreting and executing the PL2 code.

It is important to realize that most real-time dependent functions are completely executing in FW. Consider the profile generator. It produces new values every ms, but it does not require any PL2 involvement once the initial profile statement has been executed. From this point onwards, the FW is executing all related calculations within the servo cycle and the PL2 code may perform other tasks concurrently. Another example is the output of real time data to the analog outputs. Once the PL2 code has established a "connection", for example, from actual speed to an analog output, the FW performs the real time update of the analog output.

EVENT TRIGGERED PROGRAMMING

DMC² PL2 SW FLOW

Figure 3. DMC PL2 Software flow.

When programming a PL2 application an event triggered programming technique is recommended. Figure 3 illustrates the principle.

- After startup of the system when the PL2 code initially gains access to the processor, a number of initializations normally take place. These may include setting up motor and resolver parameters, regulator and interrupt system.
- After setup program execution enters some main loop. The main loop may contain nothing. Instead all action to be taken may be triggered by interrupts.
- Special interrupt routines are executed for each detected interrupt. In this way the program assumes a function oriented structure which is easier to maintain. There are justified exceptions to this principal.
- For example, operator interface functions may be handled in the main loop.
- It is important to realize the meaning of interrupt in the PL2 environment. An interrupt does alter the natural flow of PL2 code execution, but it is not the direct result of a change of sequence flow estate of the hardware.
- Most PL2 interrupts are generated by the FW, sometimes in reaction to a hardware interrupt, but more often by polling the hardware status each servo cycle.
- A PL2 interrupt response time is therefore always approximately 1ms.
- The predictable interrupt response time is yet another advantage of event triggered programming.
- The rate of PL2 statements executed varies with the complexity of the statements and the number of real time functions active in the servo cycle. It is not advisable to base any real time related functions on the execution times of PL2 code.

FUNCTION BLOCK DIAGRAM

Each function blocks in Figure 4. is explained in the following tables. For each function block the related register set, the input signals or "trigger" to the block and the resulting output (or what is affected) from the block are listed.

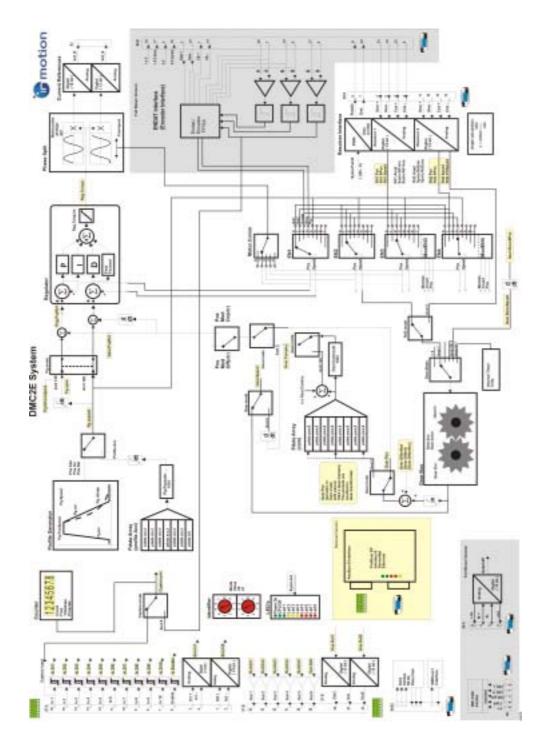


Figure 4. DMC functional block diagram.

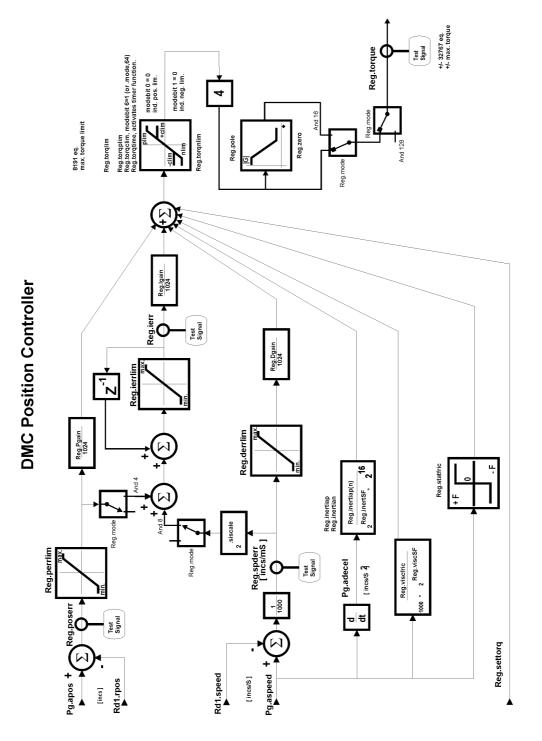


Figure 5. DMC functional block diagram.

Function block	Register set	Input/ Trigger	Output/ Affecting	Description
Digital inputs	In	Physical input	PL2 code execution flow.	Input handling to the DMC ² .
Digital outputs	Out	PL2 statement	Physical outputs.	Digital output handling from the DMC ² unit.
Profile generator	Pg	PL2 statement	Speed and position set commands.	Calculates the momentary desired values of speed and position.
Regulator	Reg	Speed and position set points and resolver input	Current set point, (momentary demanded torque).	Controls the motor speed and position according to the momentary set points and the measured speed and position. Compensates for any speed or position error.
Motor control	Motor	Register values	Motor drive adaptation.	Adapts the motor drive to the electrical characteristics of the motor.
System inputs	SysIo	Alarm and safety	PL2 code execution.	Allows the PL2 code to detect and respond to alarm and safety signals generated in hardware protection systems.
System outputs	SysIo	PL2 statement	HW affected in the unit	Allows certain hardware functions (i.e. enabling the power stage or activating brake relay or LEDs) to be controlled by the PL2 code.
Analog inputs	Ana	Analog signals	PL2 accessible values	Allows the PL2 code to monitor analog signals either by direct reading or by "connecting" it to an internal variable.
Analog outputs	Ana	PL2 statement	Value on analog output pins	Allows the PL2 code to set analog outputs to specific values or "connect" it to an internal variable.
Resolver	RD1, RD2	Physical resolver input	Velocity and position of motor or auxiliary resolver	Allows the FW system and the PL2 code to access position and velocity, not only of the controlled motor but also of one auxiliary resolver.
Gear box	Gear	Auxiliary resolver	Set position	Allows the motor set position to be controlled by the auxiliary resolver speed and position, in such a way that an electronic gearing is achieved.
Pdata acc	None	Timer ticks	Set acceleration	Pdata acc is a data array that allows the PL2 programmer to

Function block	Register set	Input/ Trigger	Output/ Affecting	Description
			and velocity	create his own acc / decel profiles. Each cell of the Pdata array contains the desired acc and the number of ticks during which this should be maintained.
Pdata cam	None	Auxiliary resolver or timer ticks	Set position and velocity	Pdata pos allows the PL2 programmer to create electronic cams. For each position of the aux. resolver, the desired position of the motor is maintained.

The following table explains block functions merely providing support to the PL2 programmer. These function blocks are less related to hardware functions:

Function block	Register set	Input/ Trigger	"Output/ Affecting	Description
Stack	Stack			Provides a temporary numbers storage facility to the PL2 programmer. This is a complement to conventional register storage.
Timer system	TMR			The timer system provides timing and delay facilities to the PL2 programmer.
Interrupt system	Int			The interrupt system allows the PL2 programmer to enable or mask certain interrupt sources and control interrupt trigger criteria, i.e. positive or negative edge of an input signal.
Interrupt vectors	Vector			The interrupt vectors direct program execution to the desired interrupt service routine, upon interrupt detection.
Input capture	Capture			The input capture function is allowing the PL2 code to measure the exact time, when an edge was detected on the high speed input.
Parameter storage	EEProm			For non-volatile storage of PL2 software parameters, EEProm hardware is provided.
Communic ation	Comm			Allows the PL2 programmer to customize the serial communication parameters.

Function block	Register set	Input/ Trigger	"Output/ Affecting	Description
Resolver correction	RD1Corr			The RD1Corr register set is used to compensate for physical resolver imperfections. The calculation of these values may be done automatically.
Local Area Network 1	LAN1			Interface to the Local Area Network 1.
Can message descriptor 1	MsgObjLAN1			Can message descriptor temporary storage.
Local Area Network 2	LAN2			Interface to the Local Area Network 2.
Can message descriptor 2	MsgObjLAN2			Can message descriptor temporary storage.
	Muldiv			Math scaling with 64 bit protocol
	FlashMem			Protocol
	AnyBus			Fieldbus interface
	DStore			Data storage
	Par area			Non violated parameter storage
	Counter			
	RDPDATA			
	Identifier			
	EN1- EN4			
	XENDAT			
	IENC			

LOAD A NEW FIRMWARE RELEASE

The PL command 'BOOT' can be used to enter boot mode, when an existing copy of firmware already resides in the flash.

- 1. Turn power to the drive off.
- 2. Short pin 2 and pin3 on connector X5 or X4 (serial communication). (This will echo content sent by the drive back to the drive).
- 3. Apply power to the drive.
- 4. Remove short applied at step 2.

- 5. Without removing power to the drive connect to the ECT terminal emulator. Warning: Make sure that both the DMC² and the PC is earth grounded failure, to do so may result in damage the DMC² unit and/or the PC!
- The BOOT monitor should have been entered.
 First, the current program must be erased, to do that type, >EA

or >EF EA - Erase all. EF - Erase firmware (currently same as EA). H - Help. When command has finished then next step.

7. Select CONTROLLER: DOWNLOAD from the menu and select the new firmware file

(firmware extension is *.hex).

- 8. Wait for download to finish
- 9. The new firmware should now be stored into the flash unless reported otherwise, turn the power off or type,
 >RF
 RF Run firmware
- 10. Do the command NEW before downloading the application program again. Note. Any stored PL program will have been erased from the flash.

BOOT MODE COMMAND

With the addition of the 'boot' command a user can enter the boot mode from the terminal. This simplifies the above procedure to,

- 1. Turn power to the drive on
- Type 'boot' when the '>' prompt is seen. >boot<ENTER>
- 3. The unit has entered 'BOOT MODE'. Continue from step 6 in the above list.

STARTUP MESSAGE

When power is applied to the DMC² the following startup message is displayed,

ACC DMC / Inmotion Technology AB v05.02.00 Node#:1 Baud: 9600 Mode: 0

This line is always sent using 9600 baud independent of the settings in the eeprom related to the COMM group or any programming of the COMM group. The line gives information about the content of the EEProm used for initialization of the serial communication (COMM group).

The assignments made to the COMM group by the firmware at startup is:

Node	COMM.Node = EEProm.6 and 15.
	<pre>If EEProm.4 = 0 then COMM.Baud = BaudTable[EEProm.6 >> 8] else COMM.Baud = EEProm.4</pre>

COMM.Mode = EEProm.7 and 15 COMM.TLines = EEProm.7 >> 8
BaudTable is a table of 8 baudrate values, 509600

If there appears to be a problem communicating with the DMC^2 , then check the startup message first to verify that the initial settings are satisfactory.

PL2 Native position language

INTRODUCTION

This manual pertains to programming DMC² motion controller products and contains a language reference that explains instructions, extended registers, language syntax and compiler functions.

Typefaces used in this manual:

Mono spaced	This typeface represents text as it appears on the screen (in ECT) or in a program and is also used to indicate items the programmer may type.
Italics	Italics are used to emphasize certain words, such as new terms.
Bold	PL2 reserved word

GENERAL

Program	A Program is comprised of a collection of Program Statements.
i	The DMC ² product family allows a Program to be stored in volatile memory,(RAM) or in nonvolatile memory (FLASHPROM). The program can also be a file that is stored on a computer when the development environment (ECT) is used.
Program Statement	A program statement is one line of text that contains a mnemonic for an instruction. Each instruction has its own syntax. (The compiler checks for the correct syntax. The controller has a built in one-line compiler.)
Line	The sequential number where a program instruction is stored. (1-8191)
Mnemonic	A mnemonic is a text synonym for an instruction. The DMC ² family of products directly interprets Mnemonics. Note: Occasionally, instructions refer to the Mnemonic for the instruction.
Mnemonic Operator	An operator used together with a Mnemonic to define the Instruction.
Argument	One or several arguments are used with a Mnemonic to define the Instruction.
Expression Operator	Used with a Mnemonic and Argument(s) to define an action that should take place during execution of the Instruction.
Routine	A part of a program, usually designated to perform a certain function, is called a Routine. A Program is typically made up of many Routines.
Parameter stack	Part of the memory organized as a FILO for parameter storage.
[Mnemonic]	Designates an optional Mnemonic. Example: The Let Mnemonic can usually be omitted.
Syntax	There are different ways to combine a Mnemonic together with arguments and an operator. This will yield different

executing results.

The typical form for a PL program Statement is:

100 Let R7 = Pg.speed / 112

[Line] Mnemonic [Mnemonic Operator] [Argument] [[Operator] [Argument]]

ARGUMENT TYPES

SConst		6-bit. Can have any value between 7. However, not all statements use all bits.	
LConst		2-bit. Can have any value between I 2147483647. However, not all statements	
Reg		linary register. Can be accessed directly as as R(Rnnn) (where nnn is the register :	
	[Let] R220 = 1	— -	
XReg	[Let] R(R220) = 4711 ; This will set R17 =4711 Designates an Extended Register. The XReg is usually an ordinary register or a system variable. Some system variables are read-only. An attempt to write to a read-only system variable has no effect.System variables are formed into groups such as,		
	Pg Motor	Profile Generator The motor interface	
	Each group has members such as:		
	Motor.Mode Motor.Comm Motor.Poles Motor.PPR	Type of motor. Commutation source. Number of motor poles. Pulses per revolution.	
Line	Designates a line	number. The range is 1 to 8191.	

ABBREVIATED ARGUMENT TYPES

LRval	Either LConst or Reg.
Lval	Either LConst or Xreg.
RLine	Either a Line or a Reg.
SRval	Either SConst or Reg.
Sval	Either SConst or Xreg.
[Argument]	Denotes optional argument.

EXPRESSION OPERATORS

The expression operator indicates the action to be performed on the two arguments.

The typical form of an expression is:

Argument1 Expression Operator Argument2

Were the Expression Operator can be:

- An arithmetic operator; performs an arithmetic operation.
- An equality and relational operator; performs a test operation.
- A relational circular operator; performs a test operation.
- A binary operator; performs a binary operation.

ARITHMETIC OPERATORS; PERFORMS AN ARITHMETIC OPERATION (32 BIT SIGNED OPERATIONS)

- * Multiply Argument1 with Argument2.
- + Add Argument1 to Argument2.
- Subtract Argument2 from Argument1.
- / Divide Argument1 by Argument2
- Shift arithmetic Argument1 to the left by Argument2 steps
- >> Shift arithmetic Argument1 to the right by Argument2 steps. If a negative number is shifted this way it will always be negative.

EQUALITY AND RELATIONAL OPERATORS; PERFORM A TEST OPERATION

- < TRUE if Argument1 is less than Argument2.
- <= TRUE if Argument1 is less than or equal to Argument2.
- <> TRUE if Argument1 is not equal to Argument2.
- TRUE if Argument1 is equal to Argument2.
 NOTE: If no operator is specified for the mnemonics IF and WAIT and Argument1 is not equal to 0, then this is evaluated TRUE.
 Ex: WAIT 7 will always be TRUE
- > TRUE if Argument1 is greater than Argument2.
- >= TRUE if Argument1 is greater than or equal to Argument2.

RELATIONAL CIRCULAR OPERATORS; PERFORM A TEST OPERATION

Circular comparison eliminates the problem of a variable's value wrapping from positive to negative or from negative to positive.

Consider an 8-bit arithmetic with a possible range of -128 to +127. If you add 10 to +127 the result is +137, but because of the limited range the result is -119. Therefore, if you have register R0 = +127, the comparison: R0+10 > R0 would evaluate to FALSE.

Circular comparison can be thought of as a "number" circle where the value +127 is placed next to the value -128.

The circular comparison will determine whether clockwise (+) or counterclockwise (-) is the shortest way between +127 and -119.

Clockwise (>) evaluates TRUE, and counterclockwise (<) evaluates TRUE.

The possible circular comparisons are:

- > TRUE if shortest way from Argument1 to Argument2 is clockwise.
- < TRUE if shortest way from Argument1 to Argument2 is counterclockwise.
- >= TRUE if Argument1 equals Argument2 or if shortest way from Argument1 to Argument2 is clockwise.
- <= TRUE if Argument1 equals Argument2 or if shortest way from Argument1 to Argument2 is counter clockwise.

BINARY OPERATORS, PERFORM A BINARY OPERATION

<	Shift binary Argument1 to the left by Argument2 steps.
>	Shift binary Argument1 to the right by Argument2 steps.
AND	Bit wise AND of arguments. For IF or WAIT mnemonics: TRUE if result is non-zero.
EXOR	Bit-wise EXCLUSIVE OR of ARGUMENTS. NOTE: EXOR can be used to perform a NOT function using: Let R10 = Argument1 EXOR -1.
MOD	Take Argument1 modulo Argument2.Remainder of the division Argument1/Argument2. Example: R0 = 107 mod 10; R0 will be assigned the value 7.
OR	Bit wise OR of arguments. For IF or WAIT mnemonics, TRUE if result is non-zero.

MNEMONIC OPERATORS

Ор	Operator; each statement has its own supported operators (see following).	
IFcOp	One of:	
	<= >= < > =	
lfOp	One of:	
	OR AND <= >= <> = < > THEN	
PosOp	One of:	
	ABORT ABS INC REL 'MOD ON CLR''MOD OFF CLR' 'MOD ON' 'MOD OFF'	
ProfOp	One of:	
	ACC	
THEN	Either THEN or , (comma)	
WcOp	One of:	
	<= >= < > =	
WOp	One of:	
	OR AND <= >= <> = < > (none)	
LetOp	One of:	
	EXOR OR AND << >> < >> MOD / * - + MULDIV DIVMUL	

SCALING MNEMONIC OPERATORS

The operation uses full 64-bit precision in the multiplication and division. In the case of an overflow in the result will be \pm MAXINT. (2147483647)

DIVMUL

LET <Arg1> = <Arg2> DIVMUL <Arg3>

LET <Arg1> = <Arg2> MULDIV <Arg3>

$$Arg1 = \frac{65536*Arg2}{Arg3}$$

MULDIV

$$Arg1 = \frac{Arg2*Arg3}{65536}$$

Internal calculations are made with 64 bit arithmetic. The user must handle overflow.

Example usage of the MULDIV and DIVMUL operators:

```
; Assume a 4 pole motor
; If we want to convert one motor revolution into a
; position of 1000
; calculate the conversion factor
        r100 = 1000 DIVMUL Motor.PPR
        <other lines>
        r200 = rdl.pos MULDIV r100
        disp r200
```

COMPILER EXTENSIONS

[] addr_of @	Angle brackets are meta symbols implying that text is optional. An address of operator can be used to obtain the line number for the start of a profile or Program. The '@' symbol designates the address of an operator. Example:	
	[Let] R10 = @Profile ;Ex 1. Profile Acc @Profile ;Ex 2 Vector.CycInt = @MyTimProg ;Ex 3.	
	Ex1. Load R10 with the line number where the profile "Profile" is defined. Ex2. Start the profile "Profile". Ex3. Load the vector for cyclic interrupts to point to the interrupt routine "MyTimProg".	
cond_expr	A conditional expression used with conditional compilation directives using the form: .if const_expr cond_operator const_expr.	
const	A constant value of type LConst or Sconst	
const_expr	Any expression which result in a constant value. Constant expressions consist of VSymbols, Operator[s] and const. Parentheses can be used to alter the normal operator precedence and associatively rules.	
dyn_expr	.define FOO = 10 / 2 + 1 ; Evaluates to 6 .define BAR = 10 / (2 + 1) ; Evaluates to 3 A dynamic expression which is evaluated during run time. The DMC ² has the capability of embedding dynamic expressions in its instruction set. Dynamic expression consists of const_expr,	
	וושנוטנוטוו שבו. בארובשטווי בארובשטווי נטוושושנש טו נטוושנ_פארו,	

Reg, XReg, or instruction-dependent operators. Use parentheses to force the compiler to parse the expression if the expression is a const_expr.Format:

[Let] Reg = Reg let_operator SConst
[Let] XReg = XReg let_operator SConst
Example:

[Let] MyRegister = MyRegister * MyValue + 3
MyValue + 3 is a const_expr and is evaluated during
compilation.

indirect_reg Designates an internal 32-bit register and is accessed as R(Rnnn).

COMPILER SYMBOLS

A symbol can contain the letters "A" to "Z" and "a" to "z", the underscore '_' character, and digits "0" to "9". With the following restrictions:

- The first character must be a letter or an underscore.
- By default, the compiler recognizes only the first 64 characters as significant.

VSymbol	Alias for a value. A VSymbol can be used as an alias for const or const_expr. VSymbols are constant values and are defined using .DEFINE directives. Example:
	.DEFINE ENDPOS = 1000 .DEFINE STAPOS = ENDPOS + 2000
RSymbol	Alias for a register. RSymbols that can be used as an alias for Reg. Rsymbols are constant values and are defined using .DEFINE directives. Example:
	.DEFINE REG12 = R12 .DEFINE MAXSPD = REG12
XSymbol	Alias for an extended register. An XSymbol can be used as an alias for XReg. XSymbols are constant values and are defined using .DEFINE directives. Example:
	.DEFINE MPOLES = Motor.Poles .DEFINE MPOL = MPOLES
ISymbol	Alias for an indirect register address. An ISymbol can be used as an alias for an indirect_reg. ISymbols are constant values are defined using .DEFINE directives. Example:
	.DEFINE IDXREG = R(R40) .DEFINE IDX = IDXREG .DEFINE IDXFOO = R(REG12)
ISymbol	Alias for an indirect register address. An ISymbol can be used as an alias for an indirect_reg. ISymbols are constant values are defined using .DEFINE directives. Example:
	.DEFINE IDXREG = R(R40) .DEFINE IDX = IDXREG .DEFINE IDXFOO = R(REG12)

LSymbol	Alias for line number. An LSymbol can be used as an alias for a line_number. Lsymbols are used when a line_number is referenced, such as:
	GOTO Start Vector.CycInt, @Cyclic Vector.PosErr, @Error
line_number	Line numbers can be specified in two forms: Absolute and Relative. The typical form is:
	<i>label [:] program statement</i> A label becomes an LSymbol if it starts with a character and ends with a colon symbol; this is the relative line_number form. Example:
	Start: Pg.Speed = 10000
	The label can be a number, in which case the line number is absolute.
	10 PG.Speed = 10000
	The last definition has the side effect to define the location counter to 10, just as if it was preceded by the line:
	.ORG 10
	The reason for this is that the PL compiler also should be able to compile programs uploaded from a motion controller.
space_char	The space character has significance in the DMC compiler. Example:
	L = T R 1 0 = 5 0 LETR10=50
	The above statements are not equivalent, it must be typed as,
	LETR10=50
	Or
	LETR10 = 50
Decernies	

PREDEFINED COMPILER SYMBOLS

DMC	Is defined when the DMC compiler is used.
V0500	Is defined if version 5 of the compiler is used

SPECIAL COMPILER FUNCTIONS

The PI2 Language compiler has the following special mathematical functions:

Sin (a ,b ,c)

Cos (a ,b ,c)

The Sine and Cosine can be used to calculate constant values for cam tables or similar applications.

The functions are evaluated as:

Sin (angle, period, amplitude) = amplitude * Sine(angle/period), angle/period is in radians

Cos (angle ,period, amplitude) = amplitude * Cosine(angle/period)

Ex: Define a PDATA table holding Sine values for 0 to 9 degrees normalized to an amplitude of 65000

```
.define c_Amplitude = 65000
.define c_period = 180*1000*996/3129 ; 180*1000/pi
pdata sin( 0 * 1000, c_period, c_Amplitude),0 ;0 degrees
pdata sin( 1 * 1000, c_period, c_Amplitude),1 ;1 degrees
pdata sin( 2 * 1000, c_period, c_Amplitude),2 ;2 degrees
pdata sin( 3 * 1000, c_period, c_Amplitude),3 ;3 degrees
pdata sin( 4 * 1000, c_period, c_Amplitude),4 ;4 degrees
pdata sin( 5 * 1000, c_period, c_Amplitude),5 ;5 degrees
pdata sin( 6 * 1000, c_period, c_Amplitude),6 ;6 degrees
pdata sin( 7 * 1000, c_period, c_Amplitude),7 ;7 degrees
pdata sin( 8 * 1000, c_period, c_Amplitude),8 ;8 degrees
pdata sin( 9 * 1000, c_period, c_Amplitude),9 ;9 degrees
```

This will compile to:

1	PData	Ο,	0	
2	PData	1134	,	1
3	PData	2268	,	2
4	PData	3402	,	3
5	PData	4534	,	4
6	PData	5665	,	5
7	PData	6794	,	6
8	PData	7921	,	7
9	PData	9046	,	8
10	PData	ı 101	68	,

This can be very useful for creating motion profiles or look-up tables.

The RDPdata mechanism (see Extended register groups on page 53) can bee used to read Pdata tables for any purpose.

COMPILER DIRECTIVES

9

The PL2 Language compiler has the following directives:

.LIST	Format:	.LIST ON OFF	[; Comment]
	Function:	Disable/enable the genera output.	tion of list file
	Default:	On	
.LISTMACRO	Format:	.LISTMACRO ON OFF	[; Comment]
	Function:	Disable/enable the generation of macro expansions in the list file output	
	Default:	On	
.NOTE	Format:	.NOTE "string", Vsymbol	[; Comment]
	Function:	Print "string" and the value list file output.	e of symbol to the
.ERROR	Format:	.ERROR "string"	[; Comment]

	Function:	The error string is printed to the list file output.	
.ORG	Format:	.ORG const [; Comment]	
	Function:	Sets the location counter to the value of the const so that next output record is generated at line const.	
	Warnings:	If code is overwritten because of the .org directive, a warning is generated.	
	Error:	If const results in a value that is not within the memory range for this controller configuration, an error is generated.	
.LINESTEP	Format:	.LINESTEP const [; Comment]	
	Function:	Sets the incremented location counter values between each generated line; the default is 1. Its purpose is to simplify debugging by allowing space between the lines. For maximum execution speed, use '.LINESTEP 1'.	
	Warnings:	None	
	Error:	If, during code generation, all memory for this controller configuration is used, an error is generated.	
.DEFINE	Format:	.DEFINE Vsymbol = const[; Comment].DEFINE Vsymbol = const_expr[; Comment].DEFINE Rsymbol = reg[; Comment].DEFINE Xsymbol = xreg[; Comment].DEFINE Isymbol = indirect_reg[; Comment]	
	Function:	Defines a symbol as an alias for a constant expression, constant, register, extended register or indirect register. A constant expression is first evaluated to a const. The symbol has the same value and type as the right-hand side.	
	Warnings:	None	
	Error:	If the right-hand side cannot be evaluated, an error is generated.	
.UNDEFINE	Format:	.UNDEFINE XSYMBOL	
	Function:	Undefine a symbol in the compiler so that it can be redefined.	
.BYTE	Format:	.BYTE const1, const2., const5 [; Comment]	
	Function:	Primarily intended to allow an older version of the compiler to generate code for unimplemented program statements.	
		.MACRO NEWINSTR a, b, c .BYTE 123, 34, a, b, c .ENDMACRO	

	Warnings:	None	
	Error:	None	
.PAGE	Format:	.PAGE Const [; Comment] .PAGE [; Comment]	
	Function:	If Const is > 0, the page length is set to Const. If Const is zero or omitted, a new page is ejected. If Const is negative, a new page is ejected when less than Const lines remain on the current page.	1
	Warnings:	None	
	Error:	None	
.INCLUDE	Format:	.INCLUDE "filename"	
	Function:	This directive retrieves a named file, known as an included file or header file, into the source code. The file name specified is included for compilation in the source file. The number of included files that can be opened or the nesting depth of include files is limited only by memory or file handle limitations. Include file recursion is not allowed and generates an error message when encountered.	
	Warnings:	None	
	Error:	If the file could not be found, or an attempt made to do include file recursion, an error i generated.	
.REGISTER	Format:	.REGISTER RSym1<, Rsym2><, [; Comment] Rsymn	
	Function:	The symbols are automatically assigned to a free register number.	;
	Warnings:	None	
	Error:	If there are no free registers, an error message is generated.	i
.EPROM	Format:	.EPROM [; Comment]	
	Function	Informs the compiler to generate code suitable for direct transfer to an EPROM programmer.(DMC1 only)	
	Warning	S: Code generated with this switch can not be downloaded to the DMC ² drive, and code generated without this switch can not be downloaded to an EPROM programmer.)
	Error:	None	
.NOFILL	Format:	.NOFILL	

	Function:	Normally the compiler generates a full image for the targets program memory with empty lines where lines are not used, up to the highest line number. This directive informs the compiler to generate only the used lines. This can be used for partial download of PL2 programs to a DMC, for instance CAM- tables.(See COMM.MODE for information on that)
.MaxLines	Format:	.MaxLines const
	Function:	Allows the compiler to generate up to the given amount of lines (DMC2 supports 8191 lines)
.MaxRegisters	Format:	.MaxRegisters const
	Function:	Allows the compiler to utilize more than 256 registers(older versions of DMC) max number is 4096 for DMC2
.ConvertDispToNop	Format:	.ConvertDispToNop
	Function:	With this directive the compiler will replace all occurrences of the DISP statement with a NOP instruction. Since DISP statements are very dangerous to have in time critical parts of a PL2 program it is highly recommended to take them away in a final version.

SPLINE FUNCTION COMPILATION DIRECTIVES

The compiler can automatically generate a PData array using linear spline interpolation from a few waypoints.

.SplineDef	Format:	.SplineDef <name>,<number in<br="" of="" slots="">between></number></name>
	Function:	Defines the name for the profile and the resolution in the table. If 2 slots is defined it means that 1 extra point is inserted.
.SplinePoint	Format:	.SplinePoint <waypoint>,[timescale]</waypoint>
	Function:	Defines a waypoint in the profile.
.SplineDefEndt	Format:	.SplineDefEndt
	Function:	Terminates the definition of the profile.

The compiler function length (<Name>) calculates the number of Pdata lines generated.

EX:

```
.Splinedef Pro_cam1,5
.SplinePoint 0
.SplinePoint 200
.SplinePoint 600
.SplinePoint 300
.SplinePoint 27
.SplineDefEnd
R100 = length(Pro_cam1)
```

This will compile to:

```
PData 0 , 0
PData 20 , 0
PData 45 , 0
PData 80 , 0
PData 130 , 0
PData 200 , 0
PData 291 , 0
PData 392 , 0
PData 488 , 0
PData 562 , 0
PData 600 , 0
PData 590 , 0
PData 542 , 0
PData 469 , 0
PData 384 , 0
PData 300 , 0
PData 227 , 0
PData 167 , 0
PData 115 , 0
PData 69 , 0
PData 26 , 0
Let R100 = 21
```

CONDITIONAL COMPILATION DIRECTIVES

Replacing the appropriate source code line with a blank line is supported by conditional compilation.

Lines between an enclosed pair of .ifdef and .endif directives will be include if the condition is true, else excluded.

All conditional compilation directives must be completed in the source or include file in which they originate.

.IFDEF .IFNDEF	Format:	.IFDEF Vsymbol .IFDEF Rsymbol .IFDEF Xsymbol .IFDEF Isymbol	[; Comment] [; Comment] [; Comment] [; Comment]
	Function:	If the symbol is defined, the conditional directive results in a TRUE, and the nu- lines are going to be compiled until ar .if, .ifdef, .ifndef, and .er directive is encountered.	
		If symbol is not defined this in a FALSE and the next lin be replaced with blanks un .ifdef, .ifndef, and directive is encountered.	nes are going to til an .if ,
		Each .IFDEF directive mus balanced with a closing .er	
	Warnings:	.IFDEF symbol [code] .ENDIF	[; Comment]
	Error:	. if def without closing en an error.	dif will generate
.ENDIF	Format:	.ENDIF	[; Comment]
	Function:	Closes a conditional directi	ve.
	Error:	None	

MULTILINE MACRO

Macros provide a mechanism for token replacement, with or without a set of formal, function-like parameters. Each occurrence of the "name" in the source code is replaced by the "macro body".

A macro is a "new instruction" and it must be defined before it is used. A macro can have any number of arguments, but is limited by a maximum line length of 255. The definition instructs the compiler what type of argument is allowed and what type of function to perform. Each argument type must be individually specified. An argument type is any of the compiler-supported types.

MACRO DEFINITION

A macro definition needs information regarding the type of the argument, with an arg-specifier placed after each argument. Format:

.MACRO

.MACRO

foo [,sym:arg-specifier] [,nn:as]

[; Comment]

[lab:] [macro body]

.ENDMACRO

[; Comment]

The macro body specifies what operation the "new instruction" will perform when invoked (macro expansion). Standard native instructions or other macros can be used and the nesting depth of a macro calling another macro is limited only by the amount of available memory. Macro recursion is not allowed and generates an error message.

Names of labels within the macro body can be used freely. Each macro maintains its own symbol table. This means that symbols defined in the program scope are not accessible within a macro definition.

Example:

.DEFINE foo = 4711	; The symbol has program scope
.MACRO bar, foobar:v	
LET r0, foo	; This will generate an error, foo is undefined
.ENDMACRO	

In the list file, any label used within a macro definition ends with the (\$) symbol instead of the standard colon (:) symbol.

NOTE: It is possible to use the absolute label format in a macro definition, but there can only be one within the macro. For a second occurrence within the macro, the compiler generates a "previous line overwritten" error message.

MACRO ARG SPECIFIERS

Arg specifiers are divided into 8 categories

Symbol	Description	NOTE
r	General register type, Reg, XReg, or IRreg.	
v	General value type, i32 or i16.	
Irf	General line reference.	
i32	Long value.	
i16	Short value.	Not impl.
reg	Ordinarily register.	
ireg	Index register.	
xreg	Extended register.	
	r V Irf i32 i16 reg ireg	rGeneral register type, Reg, XReg, or IRreg.vGeneral value type, i32 or i16.IrfGeneral line reference.i32Long value.i16Short value.regOrdinarily register.iregIndex register.

Valid arg-specifiers for DMC² compilers are all those that are implemented.

MACRO CALL (EXPANSION)

Format: [lab:] foo<,sym><,nn> [; Comment]

The macro must be defined before using. The "new instruction" must be given the same number and type of arguments as defined for the macro.

PL2 Mnemonics

GENERAL

The general form for a *Mnemonic* is: Mnemonic [Mnemonic Operator] Mnemonic operators are used with a *Mnemonic* to fully define an *Instruction*.

STANDARD SET MNEMONICS

Mnemonic	Mnemonic Operator and Argument[s]	Description	
Nop		Has no function.	
Stop		Stops execution. Execution may later resume at the following line using the CONT command.	
End		Ends execution. Informative message is sent to the terminal.	
End	SILENT	Ends execution. No message is sent.	
Disp	Lval	Displays XReg, Reg or Const on the terminal.	
Goto	Line	Execution proceeds at the indicated line.	
Gosub	Line	Calls a subroutine at indicated line.	
IdxGoto	Rval ,Line	Execution proceeds at the indicated line number stated in the Register + the Line number	
IdxGosub	Rvat,Line	Calls a subroutine at the indicated line number stated in the Register + the Line number	
IdxGoto	Rval	Execution proceeds at the indicated line number stated in the Register	
IdxGosub		Calls a subroutine at the indicated line number stated in the Register	
Return		Return from a subroutine to the line immediately following the GOSUB line.	
IReturn	SYS Sval	Returns from a system interrupt routine and enable the specified interrupts. Binary OR Sval to Int.SysMask.	
IReturn	IN Sval	Returns from an I/O interrupt routine and enable the specified interrupts. Binary OR <i>Sval</i> to Int.Mask.	
IReturn	CAS <u>n</u> Sval	Returns from a cascaded interrupt routine and enable the specified cascaded interrupts. Binary OR <i>Sval</i> to the mask register of the cascade handler, the Int.SysMask is automatically re-enabled. Where <u>n</u> is the cascade handler number.	
Loop	Reg, Line	Decrement <i>Reg</i> by one. If <i>Reg</i> is > 0, then goto the indicated <i>Line</i> ; else proceed with the following line.	

WaitC	Sval WcOp Lval	Wait for the expression to become TRUE, but use "circular" comparison instead of the standard one.
Wait	Sval WOp Lval	Wait for the expression to become TRUE or non- zero.
IfC	Sval lfcOp Sval THEN Line	If "circular" expression is TRUE, then goto Line.
IfCNot	Sval IfcOp Sval THEN Line	If "circular" expression is FALSE, then goto Line.
If	Sval IfOp Sval THEN Line	If expression is TRUE or non-zero, then goto Line.
IfNot	Sval IfOp Sval THEN Line	If expression is FALSE or non-zero, then goto Line.
IfAbs	Sval IfOp Sval THEN Line	Convert both arguments to absolute values before evaluating the expression. If expression is TRUE or non-zero, then goto Line.
IfAbsNot	Sval IfOp Sval THEN Line	Convert both arguments to absolute values before evaluating the expression. If expression is FALSE or non-zero, then goto Line
Let	XReg = Sval [LetOp Sval]	Calculate the value of the expression and assign it to XReg.
Let	XReg , Lval	Assign the value Lval to XReg. NOTE: Use this for Lconsts, larger than 16-bit, 32767.
Add	XReg , Lval	Add value Lval to Xreg.
Sub	XReg , Lval	Subtract value Lval from Xreg.
Abs	Xreg , Lval	If Lval is positive, then Xreg := +ABS(Xreg). If Lval is negative, then Xreg := -ABS(Xreg).
ISqr	XReg , Lval	Calculate the integer square root of Lval and assign it to Xreg. Xreg := ISQR(Lval)
Clr	Xreg	Zero a register.
BClr	Xreg, Lval	Bit-Clear of register; the same as AND with complemented argument.
And	Xreg, Lval	Binary AND register with value.
Or	Xreg, Lval	Binary OR registers with value. NOTE: None of the instructions DISABLE interrupts; therefore, if one does BCLR Int.Pend, 4 to remove an interrupt, it is possible to miss an interrupt that is arriving just as the instruction executes.
Push	Lval	Push Lval on the parameter stack.
Рор	Xreg	Pop value from the parameter stack and assign it to Xreg.
Pos	ABORT	Terminate the current position or profile

		statement. Equivalent to: [LET] Pg.Mode = 0
Pos	ABS Lval	Position absolute to Lval. Equivalent to: [LET] Pg.Mode = 0 [LET] Pg.DPos = Lval IF Pg.PosSpeed = 0 THEN LBL1 [LET] Pg.Speed = Pg.PosSpeed LBL1: [LET] Pg.Mode = 1
Pos	INC Lval	Incremental positioning Lval from the last positioning statement. Equivalent to: [LET] Pg.Mode = 0 ADD Pg.DPos, Lval IF Pg.POS Speed = 0 THEN LBL1 [LET] Pg.Speed = Pg.PosSpeed LBL1: [LET] Pg.Mode = 1
Pos	REL Lval	Position Lval relative to the current position, of the profile, not the motor. Equivalent to: [LET] Pg.Mode = 0 [LET] Pg.DPos = Pg.APos + Lval IF Pg.PosSPeed = 0 THEN LBL1 [LET] Pg.Speed = Pg.PosSpeed LBL1: [LET] Pg.Mode = 1
Pos	MOD ON [CLR]	Allow the set-position to be modified by the cam/gearbox routines.
Pos	MOD OFF[CLR]	Disallow the set-position to be modified by the cam / gearbox routines.If CLR is specified, the internal position, Pg.APos, is changed so there is no momentary change in position. If CLR is not specified, the motor slews toward the new set-position using a speed that is is determined by the regulator settings.
PData	LRval , SRval	Specifies data for the PROFILE statement. The LRval argument is the desired acceleration, and SRval is the number of servo cycles this acceleration will use. A value of Zero indicates the end of the profile. The variable Pg.ProScale can be used to scale the acceleration. A value of 1024 means no scaling is being done, and the LRval corresponds to increments/sec ² .
Profile	ACC <i>RLine</i>	Argument RLine specifies the line number of the first PDATA to use. See PDATA.
RefPos	POS Lval	Sets the reference position to Lval. This sets the current position reference relative to RD1.Pos so that the positioning statements, POS ABS etc., refer to this reference position. The RD1.RPos returns the "referenced" position. Pg.APos, Pg.DPos are also affected. The REF POS statement is implemented with the aid of a position offset from the resolver position. The offset is Pg.PosOffs. To remove the effect of

		the statement REF POS, set Pg.PosOffs = 0.		
Connect	Ana . IN1 TO Sval Ana . IN2 TO Sval Ana.OUT1 TO Sval Ana.OUT2 TO Sval Dstore.In1 TO Sval Dstore.In2 TO Sva Dstore.Peek1 TO Sva Dstore.Peek2 TO Sva	The connection is enabled by connecting the analog I/O to a Reg or XReg, it is disabled by connecting it to a Const. The update rate is set in the Ana.ConnTMR register. The maximum number of active connections at one time is four. However, running four connections at 1 ms update rate will take a considerable amount of CPU-time from the execution of the program. Example:		
Connect A Pg.Speed	na.In1 TO 0 na.In2 TO na.Out1 TO	; Want 1 ms update rate. ; Turn off the connectionto Ana.In1 ; Set speed from Ana.In2 ; POS error to Ana.Out1		
EEStore		Store the contents of the EEProm extended register group in nonvolatile memory. NOTE: Because this is a time consuming process, verify the operation has completed before continuing with the next instruction.		
		10 EEStore 20 wait SysIo.MemStat and 1 30		
EELoad		Load the information from the nonvolatile memory into the EEProm extended register group. NOTE: Because this is a time consuming		
		process, verify the operation has completed before continuing with the next instruction.		
		10 EELoad 20 wait SysIo.MemStat and 1 30		
Peek		Debug use only		
Poke		Debug use only		
RESET SYSTEM		Reset CPU-board. Recommended way to warm start system		
FHbit	Xreg, Xreg, Sva	Find highest bit in second argument. Reports bit number in first argument.		
		Ex: R100 = 255		
		Fhbit R10, R100, 32 will return R10 = 7 since bit7 is set in R100, The Sval is a limiter of how many bits to search for. If there are bits higher then the search limiter it will return the limiter value.		
RegEncode	Xreg, SRval, SRval	Calculates the internal adress to a Xreg similar to the computer mode specification		
		Ex: RegEncode R100,4,6 will return R100 =33798		

44

Used in combination with SET and GET instructions to simplify indexing into extended registers.

Regencode R100,4,5 would give the adress to the register Pg.Posspeed.(32768+256*group+member)

TRACE RELATED MNEMONICS

The Trace function allows the user to trace the execution of the PL program. The trace will save a time stamp and the current line number where code is executing. There is room for 512 entries in the buffer. If the PL program is modified after/during the trace, it will make the trace invalid. To conserve space in the buffer, the tracing can be limited to interesting parts, by use of the Trace OFF/Trace CONT command or a snapshot that fills the buffer, Trace ONCE. To inspect the trace buffer content, use the TLIST command. When the Trace is active it slows down the PL2 rate to about 70 % of the normal. That means if Trace is used for measuring execution speed that has to be compensated for. It also states that leaving trace active during normal operation is a waste of resources!!! To debug an error situation the Trace can be used like this:

Turn on the Trace function with TRACE ON at the beginning of the program. Put TRACE OFF at the end of the error handling routine. When the error occurs there will be a log of the last 512 lines of PL2 code that lead up to the error.

Trace	ON	Initializes the trace buffer and starts trace.
Trace	OFF	Stops the trace.
Trace	CONT	Continue trace without initializing the buffer.
Trace	ONCE	Trace until buffer is full.(Single shot trace)

LAN1/ LAN1 RELATED MNEMONICS

SetObj Lanl	Sval	Map the content in MsgObjLan1 to the priority level specified in Sval. For a detailed description see the LAN1 group.
GetObj Lanl	Sval	Fill in the MsgObjLan1 with the message object at priority level Sval. For a detailed description see the LAN1 group.
Read Lanl	Reg, len, level	Read len bytes and put in register Reg from the buffer for message object at level. Where len and level are Sval. For a detailed description see the LAN1 group. If <i>len</i> is specified as negative the data will be byte swapped.
Write Lanl	Reg, len, level	Write len bytes to the buffer for message object at level from register Reg. For a detailed description see the LAN1 group. If <i>len</i> is specified as negative the data will be byte swapped.

SendObj Lan1 Sval

Send the content of the buffer for the message object at Sval on to the CAN bus. For a detailed description see the LAN1 group.

ANYBUS-S RELATED MNEMONICS

AnybusIn Modifies the input buffer to the Anybus-S module. Data in the input buffer is to be transmitted onto the Fieldbus. AnybusIn putDWORD <reg>, <offs> Write 32 bits, unsigned, from <reg> to the buffer at offset <offs>(byte offset) AnybusIn putWORD <reg>, <offs> Write 16 bits, unsigned, from <reg> to the buffer at offset <offs>(byte offset) AnybusIn putBYTE <reg>, <offs> Write 8 bits, unsigned, from <reg> to the buffer at offset <offs>(byte offset) AnybusIn putLONG <reg>, <offs> Write 32 bits, signed, from <reg> to the buffer at offset <offs>(byte offset) AnybusIn putINT <reg>, <offs> Write 16 bits, signed, from <reg> to the buffer at offset <offs>(byte offset) AnybusIn putSCHAR <reg>, <offs> Write 8 bits, signed, from <reg> to the buffer at offset <offs>(byte offset) AnybusIn getDWORD <reg>, <offs> Reads 32 bits, unsigned, from the buffer into <reg>at offset <offs>(byte offset) AnybusIn getWORD <reg>, <offs> Reads 16 bits, unsigned, from the buffer into <reg>at offset <offs>(byte offset) AnybusIn getBYTE <reg>, <offs> Reads 8 bits, unsigned, from the buffer into <reg>at offset <offs>(byte offset) AnybusIn getLONG <reg>, <offs> Reads 32 bits, signed, from the buffer into <reg>at offset <offs>(byte offset) AnybusIn getINT <reg>, <offs> Reads 16 bits, signed, from the buffer into <reg>at offset <offs>(byte offset) AnybusIn getSCHAR <reg>, <offs> Reads 8 bits, signed, from the buffer into <reg>at offset <offs>(byte offset) Anybus0ut Modifies the output buffer from

Inmotion Technologies AB

				the Anybus-S module. Data in the output buffer has been recieved from the Fieldbus
Anybus0ut	putDWORD	<reg>,</reg>	<offs></offs>	Write 32 bits, unsigned, from <reg> to the buffer at offset <offs>(byte offset)</offs></reg>
Anybus0ut	putWORD	<reg>,</reg>	<offs></offs>	Write 16 bits, unsigned, from <reg> to the buffer at offset <offs>(byte offset)</offs></reg>
Anybus0ut	putBYTE	<reg>,</reg>	<offs></offs>	Write 8 bits, unsigned, from <reg> to the buffer at offset <offs>(byte offset)</offs></reg>
Anybus0ut	putLONG	<reg>,</reg>	<offs></offs>	Write 32 bits, signed, from <reg> to the buffer at offset <offs>(byte offset)</offs></reg>
Anybus0ut	putINT	<reg>,</reg>	<offs></offs>	Write 16 bits, signed, from <reg> to the buffer at offset <offs>(byte offset)</offs></reg>
Anybus0ut	putSCHAR	<reg>,</reg>	<offs></offs>	Write 8 bits, signed, from <reg> to the buffer at offset <offs>(byte offset)</offs></reg>
Anybus0ut	getDWORD	<reg>,</reg>	<offs></offs>	Reads 32 bits, unsigned, from the buffer into <reg>at offset <offs>(byte offset)</offs></reg>
Anybus0ut	getWORD	<reg>,</reg>	<offs></offs>	Reads 16 bits, unsigned, from the buffer into <reg>at offset <offs>(byte offset)</offs></reg>
Anybus0ut	getBYTE	<reg>,</reg>	<offs></offs>	Reads 8 bits, unsigned, from the buffer into <reg>at offset <offs>(byte offset)</offs></reg>
Anybus0ut	getLONG	<reg>,</reg>	<offs></offs>	Reads 32 bits,signed, from the buffer into <reg>at offset <offs>(byte offset)</offs></reg>
AnybusOut	getINT	<reg>,</reg>	<offs></offs>	Reads 16 bits, signed, from the buffer into <reg>at offset <offs>(byte offset)</offs></reg>
AnybusOut	getSCHAR	<reg>,</reg>	<offs></offs>	Reads 8 bits, signed, from the buffer into <reg>at offset <offs>(byte offset)</offs></reg>
AnybusIO		Send		Transfers the content of the SanyBus INPUT buffer to the SanyBus module and issues a field bus send request.

INDEXED ADDRESSING MNEMONICS

- Set Xreg# IndexValue=Sval
- Set Xreg #++ IndexValue=Xreg

Set	Xreg #	IndexV	/alue=Xre
-----	--------	--------	-----------

Get	Xreg =	Xreg #	Index	Value
-----	--------	--------	-------	-------

Get Xreg = Xreg #++ IndexValue

Get Xreg = Xreg #-- IndexValue

The IndexValue is of type Sval or Xreg is used to index into the Xreg group. The index value is used as an offset to the member number given in Xreg. The operator # means the index-value is just used, #++ means the index-value is incremented after use and #-- means the index-value is decrements after use. There is no check that the resulting member number does exist, Read and or Writes to non-existent members will be ignored with one exception. If the member 255 is read, and non-existent, the value returned will be 80 000 000h + the max allowed address of groups for the system.

The function of the Get and Set can be modified by setting ${\tt Sysio.Compatible}$ bit0.

If this bit is set the register holds the address to the Xreg calculated with the RegEncode instruction.

Ex. To get the value of Pg.Posspeed int R100 with the GET instruction can now be done in two ways:

Pg.Posspeed is denoted: 4,5 as in group, member.

With sysio.compatible = 0	normal function of Get
Get R100 = Pg.mode#5	read value of Pg.Posspeed

With sysio.compatible = 1	sets new function of Get
Regencode R200,4,5	calculates the address of Pg.Posspeed
Get R100 = R200#0	read value of Pg.Posspeed

This allows for designing protocol mechanisms in PL2 in relation to fieldbus usage, similar to the embedded computer mode protocol.

Consider a system where a master sends parameters to a slave on using the LAN1 network.

Interrupt servi	ce routine:		
Read lan1 r_Gro	up,1,1	;read g	roup pointer
Read lan1 r_Mem	ber,1,-1	;read m	ember pointer
Read lan1 r_Data	a,4,-1	;read d	ata
RegEncode r_Poi	nter,r_Group,0 ;	decode addr	ess to group
Set r_Pointer# :	r_Member = r_Data	;write	data to target

It might be necessary to check if the target really exists by reading the length of the group on index 255.

RegEncode r_Pointer,r_Group,0	;decode address to group
Get r_length = r_Pointer #255	;read length
And r_length,255	;mask out length
If r_length = 0 then NoTarget	;nonexistent group

48

Inmotion Technologies AB

If r_length < r_Member then NoTarget;nonexistent member
Set r_Pointer# r_Member = r_Data ;write data to target
Notarget: return</pre>

Examples:

1	Copy EEprom.10 Eeprom.20 to EEprom.30 Eeprom.40	
100	R0 = 11	; 11 registers to copy.
110	Get R1 = EEprom.9 # R0	; Get EEprom.(9+R0)
111	Set EEprom.29 # R0 = R1	; and write to EEprom.(29+R0)
112	Loop R0, 110	; Decrement R0 and loop until Zero.

2	Push all the Moto	or. variables on the stack.
100	Get R0 = Motor.0 # 255	; This gives the number of entries
110	AND R0, 255	; Remove extra info.
111	Get R1 = Motor.0 # R0	; Get motor.R0 and do R0 = R0-1
112	PUSH R1	
113	IF R0 > 0 THEN 111	; Loop until all done.

TEXT MODE

The text handling in for the PL environment is implemented as follows:

- 1. You need a format descriptor string, similar to the print in the C- language.
- 2. You need an instruction to specify the data that should be displayed.
- 3. You need a way to control the standard line editor, so it won't interfere with your printout if you are using cursor addressing or multiple print statements.

The following is now implemented:

Image takes string argument.

- IPrint takes three <Sval> arguments.
- TRead takes some modifiers and optionally one <Xreg> argument.

TEXT OUTPUT

Image is used to specify the format string for the output. IPrint is used to specify what string, and then it can send up to two arguments to be printed according to format in the Image.

10 Image "This is a string"
20 IPrint

This will insert a CR/LF sequence both before and after "Hello!", numbers are always three digit decimal, but you may enter less than that if the number is terminated by a non-numerical character.

10 IMAGE "The result is:\013\010units ok: %d:9\13\10units
 failed: %d:5\13\10"

20 R1=102 30 R2=17 40 IPrint 10, R1, R2 The output result is: Units OK 102 Units failed 17

Note that the numbers are aligned, this is accomplished by specifying the field-width of the display with the :<digit> modifier.

If you list the program, you will also notice that the IMAGE will take many PL lines. Since only seven characters of an image will fit into a single PL-code line, the logical IMAGE statement can span many pl-code lines. (In the same way a motion profile with P DATA statements spans multiple PL lines.) But for convenience, the firmware one-line compiler allows entry of a longer image.

You should also note the "; End" comment after the last image statement in the group. It shows where the logical image actually ends.

A logical image is terminated by alternately a NUL (\000) character, i.e. the physical image statement has less than seven characters in it. If the last physical IMAGE statement has seven characters, but the next statement is NOT an IMAGE, the logical IMAGE is also terminated.

You need to look out for this, so you don't continue an IMAGE by mistake.

10	Image "This is"	
11	Image "an ima"	
12	<pre>Image "ge.\013\010"; End</pre>	
20	IPrint 10	Will produce: "This is an image"
22	IPrint 11	Will produce: "an image"
20	IPrint 10	

The length when entering an image is limited by the input buffer size, in practice about 100 to 120 characters, depending on how many escape sequences that are entered.

The length of a logical IMAGE is only limited to the amount of PL code space that is available. Also note that in IPRINT you can use a register to specify what line the image resides on.

A cursor addressing example, this will only work if you have an ANSI or VT100 compatible terminal connected, you must also have turned off the monitor (code \002, see below) to get the desired effect.

10 Image "\027[%D%;%DH"

20 IPrint 10,R1,40

For a VT100/ANSI compatible terminal, this will send a cursor addressing sequence to row in R1 and column 40. Note the "%" sign after the first "D" in the image, it is to delimit, the ";" so it is not interpreted as a format modifier for the "D" format.

The following escape and control sequences are of interest in an image:

- \002 Start of TEXT, this character is used to indicate start of text mode printouts, it will disable the normal line-editor control-T and DISP statements from sending characters, to allow the PL program to have full control over what is sent.
- \003 End of TEXT, allow standard line editor etc. to send characters.

\000 Internally used to signal end of image, this code can therefore not be presenting the image.

These codes are required if you want to use the TREAD statement, or have printout using more than one IPRINT statement and they are not sent to the terminal. If you would like to send these codes, use the %C or %S format as described below.

- \\ Insert one backslash into the string.
- $\$ Insert one quote (") into the string.
- [%] Print one percent sign.
- ⁸B Print argument as an 8-bit byte in hexadecimal.
- $\mathbb{P}^{\mathbb{W}}$ Print argument as a 16-bit word in hexadecimal.
- ^{%L} Print argument as a 32-bit long-word in hexadecimal.
- [%]C Print argument as a character.
- *S Print argument as a NUL terminated string, i.e. 0 to 4 chars, LSB being printed first.
- ^{&D} Print argument signed decimal with minimum number of spaces.
- ^{&D:n} Print argument signed decimal with minimum n positions.
- Print argument signed decimal with minimum n positions, and pad unused places "0" i.e., 12 in format D: 5 is printed as "00012".
 Note: The number "n" is a ONE digit HEX number.
- ^{%D%} If you want a ":" to follow directly after the number, and not being interpreted as a format modifier.
- ^{%D%;} Same as %D%
- *T TAB to position in argument, this functions does not work if you are using direct cursor addressing, since the system has no knowledge of these sequences.

For convenience, a CR/LF sequence is automatically sent if the text mode is exited when the current image is completed, thus the first example will work without the CR/LF sequence.

TEXT INPUT

To input text/numbers you will use the TREAD statement, you also need to use the IMAGE and IPRINT to output the \002 and \003 codes to control the command monitor.

TREAD has the following modifiers:

	Operator code
TRead LINE	4
TRead LINE CLR UCH <xreg></xreg>	5
TRead LINE CLR NUM <xreg></xreg>	6
TRead NUM <xreg></xreg>	1
TRead CH <xreg></xreg>	2
TRead UCH <xreg></xreg>	3

TRead RAW CH <xreg></xreg>	7
TRead LINE	Will read a line of data to the input buffer.
TRead NUM	Can then be used to read a numerical value from the buffer.
TRead CH	Can be used to read a character from the buffer.
TRead UCH	Does also read a character from the buffer, but it skips all leading spaces and then converts the character to uppercase format. (Uppercase convert does only work for 7-bit characters.) This is more convenient if you will accept both "Y" and "y" as a positive answer to a question.

To be able to use TREAD NUM, TREAD CH or TREAD UCH, you must first execute TREAD LINE to get data into the input buffer and set the read-pointer to the start of the buffer.

TRead LINE CLR UCH	Will clear the input buffer, read a line into the input buffer and then skip all the leading spaces, get the first character and convert it to uppercase.		
TRead LINE CLR NUM	Will clear the input buffer, read a line into the input buffer, and then read a numerical value.		
TRead NUM/CH/UCH	Can be used to read additional characters/numbers entered on the same line.		
All these TREAD statements work with ECHO enabled and the line-editor is also			

All these TREAD statements work with ECHO enabled, and the line-editor is also active, in the same way as it is in the command monitor. The only exception to this is the:

TRead RAW CH

This statement will read the first character it finds, directly from the input buffer, this is useful if you want to control the terminal completely by the PL code, if no character is available it will return the code 0.

Extended register groups

INTRODUCTION

The DMC² hardware and software, such as the resolver or the regulator, are divided into groups. Each group has members where the various values and/or bits can be manipulated by a PL2 program. Hardware and software functions are accessible via a group's members. Group members are implemented as extended registers, Xreg, thereby allowing arithmetic to be performed on them.

Group name	Number	Descripti	on	Page
Stack	1	Stack Handling		55
RD1	2	Resolver/Digital Converter	·#1.	57
RD2	3	Resolver/Digital Converter	· #2	63
Pg	4	Profile Generator		68
Motor	5	Motor Interface.		73
Reg	6	PID Regulator		79
Gear	7	Electronic Gearbox		86
Tmr	8	System Timers		93
Syslo	9	System I/O		96
Int	10	Interrupt Control.		103
In	11	Digital Input.		109
Out	12	Digital Output.		112
Vector	13	Interrupt Vectors.		114
Capture	14	Capture a Precise Time a	nd Position.	118
Ana	15	Analog I/O.		124
EEprom	16	Non Volatile parameter sto	orage.	127
Comm	17	Serial Communication.		130
RD1Corr	18	Postion Correction		133
OptAD	22	Optional A/D Conversion	Option M	135
LAN1	28	Local Area Network 1		139
MsgObjLAN1	29	Helper to LAN1		149
LAN2	30	Local Area Network 2		152
MsgObjLAN2	31	Helper to LAN2		153
MultDiv	49	Math, scaling with 64 bit p	rotocol	154
FlashMem	50	Flash memory interface		156
ABIn	52	Input buffer to the Anybus	-S modules	157
ABOut	53	Output buffer from the Any	/bus-S modules	158
DStore	54	Data storage buffers		159
ParArea	55	Non-violated parameter st	orage.	161

Group name	Number	Description	Page
XENDAT	56	Feedback interface for ENDAT sensor.	163
Counter	57	Count an external hardware event.	172
Identifier	58	Identify each DMC in a group.	175
RDPDATA	59	Generell access to PDATA tables	176
SAnyBus	60	Anybus-S interface (HMS modules)	178
ABInMail	61	Mail message handling with the Anybus-S modules	188
ABOutMail	62	Mails received from the Anybus-S modules	189
ABFBus	63	Fieldbus specific information	190
EN1	64	Connection points for feedback sensors in the DMC2 system	191
EN2	65	See EN1	191
EN3	66	See EN1	191
EN4	67	See EN1	191
IENC	69	Incremental encoder interface	193
ModEN3	72	Extension of EN3 with modula calculation	195
ModEN4	73	Extension of EN4 with modula calculation	195

GROUP MEMBERS. (GROUP XX)

Each group is started with the following heading:

Group	Group No.	Description

Group is the PL name, Group number can be used when communicating in computer mode. The first Group.Member in each group is started with the following heading:

Group.Member	Member No.	Range	Ability	Default

Group.Member is the PL name, Member number can be used when communicating in computer mode.

The range indicate the members numerical range and the Ability is read/write ability according to:

R	= Readable
W	= Write able
RW	= Read- and Write able.
(W)	= Write able under certain conditions
NYI	= Not Yet Implemented

STACK HANDLING

Group	Group No.	Description
Stack	1	The register bank, Stack, is a circular stack that can accommodate 64 register values, 32 bits wide. Since the stack is circular, there is no error trap when pushing the 65th number on the stack; however, the 1st number is overwritten.

GENERAL

The stack group consists of 64 registers (32 bit) that can be used by the application program for temporary storage of data. The function is circular when data is taken (poped) from the stack and linear when data is pushed onto the stack. The system uses the stack for temporary storage of interrupt masks when Int.Mode = 1.

FUNCTION

Data is placed onto the stack with the PUSH statement where the argument can be a register or a constant. Data is taken from the stack with the POP statement where the argument must be a register.

	Reset status:	After one entry: (PUSH Data1)	After two entries: (PUSH Data2)	After one recall: (POP <reg>)</reg>
Stack.63	0	0	0	Data2
•	•		•	
Stack.5	0	0	0	0
Stack.4	0	0	0	0
Stack.3	0	0	0	0
Stack.2	0	0	0	0
Stack.1	0	0	Data 1	0
Stack.0	0	Data 1	Data 2	Data 1

The value in Stack.63 is lost when a PUSH statement is executed.

RELATED ITEMS

PUSH	<xreg> or <ireg></ireg></xreg>
PUSH	<lval> or <ireg></ireg></lval>
POP	<xreg></xreg>
Int.Mode = 1	See Group number 10 (Int) for information.

EXAMPLE USAGE

Transfer data to a subroutine for conversion.

;put data on the stack
;call conversion routine
;take converted data from the stack
;temporary register
;scale factor
;take input from the stack
;modify
;put output on stack
done

GROUP MEMBERS (GROUP 1)

Group.Member	Member	Range	Ability
	No.		
Stack.0-63	0-63	-2 ³¹ 2 ³¹ -1	RW

RD1, RESOLVER/DIGITAL CONVERTER #1.

Group	Group No.	Description
RD1	2	Resolver/digtal converter #1 that is used for main motor communication and regulation.

GENERAL

The RD1 group contains registers for control and monitoring of the Resolver 1 input, which is, used for primary feedback of motor position and speed. The resolver is supplied with a excitation frequency from the DMC² and outputs two amplitude modulated signals which represents the sine and cosine of the angular position at all times. These analog signals are sampled and converted at a constant rate (4 kHz). From the sine and cosine values, the angle can be calculated as arctan(sine/cosine).

From this periodic angle measurement, the speed and position of the motor can be derived. The resolver gives an absolute position over one turn.

The position unit is Increments (incs), where a two pole (single speed) resolver gives 8192 incs/turn, a four pole resolver gives 16384 incs/turn and so on.

The speed unit then becomes Increments/second (incs/s) and the acceleration unit becomes: Increments/second² (incs/s²) In high resolution mode these numbers are multiplied by 8.

Resolver	Resolver speed	High resolution Mode	Standard Mode
		PPR	PPR
2-Pole	1-Speed resolver	65536	8192
4-Pole	2-Speed resolver	131072	16384
6-Pole	3-Speed resolver	196608	24576
8-Pole	4-Speed resolver	262144	32768

FUNCTION

Resolver 1 (RD1) must be set up properly in order to run the motor. The commutation of motor currents depends on proper operation of RD1.

RD1.Mode	Selects the mode of operation for the resolver interface. RD1.Mode = 0 turns off the resolver and resets RD1.Pos.
RD1. Mode = 1	Is the normal setting for standard resolvers. Other values enable special functions.
RD1.SHAdj	Compensates for phase shift in the resolver and cables. The synchronous demodulation principle of the resolver interface requires that this parameter is set to the proper value. A span of +/- 150 is sufficient for all types of resolvers. A measuring routine (PL2 coded) for this parameter is included in the SW package
RD1.RPos	Is used as the reference for all movements in the DMC^2 . This relative axis position can be set to any value by the statement Ref Pos <lval>.</lval>

RD1, Resolver/Digital converter #1.

RD1.Pos	Is an absolute position value related to the absolute position the resolver had upon FW initialization.
RD1.AmplAdj	Holds the sign of the error that causes a ResolvErr interrupt.
RD1. Mode = 16	High-resolution mode active.
RD1. Mode = 32	Automatic amplitude compensation active.
RD1.SinGain	Compensation for gain differences between the sine and cosine input amplifier.
RD1.ChkLowLim	When the amplitude falls below this value, a resolver interrupt is generated.
RD1.ChkErr	Last resolver error code.
RD1.ChkNom	Nominal value for resolver amplitude.
RD1.ChkThreshold	The difference between RD1.Ampl and RD1.ChkNom must exceed this value before any action is taken.

RELATED ITEMS

SysIo.PWMO	Controls the amplitude of the excitation signal. An adjustment routine (PL2 coded) for this parameter is included in the SW package. The exitation amplitude is inversely proportional to this value.
Vector.ResolvErr	System interrupts vector for resolver monitoring.
Int.SysMask	Bit mask for system interrupts, bit 7 (bit value 128), enables the monitoring.
Int.SysPend	Bit mask for pending events, bit 7 (bit value 128), indicates the ResolvErr event.
Ref Pos <lval></lval>	Statement for relocation of the relative position of the axis.

EXAMPLE USAGE

RD1.Mode = 1	;normal operation
gosub ResCal	;adjust resolver parameters
Ref Pos O	;Sets the current reported position to 0

GROUP MEMBERS (GROUP 2)

Group Member	Member No	Range	Ability	Default
RD1.Mode	0	0256	RW	0
	Mode select	s whether the RD1	is active or not	t.
RD1.Mode=0	Inactive			
RD1.Mode=1	Active			

Inmotion Technologies AB

RD1.Mode=3	Active and High-speed mode selected. This mode is recommended for use above 500 Hz (or 30.000 rpm 2-pole speed). It is also suitable for already demodulated resolvers and transducers giving a similar signal, for sensors ranging from analog hall sensors to laser interferometers. The maximum internally supported speed is 32 MHz.
RD1.Mode=5 RD1.Mode=6 RD1.Mode=7	Use RD1 correction table (see RD1CORR group). The uncorrected RD1 position is located in the table (there is 16 values/turn), and the result is added to the RD1 position before the value is used for commutation and regulation.
RD1.Mode=13 RD1.Mode=14 RD1.Mode=15	Use and update RD1 correction table (see group RD1CORR). For the update mode to work, the motor should be running with no load at a recommended minimum high speed of 256000. The system then assumes that all torque fluctuations in the regulator are due to imperfections in the resolver, and adjusts the table to minimize these fluctuations. This adjustment may take several seconds. While the update mode is active, no speed changes are allowed. This automatic mode is most suitable for low-accuracy resolvers such as analog hall-sensors etc. To use the correction for a DMC ² standard resolver, a PL-code routine must be written and the adjustment time increased to minutes or no improvement will occur.
RD1.Mode=16	High resolution mode. Pulses-per-revolution has been increased to accommodate the 14-bit A/D converter capability. High resolution is a new operating mode in RD1 and RD2 separatly. One revolution of a 2 pole resolver yields 65536 increments, this is eight times better than the low resolution mode.
i	Several group members must be scaled up or down by 8 when using this mode.
	Pg.Speed = multiply by 8 to achieve the same speed as for low resolution. Pg.Acc/Pg.Ret = multiply by 8 to achieve the same acceleration/deceleration as for low resolution. Reg.Xgain= divide by 8 all gains. Where X is P, I or D for low resolution. Motor.PPR= multiply by 8 for low resolution.
i	When this mode is activated ,the RD2 supervision is also activated, regardless of the mode setting in RD2.Mode. That is, if the RD2 resolver is deactivated, no check is performed. Currently the RD2 can not be compensated. If RD2 is enabled then in the case the RD2.Amp1 falls below RD2.ChkLowLim then a resolver error interrupt is generated and a reason code is stored in RD2.ChkErr. The standard method will generate interrupts as soon as the interrupt vector has been defined and the interrupt has been enabled. This version will start after this mode bit is activated. When you run code that is designed to find values for RD1.SHAdj you should make sure that the interrupt is not enable and that this mode is disabled. And before you enter this mode then clear any pending resolver

		running routines in order to s mode must be turned off.	
RD1.Mode=32	Automatic temperature compensation using SysIo.PWM0. When this mode is activated the resolver amplitude RD1.Ampl is monitored with the rate specified in SysIo.ChkTmr. The resolver excitation voltage (SysIo.PWM0) is changed in order to maintain a RD1.Ampl value as specified in RD1.ChkNom. No change is made until the difference exceeds the value in RD1.ChkThreshold. In the case the RD1.Ampl falls below RD1.ChkLowLim or we have reached the max/min adjustment then a resolver error interrupt is generated and a reason code is stored in RD1.ChkErr.		
		is mode make sure that any PL SysIo.PWM0 is removed.	
	Additional bits:		
	b7 (128) Set CCW rotation		
	change the motor rotation	ommutation source, in order to , you also need to change the notor. See Rotation definition	
RD1.Pos	1 -2 ³¹ 2 ³¹ -1	R	
	electrical turn on the resolve increments.	Resolution is approx. 2000-4000 increments/turn or 2-4	
RD1.Speed	2 -2 ³¹ 2 ³¹ -1	R	
	Speed of the resolver in incl approximately 2000-4000 in	rements-per-second. Resolution is crements-per-second.	
RD1.Ampl	3 032767	R	
	resolver. This value is used sample/hold signal so that the sampled at their maximum (exceeds 16000, the A/D inp accuracy drastically decreased	The combined amplitude of SIN and COS signals from the resolver. This value is used to adjust the phase of the sample/hold signal so that the SIN and COS signals are sampled at their maximum (10000 to 16000). If this value exceeds 16000, the A/D inputs are overloaded and the accuracy drastically decreases. If the value is less than 15000, the accuracy decreases proportional to the signal level.	
i	resolver #1 and #2; since	The content of the SysIo.PWM0 register affects both resolver #1 and #2; since both resolvers are driven from the same excitation circuit.	
RD1.SHAdj	4 -150150	RW	
	signal in microseconds.) Thi of the sample/hold signal so sampled at their maximum,	nent. (Time offset for sample/hold is value is used to adjust the phase that the SIN and COS signals are and thereby the RD1.Amp1 reaches adjustment, the RD1 is tuned to	

perform accurately up to 30000 rpm for a 2-pole (single speed) resolver. If the RD1. Ampl maximum exceeds 16000 and the corresponding resolver is to be used at low speeds only (maximum of 500-1000 rpm for a 2-pole resolver), this value may be detuned to decrease RD1. Ampl below 16000. RD1.FiltSpeed 5 Not implemented -2³¹..2³¹-1 RD1.RPos 6 R Relative position counter. Rd1.Rpos = Rd1.pos – Rd1-PosOffs RD1.SinOffs 7 RW -16384..16383 In High-speed mode, these values are the RD-electronics offset calibration values. The offset values are subtracted from the A/D input values to give SysIo.RD1Sin and SysIo.RD1Cos. RD1.CosOffs 8 -16384..16383 RW In High-speed mode, these values are the RD-electronics offset calibration values. The offset values are subtracted from the A/D input values to give SysIo.RD1Sin and SysIo.RD1Cos. RD1.AmplAdj 9 -1..1 R !! This is done more efficiently by using automatic correction!! The result from the resolver monitoring performed with the rate set by SYSIO.ChkTMR. If RD1. Ampl < 15500 then RD1.AmplAdj = -1 If RD1.Ampl > 16000 then RD1.AmplAdj = 1 If RD2.Ampl < 8000 then RD1.AmplAdj = 0If the resolver interrupt is enabled, the RD1. AmplAdj can be used to modify the SysIo. PWM0 in order to keep the RD1.Ampl within the range 15500 to 16000 by just adding the value to SysIo. PWMO. RD1.SinGain 10 -4096 .. +4096 Sine/cosine gain compensation. To be used in high-resolution mode. This is aprox. +-12.5 % adjustment. -4096 -12.5 % less 0 unity (100%) 4096 12.5 % larger This member is used to compensate gain errors between the sine and the cosine amplifier. The value can be found by rotating the motor while searching the Syslo.RD1Sin maximum and Syslo.RD1Cos maximum (preferably in a PL program), then calculate as; $RD1.SinGain = 32768 - \left(\frac{\sin \max^* 32768}{\cos \max}\right)$

		I	I
RD1.ChkLowLim	11	016384	RW
	Low limit of resolver amplitude, when the amplitude falls below this value a resolver error interrupt is generated. Default setting is normally good enough. (10000)		
RD1.ChkErr	12	04	RW
	The reason code for the last resolver error. 0 = No error. 1 = Exitation voltage has reached it's highest output. 2 = Exitation voltage has reached it's lowest output. 4 = Resolver amplitude has fallen below RD1.ChkLowLim.		
i	The error code will not be removed by the system. A user written PL code interrupt routine may clear this error after it has been read. The system will overwrite on next error.		
RD1.ChkNom	13	016384	RW
	Nominal value for the resolver amplitude. Default setting is normally good enough. (15500)		
RD1.ChkThreshold	14 0512 RW		RW
	The difference between the RD1.Ampl and RD1.ChkNom must exceed this value before any action is taken. Default setting is normally good enough. (100)		
RD1.PosOffs	15	-2 ³¹ 2 ³¹ -1	RW
	The position offset as a result of a Refpos xx instruction. This is the same as PG.PosOffs.		

RD2, RESOLVER/DIGITAL CONVERTER #2

Group	Group No	Description
RD2	3	Resolver/Digital converter #2. Normally used as the master position in the gearbox mode, otherwise free to use by the PL program.

RD2, GENERAL

The RD2 group contains registers for control and monitoring of the Resolver 2 input, which is used primary for gearbox functions. The second resolver (RD2) can be an external resolver mounted on a machine axis or it can also be the resolver on another DMC²-controlled motor. In that case the clocks of the two DMC²'s must be synchronized.

An external resolver must have equal or lower transformation ratio than RD1. The external resolver is supplied with the same excitation frequency as the RD1. In both cases the outputs are two AM signals which represents the sine and cosine of the angular position at all times. These analog signals are sampled and converted at a constant rate (4 kHz). From the sine and cosine values, the angle can be calculated as arctan(sine/cosine).

From this periodic angle measurement, the speed and position of the RD2 can be derived.

Resolver	Resolver speed	High resolution Mode	Standard Mode
		PPR	PPR
2-Pole	1-Speed resolver	65536	8192
4-Pole	2-Speed resolver	131072	16384
6-Pole	3-Speed resolver	196608	24576
8-Pole	4-Speed resolver	262144	32768

FUNCTION

RD2.Mode	Selects mode of operation for the resolver interface.
RD2.Mode = 0	Turns off the resolver and reset RD2.Pos.
RD2.Mode = 1	The normal setting for standard resolvers. Other value enables special functions.
RD2.SHAdj	Compensates for phase shift in the resolver and cables. The synchronous demodulation principle of the resolver interface requires that this parameter is set to a proper value. A span of +/- 150 is sufficient for all types of resolvers. A measuring routine (PL2 coded) for this parameter is included in the SW package.
RD2.Pos	Can be used as the input for gearbox functions. The RD2.Pos is an absolute position axis related to the position the resolver had when it was initialized.
RD2.Mode = 16	High-resolution mode.

RD2.SinGain	Compensate gain errors between the sine and cosine amplifier.
RD2.ChkLowLim	When the amplitude falls below this value, a resolver interrupt is generated. Default value is normally good (10000)
RD2.ChkErr	Last resolver error code.

RELATED ITEMS

SysIo.PWM0	Controls the amplitude of the excitation signal. An adjustment routine (PL2 coded) for this parameter is included in the SW package.
Vector.ResolvErr	Systems interrupt vector for resolver monitoring.
Int.SysMask	Bit mask for system interrupts, bit 7 (bit value 128), enables the monitoring.
Int.SysPend	Bit mask for pending events, bit 7 (bit value 128), indicates the ResolvErr.
Ireturn sys 128	Return statement.
RD1.AmplAdj	Holds the sign of the error that caused the ResolvErr interrupt.
SysIo.Sync	Flag for synchronization of multiple DMC ² 's.
SysIo.SyncMode	Selects synchronization principle.

EXAMPLE USAGE

.

.

RD2.Mode = 1	;normal operation
gosub ResCal	;adjust resolver parameters

GROUP MEMBERS (GROUP 3)

Group member	Member No		Range	Ability	Default
RD2.Mode	0	01	8 bit	RW	0 (CW Rotation)
	Mode select	ts whe	ther the RD2	is active or	not.
RD2.Mode=0	Inactive				
RD2.Mode=1	Active				
RD2.Mode=2	Not used				
RD2.Mode=3	Active and High-speed mode selected. This mode is recommended for use above 500 Hz (or 30.000 rpm 2-pole speed). It is also suitable for already demodulated resolvers and transducers giving a similar signal, for sensors ranging from analog hall sensors to laser interferometers. The maximum internally supported speed is 32 MHz, equivalent to 4 kHz				

Inmotion Technologies AB

	laser interfe	240.000 rpm on a rometer. The DMC with a He-Ne laser	2 pole motor or 1.2 mm/s for a C^2 resolution is about 0.16 r interferometer.)	
RD2.Mode=5(1+4)	The content of RD2.Speed is filtered before used as input to the gearbox. The filtered speed is available in RD2.FiltSpeed			
RD2.Mode=7(3+4)			filtered before used as input to the available in RD2.FiltSpeed.	
RD2.Mode=16	High-resolution mode. Pulses-per-revolution has been increased to accommodate the 14-bit A/D converter capability. High resolution is a new operating mode in RD1 and RD2 separately. One revolution of a 2 pole resolver yields 65536 increments, this is eight times better than the low resolution mode.			
i		oup members mu g this mode.	st be scaled up or down by 8	
	Pg.Speed = multiply by 8 to achieve the same speed as for low resolution. Pg.Acc/Pg.Ret = multiply by 8 to achieve the same acceleration/deceleration as for low resolution. Reg.Xgain= divide by 8 all gains. Where X is P, I or D. Motor.PPR= multiply by 8.			
	 Additional bits: b7 (128) Set CCW rotation. Note. When used as the commutation source, in order to change the motor rotation, you also need to change the rotation definition on the motor. 			
RD2.Pos	1	-2 ³¹ 2 ³¹ -1	R	
	turn on the	resolver equals 81	n "increments", where an electrical 92 increments. Resolution is rements/turn, or 2-4 increments.	
RD2.Speed	2	-2 ³¹ 2 ³¹ -1	R	
	The resolver speed in increments-per-second. Resolution is approximately 2000-4000 increments-per-second.			
RD2.Ampl	3	032767	R	
	The combined amplitude of sin and cosCOS signals from the resolver. This value is used to adjust the phase of the sample/hold signal so that the SIN and COS signals are sampled at their maximum (10000 to 16000). If this value exceeds 16000, the A/D inputs are overloaded and the accuracy drastically decreases. If the value is less than 15000, the accuracy decreases in proportion to the signal level. The SysIo.PWM0 value is adjusted so that RDx.Ampl reaches its maximum value. At this adjustment the resolver is			

	tuned to perform accurately at up to 30000 rpm for a 2-pole (single speed) resolver. Note. The content of the SysIo.PWM0 register affects both resolver #1 and #2; since both resolvers are driven from the same excitation circuit.		
RD2.SHAdj	4	-150150	RW
	Sample/Hold phase adjustment (the time offset for sample/hold signal is in microseconds.) This value is used to adjust the phase of the sample/hold signal so that the SIN and COS signals are sampled at their maximum, and thereby the RD2.Ampl reaches its maximum value. At this adjustment, the RD2 is tuned to perform accurately at up to 30000 rpm for a 2-pole (single-speed) resolver. If the RD2.Ampl maximum exceeds 16000, and the corresponding resolver is only used at low speeds (maximum 500-1000 rpm for a 2-pole resolver), this value may be detuned to decrease the RD2.Ampl below 16000.		
RD2.FiltSpeed	5	-2 ³¹ 2 ³¹ -1	R
	is calculated		apeed when RD2.Mode is 5 or 7. It are over the last 4 servo cycle
RD2.RPos	6	-2 ³¹ 2 ³¹ -1	R
	Resulting position when the value in RD2.PosOffs is applie		
RD2.SinOffs	7	-1638416383	RW
	In High-speed mode, these values are the RD-electronics offset calibration values. The offset values are subtracted from the A/D input values to give SysIo.RD2Sin and SysIo.RD2Cos.		
RD2.CosOffs 8 -1638416383		RW	
	calibration v	alues. The offset	alues are the RD-electronics offset values are subtracted from the A/D D2Sin and SysIo.RD2Cos.
RD2.AmplAdj	9	-11	NIU
	NIU.		·
RD2.SinGain	10	-4096+4096	
	Sine/cosine gain compensation. To be used in high-resolution mode. Adjustment: ±12.5 % -4096 -12.5 % less 0 unity (100%) 4096 12.5 % larger This member is used to compensate gain errors between the sine and the cosine amplifier. The value can be found by rotating the motor while searching the SysIo.RD1Sin maximum and SysIo.RD1Cos maximum (preferely in a PL program), then calculate as;		

	RD1.SinGe	$ain = 32768 - \left(\frac{si}{2}\right)$	$\frac{\sin \max^* 32768}{\cos \max}$
RD2.ChkLowLim	11	016384	RW
			e, when the amplitude falls below rrupt is generated.
RD2.ChkErr	12	04	RW
	0 = No error 1 = Exitation 2 = Exitation	n voltage has reac n voltage has reac	esolver error. hed it's highest output. hed it's lowest output. Illen below RD2.ChkLowLim.
i	written PL	code interrupt ro	emoved by the system. A user utine may clear this error after it will overwrite on next error.
Reserved	13		
Reserved	14		
RD2.PosOffs	15	-2 ³¹ 2 ³¹ -1	RW
	The position	offset that is use	d when RD2.RPos is read.
RD2.FiltLen	16	03	RW
	The length of the accumulating speed filter. The filter has variable length. Value Number of samples 0 1 1 2 2 4 3 8 The RD2.Filtlen consists of the number of samples used in the mean value calculation. The resolver should not rotate when		
	the mean value calculation. The resolver should not rotate when the length is changed.		

67

PG, PROFILE GENERATOR

Group	Group No	Description
Pg	4	Profile Generator. The profile generator calculates the velocity profiles used for trapezoidal movements.

GENERAL

The Profile generator (Pg) group controls the basic motion function. Any movement can be defined as segments of acceleration, constant speed and deceleration and the Pg function accomplishes this.

This function produces so-called Trapezoidal profiles which are movements with three phases, acceleration, constant speed and deceleration. The target position is reached with the speed = 0.

When the Connect instruction is used on this group and for instance the regulator, the values are taken from the same servo cycle. The old DMC² showed values one servo cycle ahead for the Profile group.

FUNCTION

Pg.APos Pg.ASpeed	The profile generator outputs command values for speed and position with 1 ms update rate. These values are used by the regulator as input values. The outputs are PG.APos and Pg.Aspeed where PG.APos is the integrated value of Pg.ASpeed.
Pg.Acc	To get any output, the Pg.Acc must be set to some value > 0 and that value will be used as the acceleration limit.
Pg.Ret Pg.Decel	Pg.Ret (or. Decel) is used only to determine when it is time to start the deceleration phase and from that point on the actual deceleration is calculated each ms so that the speed will be zero when the position target is reached.
Pg.RSlope	The deceleration phase can be smoothed by setting the value of Pg.RSlope > 0. This will provide an exponential velocity change instead of a linear one during deceleration. When Pg.RSlope > 0 the deceleration will initially be higher than the value stated in the parameter Pg.Ret.
Pg.PosSpeed	The Pg.PosSpeed determines the top speed of the profiles.
Pg.Rdy	The bit register Pg.Rdy reports when the profile is finished.

The profile generator can also take values from an array specifying segments of acceleration and duration time. This makes it possible to define customized profiles. In this case none of the other parameters are involved. The array can have up to 1000 segments.

RELATED ITEMS

Pos Abs	<lval></lval>	Move to the absolute position <lval>.</lval>
Pos Rel	<lval></lval>	Move to the absolute position (<lval> + Pg.Apos)</lval>

68 User's Manual 5.1 Doc. No.9032 0027 01 (B), Rev. 11.07.2001

Pos Inc	<lval></lval>	Move to the absolute position (<lval> + Pg.DPos)["].</lval>
Profile Acc	<rline></rline>	Generate profile based on array defined at line <rline>.</rline>
PData	<lrval>, <srval></srval></lrval>	Defines one segment of customised profile.
Pos Mod On	(clr)	Connects additional command values from gearbox function.

EXAMPLE USAGE

Pg.Acc ,1 000 000 Pg.Ret ,500 000 Pg.PosSpeed ,200 000 Pg.RSlope ,16 pos abs 81920 wait Pg.RDY	;set up ;the profile generator ;for a simple movement ; ;move ;wait for completion
profile acc @Custom wait Pg.RDY	;start the custom profile ;wait for completion

; Array of acc. segments defining a profile

Custom:

.

pdata	acc1	,timel	;first segment (acceleration [incs/s ²] ;time [ms])
pdata	acc2	,time2	;second segment
pdata	acc3	,time3	;third segment
pdata	0	0	;end of array

IMPROVEMENTS TO 4.0

The instruction 'Wait Pg.RDY' will wait for the profile generator to be finished, this is not the same as saying that the position has been physically reached. The profile generator generates set point values to the regulator and it's up to the regulator to follow the profile based on the regulator settings.

To test these examples a 'stiff' regulator setting is required.

The code examples below, executed on the DMC², will behave as expected. That was not the case on the old DMC. All examples use the resolver high-resolution mode.

MODIFY DESTINATION POSITION WHILE POSITIONING.

	Pg.Acc, 18784200 Let Pg.Decel, Pg.Acc Pg.PosSpeed, 3276800	; Setup the profile generator
Wait	Abs 1000000 Pg.APos > 500000 Pg.DPos, 200000	; Start positioning. ; Wait until we reached a certain position. ; Now, modify the destination position.

User's Manual 5.1 Doc. No.9032 0027 01 (B), Rev. 11.07.2001

Wait Pg.RDY	; And wait until we are there.
Stop	

MOVE TO A TARGET POSITION 'BEHIND' OUR CURRENT POSITION.

Let Pg.Acc, 18784200 Let Pg.Decel, Pg.Acc Let Pg.PosSpeed, 3276800 Let Pg.Speed, 100000 Wait Pg.ASpeed = Pg.Speed Wait In.DI1 = 1 RefPos 0 Pos Abs 0 Wait Pg.RDY Stop

VERY SHORT MOTION PROFILES AND/OR VERY HIGH DECELERATION RATES.

Let Pg.Acc, 18784200 Let Pg.Decel, Pg.Acc Let Pg.PosSpeed, 3276800	; Setup the profile generator.
loop: Clr Tmr.TO Pos Rel 1000 Wait Pg.RDY Disp Tmr.TO	; Clear timer for time measurement. ; Do a small step (modify this even smaller) ; and wait until we are there. ; Display the time required to do the step.
Clr Tmr.T0 Wait Tmr.T0 > 1000 Goto loop	; Do this once every second.

GROUP MEMBERS (GROUP 4)

Group member	Member No	Range	Ability	Default
Pg.Mode	0	07	RW	
	Specifies the working mode for the profile generator. This is normally manipulated by the POS statement and is not usually user-modified.			
Bit0 (1) =1	Standard positioning active.			
Bit1 (2) =1	Positioning is now "locked on target", i.e. the deceleration phase has begun.			
Bit2 (4) =1	Acceleration profile is active.			
Bit36	NYI			
Bit7 (128) = 1	The outputs are disconnected from the regulator. Intended for external use of the Pg, i.e. virtual master.			
Pg.Acc	1	02 ³¹ -1	RW	
	The allowed acceleration in increments-per-second ² .			
Pg.APos	2	-2 ³¹ 2 ³¹ -1	RW	
	The actual set-position in increments.			

70

Inmotion Technologies AB

Pg.ASpeed	3	-32767000 32767000	RW		
	The actual s	set-speed (velocity) in increm	ents-per-second.		
Pg.Speed	4	-32767000 327670000	RW		
	The destina	The destination speed (velocity) in increments-per-second.			
Pg.PosSpeed	5	032767000	RW		
		The maximum speed to use during positioning. If set to zero, the Pg.Speed value is used.			
Pg.Decel	6	02 ³¹ -1	RW		
	The same variable as $Pg.Ret$. The deceleration rate used for braking when completing a move in increments-per-second ² .				
Pg.Ret	7	02 ³¹ -1	RW		
	The same variable as Pg.Decel. The deceleration rate used for braking when completing a move.				
Pg.ADecel	8	02 ³¹ -1	R		
		The actual deceleration used. Differs from Pg.Decel especially if Pg.RSlope is not zero.			
Pg.Dpos	9	-2 ³¹ 2 ³¹ -1	RW		
	The destination position for a positioning. This variable manipulated by the POS xxx program statements, but c be manipulated manually.				
Pg.RSlope	10	0127	RW		
	Creates a RC-like slope on the stop ramp at the end of a move. Used to allow a softer stop of the move. $PG.RSlope = 0$ gives a straight line and $Pg.RSlope = 127$ gives a maximum soft stop. NOTE: Using large values of $Pg.RSlope$ so the stop is very soft makes the move's completion time uncertain. Thus, in some cases, it may be more advantageous to wait for $Pg.RSpeed$ to get below a predetermined low value than to wait for $Pg.RDY$ to return TRUE. When $Pg.RSlope$ is used then the initial deceleration will be larger that the setting of $Pg.Decel$. For $Pg.RSlope = 127$ the initial deceleration will be 2 * Pg.Decel.				
Pg.RDY	11	0 1	R		
	Used to see if a move Pos xxx or Profile has completed. Returns to 1 when complete and 0 when incomplete. The Pg.Mode can also be used for this, but gives more details.				
Pg.ProScale	12	-2 ³¹ 2 ³¹ -1	RW		
	obtained fro	The scale factor for profiles. Pg.ProScale multiplies the data obtained from the profile and the result is then divided by 1024. If the value in the PDATA * Pg.ProScale is greater than 2^{47} , the profile generator gets an overflow and the profile is aborted.			

i	NO error message is generated in this situation.			
Pg.PosOffs	13	-2 ³¹ →2 ³¹ -1	RW	
	The offset for positions in the profile-generator and R/D conversion to set the "ZERO" position. The REF POS statement generally sets this. This statement refers the position to RD1. If this is not desired, the Pg.PosOffs can be set directly from the PL language. The Pg.PosOffs affects the Pg.APos and Pg.Dpos and RD1.RPos in the following way: ReportedPosition: = ActualPosition - Pg.PosOffs WrittenPosition: = RequestedWrite + Pg.PosOffs			
Pg.SRmode	14	01	RW	
	Enables fractional integration of profile speed. Speed settings below 1000 are handled correctly.			
Pg.DConnAPos	15	-2 ³¹ 2 ³¹ -1	RW	
	Virtual PG.Apos when the profile generator is discoonnected from the regulator. This value is the value used as setpoint for the regulator in that case.			

MOTOR, MOTOR INTERFACE

Group	Group No	Description
Motor	5	The motor interface group

GENERAL

The motor group holds information about the motor and resolver combination used. It is vital that these registers are set up correctly to get maximum performance from the system.

	Induction motor definitions
Rated current	I _N
Power factor	COSφ
Line frequency	f _N
Rated speed	n _N
Number of poles	р
DMC rated peak current	I _{DMCpeak}

FUNCTION

Motor.Poles	Sets the number of electrical poles within the motor. Four and six poles are most common. A negative value indicates compensation for the phase order.
Motor.PPR	The commutation logic needs information about the commutation source resolution (incs/turn), and this should be set here. A two pole resolver gives 8192 incs/turn.
Motor.PhAlign	Represents the mechanical alignment between the resolver and the motor. The manufacturer can normally define this value. If not, it can be measured with a measuring routine (PL2 coded) included in the SW package.
Motor.IcalR Motor.IcalS	Since the current control part of the system is analog it needs offset compensation. The values for phase R ($Motor.IcalR$) and phase S ($Motor.IcalS$) can NOT be defined and must be measured at every power up of the system. A measuring routine (PL2 coded) for these parameters is included in the SW package.

RELATED ITEMS

EXAMPLE USAGE

Motor.Poles , - 6 Motor.PPR , 24576 Motor.PhAlign , -19400

;6 pole motor ;6 pole resolver ;normal value for ELMO motors

gosub Ical	
	;offset calibrate
Motor.Poles , - 6 Motor.Ppr , 8192	
Motor.PhAlign , 18800	;6 pole motor
<u> </u>	;2 pole resolver
gosub Ical	normal value for SEM motors

;offset calibrate

GROUP MEMBERS (GROUP 5)

Group.member	Member No	Range	Ability	Default
Motor.Mode	0	0 – 255	RW	0
Motor.Mode=0	PM-synchro	nous motor commutation		
Mode=8		otor commutation. Also disables (see Sysio.Pout for details)	current reç	gulator
Mode=8+16	Induction motor commutation with disabled slip com field weakening region. This mode is used for motor parameter tuning only.			nsation in
	Additional bits: b0 (1) change rotation definition Note. In order to use this you also need to change the rotation definition on the feedback, commutation source. See Rotation definition change.			the
Motor.Comm	1	0-4		
	Commutatio	n source		
.Comm = 0	No source selected			
.Comm = 1	Commutatio	n is taken from the EN1 signal s	witch (defa	ault)
.Comm = 2	Commutatio	n is taken from the EN2 signal s	witch	
.Comm = 3	Commutatio	n is taken from the EN3 signal s	witch	
.Comm = 4	Commutatio	n is taken from the EN4 signal s	witch	
Motor.Poles	2	(-1638516385)*2	RW	
	Sets the number of poles on the motor. Use a negative number if the motor rotates in the wrong direction with respect to the resolver. The number of poles should generally be less than Motor.PPR / 128 and greater than or equal to Motor.PPR / 4096. If commutation position alignment can be performed at startup by rotating the motor, the Motor.Poles value may be less than Motor.PPR / 4096.		to the than can be	
Motor.PPR	3	(-3276832767)*2 ⁿ ;n=(08)	RW	
	Defines the Pulses-per-revolution the commutation logic has to work with. For the standard resolver:			ic has to

	4-P0 6-P0	ole: 16384 2 ole: 24576 3	Speed Resolver Speed Resolver Speed Resolver Speed Resolver	
Motor.PhAlign	4	-327683276	7	RW
	Defines the Commutation angle alignment. Used to align resolver/encoder to motor 16384 <> 90 electrical degrees. If motor rotates in the wrong direction when closing the feedback-loop, add 32768 to the used value. (ELMO: -19400, SEM: -14000 (18800))			ctrical degrees. If osing the
Motor.PhDelay	5	-327683276	7	RW
	encoder pos motor, inclu	sition until the o ding delay in th		nutation angle to the in is approximately
Motor.IcalR	6	-327683276	7	RW
			n offset. Used to a eal current = 0 whe	djust offsets in the en commanded
Motor.IcalS	7	-327683276	7	RW
	Phase S current calibration offset. Used to adjust offsets in the drive electronics. Makes real current = 0 when commanded current = 0.			
i			otor.IcalS ste a Reg.TorqNLim Va	als dynamics from ariables.
	Maximum Reg.Torq(P/N)Lim for synchronous motor Reg.TorqxLim = 8191 - (MAX(ABS(Motor.IcalR), ABS(Motor.IcalS))/4. Maximum Reg.Torq(P/N)Lim for induction motor Reg.TorqxLim = Sqrt((8191 - (MAX(ABS(Motor.IcalR), ABS(Motor.IcalS))/4) ² -Motor.MagCur2. The firmware has no internal check to verify that this condition is met.			
				Motor.IcalR <i>)</i> ,
				that this condition is
Motor.CommPos	8	-327683276	7	R(W)
	The actual commutation position of the PM-synchronous motor. Set to Zero (or other predefined value) in commutation alignment procedure.			

INDUCTION MOTOR SPECIFIC MEMBERS

Group.member	Member No	Range	Ability
Motor.Slip	9	-3276832767	R
	Commande	d slip	
	$2 * \operatorname{Re} g.Tc$	orque * Motor.ASlipGain	
		65536	
Motor.SlipGain	10	032767	RW
	The Motor	.SlipGain is calculated in F	Formula
	Motor.Slip	$D = \frac{I_{DMCpeak}}{\sqrt{2} * I_{2r}} * \omega_{2s} * \frac{10.43}{2}$	
i		temperature dependant ar igher than calculated.	nd is generally abour
Motor.SlipAngl	11	-2 ³¹ 2 ³¹ -1	R
	1	013570	RW
Motor.MagCur	12	013570	
Motor.MagCur	Magnetizati	on current when motor is run BaseSpeed, is calculated a	ning at speeds lower
Motor.MagCur	Magnetization than Motor	on current when motor is run BaseSpeed, is calculated a lue then 13570 may result i is larger than 13570, a larg	ning at speeds lower as shown in Formula. n internal overflow.
Motor.MagCur 1 1	Magnetization than Motor A larger va If the value must be se	on current when motor is run BaseSpeed, is calculated a lue then 13570 may result i is larger than 13570, a larg	ning at speeds lower as shown in Formula. n internal overflow. ger DMC ² drive
Motor.MagCur i i Motor.ASlipGain	Magnetization than Motor A larger va If the value must be se	on current when motor is run BaseSpeed, is calculated a lue then 13570 may result i is larger than 13570, a larg lected.	ning at speeds lower as shown in Formula. n internal overflow. ger DMC ² drive
i i	Magnetization than Motor A larger van If the value must be se Motor.Mag offsets 13 The actual s	on current when motor is run BaseSpeed, is calculated a lue then 13570 may result i is larger than 13570, a larg lected. Cur has to be zero when c	ning at speeds lower as shown in Formula. n internal overflow. ger DMC ² drive alibrating current R
i i	Magnetization than Motor A larger valif the value must be se Motor . Mag offsets 13 The actual s When abs(F	on current when motor is run BaseSpeed, is calculated a lue then 13570 may result i is larger than 13570, a larg lected. Cur has to be zero when c 032762	ning at speeds lower as shown in Formula. n internal overflow. ger DMC ² drive alibrating current R
i i	Magnetization than Motor A larger value must be se Motor . Mag offsets 13 The actual s When abs(F <i>Motor.ASlip</i>	on current when motor is run BaseSpeed, is calculated a lue then 13570 may result i is larger than 13570, a larg lected. Cur has to be zero when c 032762 Slipgain used in communtation RD1.Speed) < Motor .Base Gain=Motor.SlipGain s(RD1.Speed) > MOTOR Base	ning at speeds lower as shown in Formula. n internal overflow. ger DMC ² drive alibrating current R n. eSpeed then
i i	Magnetization than Motor A larger valif the value must be se Motor . Mag offsets 13 The actual s When abs(F <i>Motor.ASlip</i> or when abs weakening).	on current when motor is run BaseSpeed, is calculated a lue then 13570 may result i is larger than 13570, a larg lected. Cur has to be zero when c 032762 Slipgain used in communtation RD1.Speed) < Motor .Base Gain=Motor.SlipGain s(RD1.Speed) > MOTOR Base	ning at speeds lower as shown in Formula. n internal overflow. ger DMC ² drive alibrating current R n. eSpeed then
i i	Magnetization than Motor A larger valif the value must be se Motor Mag offsets 13 The actual s When abs(F <i>Motor.ASlip</i> or when abs	on current when motor is run BaseSpeed, is calculated a lue then 13570 may result i is larger than 13570, a larg- lected. (Cur has to be zero when c Cur has to be zero when c 032762 Slipgain used in communtation RD1.Speed) < Motor .Base Gain=Motor.SlipGain S(RD1.Speed) > MOTOR Base Cur has a communication (RD1.Speed) > MOTOR Base (RD1.Speed) > MOTOR Base (RD1.Speed	ning at speeds lower as shown in Formula. n internal overflow. ger DMC ² drive alibrating current R n. eSpeed then seSpeed then (Field
i i	Magnetization than Motor A larger valif the value must be se Motor . Mag offsets 13 The actual s When abs(F <i>Motor.ASlip</i> or when abs weakening).	on current when motor is run BaseSpeed, is calculated a lue then 13570 may result i is larger than 13570, a larg- lected. (Cur has to be zero when c Cur has to be zero when c 032762 Slipgain used in communtation RD1.Speed) < Motor .Base Gain=Motor.SlipGain S(RD1.Speed) > MOTOR Base Cur has a communication (RD1.Speed) > MOTOR Base (RD1.Speed) > MOTOR Base (RD1.Speed	ning at speeds lower as shown in Formula. n internal overflow. ger DMC ² drive alibrating current R n. eSpeed then seSpeed then (Field * Abs(RD1.Speed)
i i Motor.ASlipGain	Magnetization than Motor A larger valif the value must be se Motor . Mag offsets 13 The actual s When abs(F <i>Motor.ASlip</i> or when abs weakening) <i>Motor.ASl</i> 14 The actual r When abs(F	on current when motor is run BaseSpeed, is calculated a lue then 13570 may result i is larger than 13570, a larger lected. Cur has to be zero when c 032762 slipgain used in communtation RD1.Speed) < Motor .Base Gain=Motor.SlipGain s(RD1.Speed) > MOTOR Base lipGain = $\frac{Motor.SlipGain}{Motor.B}$ 013570 magnetization current used in RD1.Speed) < Motor .BaseSpeed peed) > Motor.BaseSpeed ening)	ning at speeds lower as shown in Formula. n internal overflow. ger DMC ² drive alibrating current R n. eSpeed then seSpeed then (Field * Abs(RD1.Speed) BaseSpeed R n commutation Speed then or when

Motor.BaseSpeed	15	032767000	RW
	The motor s	peed in inc/sec where field w	eakening starts.
Motor.MedSpeed	16	032767000	RW
	When abs(RD1.Speed) is above Motor.MedSpeed then a linear reduction of Motor.ATorqPLim and Motor.ATorqNLim is performed. For induction motors the Motor.ATorqPLim and Motor.ATorqNLim is used instead of REG.TorqPLim and REG.TorqNLim.		nd PLim and
Motor.HighSpeed	17	032767000	RW
		Dl.Speed) >= Motor.High rqPLim and Motor.ATorq	
Motor.ATorqPLim	18	-8192 8191	RW
	regulator. Se	oositive torque limitation used ee Motor HighSpeed, Mot deSpeed To set this limit, us	or.MedSpeed and
Motor.ATorqNLim	19	-8192 8191	R
	motor regula	hegative torque limitation use ator. See Motor.HighSpeed BaseSpeed. To set this limi	d,Motor.MedSpeed
Motor.Temp	20	-32768 32767	RW
	The value from an ANA. Inx analog input. The value in Motor.Temp is the motor winding temperature and is used for slipgain temperature compensation. The selected analog input must be adjusted, using ANA.InxRange and ANA.InxOffs, so that the temperature, for which the Motor.SlipGain was given as motor parameter, result in a 0 reading at Motor.Temp. The ANA.Inx should be copied to the Motor.Temp at least a few times but that depends on the thermal time constant of the motor. The Slipgain will be adjusted according to the formula:		
	Motor.Aslipge	$ain = Motor.Aslipgain * (1 + \frac{Moto}{2})$	<i>r.Temp</i> * <i>Motor.TempK</i> 16384 * 65536
	Two ways o	f doing this are:	
 Connect Ana.Inx to Motor.Temp Ana.ConnTMR, 200 Let Motor.Temp, Ana.Inx 			.Temp
	If any more Connect statement is to be used, and with much lower Ana.ConnTMR setting the second way is prefered. But be sure that the code is executed often enough.		
i	much lower prefered. B	Ana.ConnTMR setting the	second way is
İ Motor.TempK	much lower prefered. B	Ana.ConnTMR setting the	second way is

	see header Formula.			
Motor.WeakA	22	08192	RW	
	is done as c than 16 the	Fieldweakening scale factor, when this is 16 field weakening is done as described in Motor.AMagCur above, if greater than 16 the magnetization is reduced faster than 1/ABS(RD1.Speed).		
Motor.WeakTm	23	0255	RW	
	Fieldweakening time setting. The calculations are scheduled to save some time in the regulator.			
	The calculation intervall is set by the following values:			
	31 : 32 mS intervall (default value)			
15 : 16 m				
	7 : 8 mS			
	3 : 4 mS			
	1 : 2 mS			
	0 : 1 mS			

REG, PID REGULATOR

Figure 6. DMC² position controller.

GENERAL

The regulator performs a central function in the system. It determines the torque needed to make the motor follow the speed and position commands at all times. It is a parallel PID type of regulator with several feed forward functions. It can be used in several configurations dependant on the applications characteristics. It operates with 1 kHz update rate.

The output is a normalized value of the torque calculated each servo cycle. This output is then used by the commutation logic to create two sinusoidal currents.

FUNCTION

Reg.PosErr Reg.SpdErr	The inputs to the regulator are the command values for position, speed and acceleration. Each ms the difference between the command values and the actual values are calculated.
	The acceleration is used only for the feed forward parts.
Reg.IErr Reg.SpdErr	The position error is used in the Proportional and the Integral part, and the speed error is used in the Derivative part. The feed forward parts are Inertia compensation, Viscous friction, Static friction and Torque.
Reg.TorqLim Reg.TorqPLim Reg.TorqNLim	These parts makes up the output which is passed trough a limiting function. There are three different limits, maximum positive torque (Reg.TorqPLim), maximum negative torque (Reg.TorqNLim) and maximum continuous torque (Reg.TorqLim). The output torque is always limited to the range bounded by Reg.TorqPLim and Reg.TorqNLim.
Reg.TorqTime Reg.TorqCLim	If enabled, an additional function will limit the output to Reg.TorqLim. If the output has been larger than this limit for more than Reg.TorqTime [ms]. This can be seen as a dynamic torque limit. By adjusting these limits to proper values, the motor can be protected from excessive overheating, permitting the thermal sensor in the motor windings to be able to react fast enough.
Reg.PGain Reg.IGain Reg.DGain	The gain and other tuning parameters must be calculated and/or established by testing for each application.

RELATED ITEMS

Pg.	Apos	Comman	d va	alue	for p	ositio	n.
_							

Pg.ASpeed Command value for speed.

EXAMPLE USAGE

Reg.TorqLim,8000	;set maximum torque limit
Reg.TorqCLim,2000	;set continuos limit to 25 %
Reg.TorqTime,500	;allow 500 ms of max. torque
or Reg.Mode,64	;activate dynamic torque limit

GROUP MEMBERS (GROUP 6)

Group.Member	Member No	Range	Ability	
Reg.Mode	0	0255	R(W)	
	Bit-defined, 1. Defines the integration modes of the regulator. Bit 0 and 1 are status bits, showing the internal regulator modes. When Bit3 is activated, the Reg.PGain value must be decreased or set to zero. If both Bit2 and Bit3 are activated (and for simplicity Reg.PGain = 0), we have a Position regulator with integration of position error and speed error. This has the effect of reducing the speed, which with the regulator returns the motor to the correct position after a large position error. The maximum return speed is calculated as (FS = SampleFrequency = 1000 Hz). Re g.PErrLim = $\frac{\text{Re g.SpdErr}}{FS * 2^{\text{Re g.SiScale}}}$ Thus, the maximum return speed can be calculated to: $FS \frac{\text{Re g.PErrLim}}{2^{\text{Re g.SiScale}}}$			
Bit0 (1)	Integrate u	p enabled.	R	
Bit1 (2)	Integrate d	own enabled.	R	
Bit2 (4)	Integrate fr	om limited Reg.PosErr.	RW	
Bit3 (8)	Integrate fr <i>Reg.SpdEr</i>	om unlimited r / FS * 2 ^{Reg.SiScale}	RW	
Bit4 (16)	Enable sim	ple digital filter.	RW	
Bit5 (32)	Activates th	ne Torque cam, Gear.Can	npos is used as SetTorq	
Bit6 (64)	This bit is s	et to enable the use of Re	eg.TorqCLim.	
Bit7 (128)	When this I	When this bit is set the result of the regulator is to be discarded.		
Bit2 = 0 Bit3 = 0 Reg.Pgain<> 0	Position regulator without integration. When both Bit2 and Bit3 are Zero and Reg.PGain is non-zero, the result is a position regulator without integration.			
Bit2 = 0 Bit3 = 0 Reg.Pgain = 0	Speed regulator without integration. When both Bit2 and Bit3 are Zero and Reg.PGain is zero, the result is a speed regulator without integration.			
Bit2 = 1 Bit3 = 0 Reg.PGain<>0	Bit2 is active error is des		ulator with integration of position	
Bit2 = 0 Bit3 = 1 Reg.PGain = 0	Bit3 is active error is des	, ,	lator with integration of speed	
Reg.PGain	1	-2 ³¹ 2 ³¹ -1	RW	
	of 1024 cor position err	1-2 ³¹ 2 ³¹ -1RWThe Proportional or Position feedback gain of the regulator. A value of 1024 corresponds in 1 unit of Torque generated for 1 unit of position error. Limited by Firmware, not alarmed if a value is written, only a smaller value is read.		

Integral (Speed or Position or Both) feedback gain of the regulator. A value of 1024 corresponds in 1 unit of Torque generated for 1 unit of integrated position and/or speed error. Limited by Firmware, not alarmed if a value is written, only a smaller value is read. Reg.DGain 3 2 ³¹ .2 ³¹ .1 RW Derivative or Speed feedback gain of the regulator. A value of 1024 corresponds in 1 unit of Torque generated for FS units of speed error. Limited by Firmware, not alarmed if a value is written, only a smaller value is read. Reg.DOSErr 4 -2 ³¹ .2 ³¹ .1 RW The actual positioning error for the system (in increments). Reg.SpeErr 5 -2 ³¹ .2 ³¹ .1 RW Reg.SpdErr 6 -32768*FS32767*FS RW The actual speed error for the system (in increments/seconds). Reg.PErrLim 7 02 ³¹ .1 RW RW Proportional or Position Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 8 02 ³¹ .1 RW Reg.DErrLim 9 02 ³¹ .1 RW Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator.	Reg.IGain	2	-2 ³¹ 2 ³¹ -1	RW
Derivative or Speed feedback gain of the regulator. A value of 1024 corresponds in 1 unit of Torque generated for FS units of speed error. Limited by Firmware, not alarmed if a value is written, only a smaller value is read. Reg.PosErr 4 -2 ³¹ .2 ³¹ .1 RW The actual positioning error for the system (in increments). Reg.SpdErr 5 -2 ³¹ .2 ³¹ .1 RW Reg.SpdErr 6 -32768*FS32767*FS RW The actual speed error for the system (in increments/seconds). Reg.PErrLim 7 0.2 ³¹ .1 RW Proportional or Position Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.IErrLim 8 0.2 ³¹ .1 RW Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 0.2 ³¹ .1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 0.2 ³¹ .1 RW The actual will be 4 times the value of Reg.TorqLim. when operating in limit. The senerate Torque. For PM-synchronous motors, th		value of 10 integrated	24 corresponds in 1 unit oposition and/or speed error	of Torque generated for 1 unit of or. Limited by Firmware, not
corresponds in 1 unit of Torquē generated for FS units of speed error. Limited by Firmware, not alarmed if a value is written, only a smaller value is read. Reg.PosErr 4 -2 ³¹ .2 ³¹ .1 RW The actual positioning error for the system (in increments). Reg. Speer 5 -2 ³¹ .2 ³¹ .1 RW Reg.IErr 5 -2 ³¹ .2 ³¹ .1 RW The actual integrated position and/or speed error for the system. Reg.SpdErr 6 -32768*FS32767*FS RW The actual speed error for the system (in increments/seconds). Reg.PerrLim 7 02 ³¹ .1 RW Proportional or Position Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.IErrLim 8 02 ³¹ -1 RW Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 02 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.Torque 10 -3276832767 R(W) The g	Reg.DGain	3	-2 ³¹ 2 ³¹ -1	RW
The actual positioning error for the system (in increments). The actual position and/or speed error for the system. Reg.SpdErr 6 -32768*FS32767*FS RW Reg.SpdErr 6 -32768*FS32767*FS RW Reg.PErrLim 7 02 ³¹ -1 RW Proportional or Position Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.IErrLim 8 02 ³¹ -1 RW Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 02 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 02 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.Torque 10 -3276832767 R(W) The generated Torque. For PM-synchronous motors, this is proportional to motor current. 100% torque = 1		correspond error. Limit	ls in 1 unit of Torque gene ed by Firmware, not alarn	erated for FS units of speed
Reg.IErr 5 -2 ³¹ .2 ³¹ .1 RW The actual integrated position and/or speed error for the system. Reg.SpdErr 6 -32768*FS32767*FS RW The actual speed error for the system (in increments/seconds). Reg.PErrLim 7 02 ³¹ .1 RW Proportional or Position Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.IErrLim 8 02 ³¹ .1 RW Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 02 ³¹ .1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 02 ³¹ .1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.1000000000000000000000000000000000000	Reg.PosErr	4	-2 ³¹ 2 ³¹ -1	RW
The actual integrated position and/or speed error for the system. Reg.SpdErr 6 -32768*FS32767*FS RW The actual speed error for the system (in increments/seconds). Reg.PErrLim 7 02 ³¹ -1 RW Proportional or Position Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.IErrLim 8 02 ³¹ -1 RW Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 02 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 02 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.Torque 10 -3276832767 R(W) The generated Torque. For PM-synchronous motors, this is proportional to motor current. Too% torque = 10V DC current command to the drive = 32767. Note: 1 The value will be 4 times the va		The actual	positioning error for the s	ystem (in increments).
Reg.SpdErr 6 -32768*FS32767*FS RW The actual speed error for the system (in increments/seconds). Reg.PErrLim 7 0.2 ³¹ -1 RW Proportional or Position Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.IErrLim 8 0.2 ³¹ -1 RW Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 0.2 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.Torque 9 0.2 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.Torque 10 -3276832767 R(W) The generated Torque. For PM-synchronous motors, this is proportional to motor current. 100% torque = 10V DC current command to the drive = 32767. Note: 11 08191 RW Reg.TorqLim 11 08191 RW To	Reg.IErr	5	-2 ³¹ 2 ³¹ -1	RW
Reg.PErrLim The actual speed error for the system (in increments/seconds). Reg.PErrLim 7 02 ³¹ -1 RW Proportional or Position Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.IErrLim 8 02 ³¹ -1 RW Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 02 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 02 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.Torque 10 -3276832767 R(W) The generated Torque. For PM-synchronous motors, this is proportional to motor current. 100% torque = 10V DC current command to the drive = 32767. Note: 1 Image: TorqLim 11 08191 RW Reg.TorqLim 11 08191 RW		The actual	integrated position and/o	r speed error for the system.
Reg.PErrLim 7 0.2 ³¹ -1 RW Proportional or Position Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.IErrLim 8 0.2 ³¹ -1 RW Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 0.2 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 0.2 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.Torque 10 -3276832767 R(W) The generated Torque. For PM-synchronous motors, this is proportional to motor current. 100% torque = 10V DC current command to the drive = 32767. Note: 1 The value will be 4 times the value of Reg.TorqLim. when operating in limit. Reg.TorqLim 11 0.8191 RW Torque or (for PM-synchronous-motors: current) limit.100% Torque = 8191. This is also torque limitation for the induction moto	Reg.SpdErr	6	-32768*FS32767*FS	RW
Proportional or Position Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.IErrLim 8 02 ³¹ -1 RW Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg. DErrLim Reg.DErrLim 9 02 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.Torque 10 -3276832767 R(W) The generated Torque. For PM-synchronous motors, this is proportional to motor current. 100% torque = 10V DC current command to the drive = 32767. Note: The value will be 4 times the value of Reg.TorqLim. when operating in limit. Reg.TorqLim 11 08191 RW Torque or (for PM-synchronous-motors: current) limit.100% Torque = 8191. This is also torque limitation for the induction motor regulator, to read, use the Motor. group.		The actual	speed error for the syster	m (in increments/seconds).
signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.IErrLim 8 02 ³¹ -1 RW Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. 9 02 ³¹ -1 RW Reg.DErrLim 9 02 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.Torque 10 -3276832767 R(W) The generated Torque. For PM-synchronous motors, this is proportional to motor current. 100% torque = 10V DC current command to the drive = 32767. Note: 11 Reg.TorqLim 11 08191 RW Reg.TorqLim 11 08191 RW Torque or (for PM-synchronous-motors: current) limit.100% Torque = 8191. This is also torque limitation for the induction motor regulator, to read, use the Motor. group.	Reg.PErrLim	7	02 ³¹ -1	RW
Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.DErrLim 9 02 ³¹ -1 RW Derivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg. Torque Reg.Torque 10 -3276832767 R(W) The generated Torque. For PM-synchronous motors, this is proportional to motor current. 100% torque = 10V DC current command to the drive = 32767. Note: The value will be 4 times the value of Reg.TorqLim. when operating in limit. Reg.TorqLim 11 08191 RW Torque or (for PM-synchronous-motors: current) limit.100% Torque = 8191. This is also torque limitation for the induction motor regulator, to read, use the Motor. group.		signal that	is allowed into the regulat	or. The user can set the upper
allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator.Reg.DErrLim9 $02^{31}-1$ RWDerivative or Speed Error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator.Reg.Torque10-3276832767R(W)The generated Torque. For PM-synchronous motors, this is proportional to motor current. 100% torque = 10V DC current command to the drive = 32767. Note:The value will be 4 times the value of Reg.TorqLim. when operating in limit.Reg.TorqLim1108191RWTorque or (for PM-synchronous-motors: current) limit.100% Torque = 8191. This is also torque limitation for the induction motor regulator, to read, use the Motor. group.	Reg.IErrLim	8	02 ³¹ -1	RW
Reg.Torque 10 -3276832767 R(W) The generated Torque. For PM-synchronous motors, this is proportional to motor current. 100% torque = 10V DC current command to the drive = 32767. Note: 10 Reg.TorqLim 11 08191 RW Torque or (for PM-synchronous-motors: current) limit.100% Torque = 8191. This is also torque limitation for the induction motor regulator, to read, use the Motor. group.		Integral sum error limit. This limits the maximum error signal that is allowed into the regulator. The user can set the upper level; the		
that is allowed into the regulator. The user can set the upper level; the lower level is determined by the gain of the regulator. Reg.Torque 10 -3276832767 R(W) The generated Torque. For PM-synchronous motors, this is proportional to motor current. 100% torque = 10V DC current command to the drive = 32767. Note: I The value will be 4 times the value of Reg.TorqLim. when operating in limit. Reg.TorqLim 11 08191 RW Torque or (for PM-synchronous-motors: current) limit.100% Torque = 8191. This is also torque limitation for the induction motor regulator, to read, use the Motor. group.		allowed inte	o the regulator. The user	can set the upper level; the
Ite Derivative Ite Ite Derivative Ite The generated Torque. For PM-synchronous motors, this is proportional to motor current. 100% torque = 10V DC current command to the drive = 32767. Note: Ite Value will be 4 times the value of Reg.TorqLim. when operating in limit. Reg.TorqLim 11 08191 RW Torque or (for PM-synchronous-motors: current) limit.100% Torque = 8191. This is also torque limitation for the induction motor regulator, to read, use the Motor. group.	Reg.DErrLim	allowed into lower level	o the regulator. The user is determined by the gair	can set the upper level; the of the regulator.
proportional to motor current. 100% torque = 10V DC current command to the drive = 32767. Note: 1 The value will be 4 times the value of Reg.TorqLim. when operating in limit. Reg.TorqLim 11 08191 Reg.TorqLim 08191 RW Torque or (for PM-synchronous-motors: current) limit.100% Torque = 8191. This is also torque limitation for the induction motor regulator, to read, use the Motor.group.	Reg.DErrLim	allowed into lower level 9 Derivative of that is allow	o the regulator. The user is determined by the gain 02 ³¹ -1 or Speed Error limit. This ved into the regulator. The	can set the upper level; the of the regulator. RW limits the maximum error signal e user can set the upper level;
operating in limit. Reg.TorqLim 11 08191 RW Torque or (for PM-synchronous-motors: current) limit.100% Torque = 8191. This is also torque limitation for the induction motor regulator, to read, use the Motor. group.		allowed into lower level 9 Derivative of that is allow the lower le	o the regulator. The user is determined by the gain 02 ³¹ -1 or Speed Error limit. This ved into the regulator. The evel is determined by the	can set the upper level; the of the regulator. RW limits the maximum error signal e user can set the upper level; gain of the regulator.
Torque or (for PM-synchronous-motors: current) limit.100% Torque = 8191. This is also torque limitation for the induction motor regulator, to read, use the Motor. group.		allowed intr lower level 9 Derivative of that is allow the lower level 10 The genera proportiona 100% torqu	o the regulator. The user is determined by the gain 02 ³¹ -1 or Speed Error limit. This yed into the regulator. The evel is determined by the -3276832767 ated Torque. For PM-sync al to motor current.	can set the upper level; the of the regulator. RW limits the maximum error signal e user can set the upper level; gain of the regulator. R(W) chronous motors, this is
= 8191. This is also torque limitation for the induction motor regulator, to read, use the Motor. group.		allowed intr lower level 9 Derivative of that is allow the lower level 10 The genera proportiona 100% torqu Note: The value	the regulator. The user is determined by the gain 02^{31} -1 or Speed Error limit. This wed into the regulator. The evel is determined by the -3276832767 ated Torque. For PM-sync al to motor current. ue = 10V DC current composition will be 4 times the value	can set the upper level; the of the regulator. RW limits the maximum error signal e user can set the upper level; gain of the regulator. R(W) chronous motors, this is mand to the drive = 32767.
Reg.TorqPLim 12 -81918191 RW	Reg.Torque	allowed intr lower level 9 Derivative of that is allow the lower level 10 The genera proportiona 100% torqu Note: The value operating	the regulator. The user is determined by the gain 02^{31} -1 or Speed Error limit. This wed into the regulator. The evel is determined by the -3276832767 ated Torque. For PM-sync al to motor current. ue = 10V DC current composite will be 4 times the value in limit.	can set the upper level; the of the regulator. RW limits the maximum error signal e user can set the upper level; gain of the regulator. R(W) chronous motors, this is mand to the drive = 32767.
	Reg.Torque	allowed intr lower level 9 Derivative of that is allow the lower level 10 The genera proportiona 100% torqu Note: The value operating 11 Torque or (= 8191. This is also	o the regulator. The user is determined by the gain 02 ³¹ -1 or Speed Error limit. This yed into the regulator. The evel is determined by the -3276832767 ated Torque. For PM-sync al to motor current. ue = 10V DC current comm will be 4 times the value in limit. 08191 for PM-synchronous-moto o torque limitation for the i	can set the upper level; the of the regulator. RW limits the maximum error signal e user can set the upper level; gain of the regulator. R(W) chronous motors, this is mand to the drive = 32767. e of Reg.TorqLim.when RW ors: current) limit.100% Torque

82

Inmotion Technologies AB

Reg.TorqNLim	Torque = 7 generate to Positive tor Motor.AT dependend 13 Negative T	800. A negative value me orque even when at correct rque limitation in the induct orqPLim to read the actu I reduction). -81918191 orque or (for PM-synchro	
	forced to ge This is one alignment. Negative to Motor.AT	enerate torque even when way to generate motor-co orque limitation in the indu	at correct position or speed. urrent when performing resolver action motor regulator, use al negative torque limit (speed
Reg.SiScale	14	010	RW
	multiplied b sometimes problem is speed" tow able to limit position, th speed error speed error correct pos position error that error w cancel whe <i>Position error</i> Thus, by ac velocity, wh set. Since the ror stabilizing of	by 2 ^{Reg.SiScale} . In application has to operate with very that the motor appears to ards the correct position, t the speed, with which th e DMC ² regulator has the r and the limited position of rs are of opposite signs w bition, we can control the r for that is allowed into the with the speed error (proper ent) <i>ror limit=Reg.Speed / FS</i> djusting Reg.SiScale and hich the motor goes towar egulator does not leave the effect on conditionally stal	large position errors, a common be running "at uncontrollable once conditions allow it. To be e motor goes to the desired ability to integrate both the error. Since the position and then the motor goes towards the naximum velocity by limiting the integrator and then summing erly scaled). These values * 2 ^{Reg.SiScale} . nd Reg.PErrLim, the maximum rds the correct position, can be he linear mode, this also has a ble systems.
Reg.Pole	15	0255	RW
	transfer fur b ₀ is a scale	nction of the filter is: $H_{(z)}$	aced at Reg. Pole/256. The $= b_0 * \frac{z - \frac{\text{Re } g.Zero}{256}}{z - \frac{\text{Re } g.Pole}{256}}$ ware to make DC gain equal to
		$1 - \frac{\text{Re g.Zero}}{256}$	
		g the filter as lead link i.e. , noise and signal clipping	-

	-	frequencies due to then DC gain adjustment. To view the transfer function: $plot: 20*\log H(e^{2\pi*i*\frac{f}{1000}}) $ 16 0255 RW			
Reg.Zero	16	0255	RW		
	The zero o see Reg.P	f the digital filter will be pl	aced at Reg.Zero/256.		
Reg.SetTorq	17	-81918191	RW		
	the genera	ted torque. It can be used	this variable is directly added to to add a torque offset, or to be a torque control mode is		
	Note. A to zero.	rque control mode is ac	hieved by setting all gains to		
Reg.InertiaP	18	032767	RW		
	Acceleratio	on feed forward constant i	n positive direction.		
Reg.InertiaN	19	032767	RW		
	Acceleratio	on feed forward constant i	n negative direction.		
Reg.InertSF	20	0255	RW		
	The feed for	Shiftfactor for acceleration feedforward. Where 8192 is 100% torque. The feed forward torque is calculated as: $\frac{Pg.Acc}{2^{\text{Re} g.InertiaF}} * \text{Re} g.InertiaP}{65563}$			
	bits (32767 means tha for the part forward. E For an app 2293 (28%	The Reg.InertSF must be set so that $A_{CC}/2^{Reg.InertSF}$ is within 16 bits (32767) to avoid overflow (internally clamped to 16 bits). This means that one must know the maximum value of the acceleration for the particular application to properly use acceleration feed forward. Example: For an application with Pg.Acc = 3678986 and a feed forward of 2293 (28% torque) in both directions.			
		eg.InerSF to 7			
	3678986÷2				
		eReg.InertiaP			
	{2293×655	536}÷28742=5228=REG.I			
Reg.StatFric	21	-81918191	RW		
	torque, wit	Compensate for static friction. Produces a constant feed forward torque, with the sign of the speed reference. This has effect only when speed is non-zero.			
	Not to	Not to be used together with gearbox functions!			
Reg.ViscFric		08191	RW		

	Compensate for viscous friction. It produces a feed forward torque proportional to speed reference.			
Reg.ViscSF	23	0255	RW	
	Scale facto	r for viscous friction comp	pensation.	
Reg.TorqCLim	24	24 08191 RW		
	100% Torq		ronous-motors: current) limit.	
Reg.TorqTime	25	08191	RW	
	Timer for a	ctivation of REG.TorqCL	im.	
Reg.DerrFltSF	26	07	RW	
	Low pass filter limiting the noise at the SpdErr signal. Reg.DerrFltSF = 0, y(n) = x(n). Default at startup, which means no filter. Reg.DerrFltSF = 1, $y(n) = 0.5^*y(n-1)+0.5^*x(n)$, time const ~ 2,5 ms. Reg.DerrFltSF = 2, $y(n) = 0.75^*y(n-1)+0.25^*x(n)$ time const ~ 8 ms. Reg.DerrFltSF = 3, $y(n) = 0.875^*y(n-1)+0.125x(n)$ time const ~ 18 ms. Reg.DerrFltSF = 4, ~ 40 ms. Reg.DerrFltSF = 5, ~ 75 ms.			
Reg.TrqLimFlgs	27	03	R	
	Bit information on Torqlimit status. Bit 0 (1) indicates if the output torque is limited by Reg.TorqLim. Bit 1(2) indicates if the dynamic limit has been activated, that is if the output is limited by Reg.TorqCLim.		Bit 1(2) indicates if the	
Reg.PosRef	28	-2 ³¹ 2 ³¹ -1	R	
	The actual reference value used by the regulator. Normally this is the sum of PG.Apos and Gear.PosRef. In the case of disconnected Profile Generator, the Pg.DconnAPos is used instead.			

Group	Group No	Description
Gear	7	Electronic gearbox. The EN2 is used as master position input to generate scaled set speed and position that is added to the set value generated from the profile generator. The position is calculated as: <i>OutputPosition := En2-position * InGear /</i> Outgear

GEAR, ELECTRONIC GEARBOX

GENERAL

The gearbox function makes it possible to set up an electrical gearing between a DMC² and an external position sensor (resolver or encoder) or another DMC². This gearing can be used for electrical axis applications or for camshaft emulation. In both cases, the input can be the En2 input (En2.Speed) or an internal constant frequency of 1 kHz. It operates with 1 kHz update rate.

Be aware that if the filter on Rd2 is activated, the source for the gearbox will be forced as Rd2. To uses EN2 as source, turn off the filter.

Gear. In is the number of cogs on the input gear and Gear. Out is the number of cogs on the output gear.

If $\frac{GEAR.In}{GEAR.Out} > 1$ The gains of the regulator may have to be reduced by a

corresponding factor because the RD conversion circuit (in the analog system) has a noise level of approx. ±4 increments. If this noise level is amplified by, for example, a factor of 100 due to the gearing, the result would be a very "jumpy" run.

FUNCTION

Gear.In	The number of cogs on the input gear.
Gear.Out	The number of cogs on the output gear.
Gear.Speed	The input value is multiplied by the ratio Gear.In /Gear.Out. The result after each sample. If Gear.In/Gear.Out>1 the Gains of the regulator may have to be reduced by a similar factor because the RD-conversion circuits (that is an analog system) has a noise level of around 4 increments. If this noise level is amplified by, for example, a factor of 100 due to the gearing, the result would be a very "jumpy" run. When operating in CAM-mode the Gear.Speed represents the speed of the Cam function.
Gear.Pos	The Gear.Speed value is then added to the sum of previous values. Since this is an incremental function it is possible to change the ratio during runtime. There is also a ramp function for smooth activation so that the gearing can be turned on when the external master is rotating. The output, Gear.Pos, can also be used as an index

position, pointing to values in an array of waypoints in the camshaft emulation. The way points are defined in a Pdata array with up to 1000 rows

Since the camshaft is a repetitive function, the array must be defined with continuos segments. The camshaft profile between waypoints is determined by linear interpolation between adjacent waypoints.

- Gear.Incr Sets the number of "cogs" that Gear.In increases with each cycle (mS) The momentary value can be observed in Gear.InAct.
- Gear.Offset The resulting Gear.Pos can also be modified directly with Gear.Offset.
- Gear.CamPos The resulting position, Gear.CamPos, is the current profile value (interpolated) times Gear.CamScale.

Gear.CamCurLine Indicate relative position in cam.

RELATED ITEMS

PData <Lrval> Defines one waypoint of cam profile.

Pos Mod On (clr) Connects additional command values from gearbox function.

EXAMPLE USAGE

Gear.CamLine , @CamProf	;pointer to profile array
Gear.CamLen , 100	;length of profile
Gear.CamScale , 1024	;scale of profile
Gear.In , 1000	;set up gearing
Gear.Out,1000	;
Pos Mod On clr	;this will give 1000 ms ramp time of
Gear.Incr , 1	;gearing

; Array of waypoints defining a cam profile

CamProf:

pdata pdata pdata	0 <pos1> <pos2> <pos3> <pos4> <pos99></pos99></pos4></pos3></pos2></pos1>	;first point ;next point next point next point next point
paaca	(P0D)))	last point

POSITION LOCK CAM

The gearbox is also used to scale the input signal for the "Position lock CAM". In this mode, the system emulates a cam-wheel. The CAM profile is defined by a number of PDATA statements and the gearbox is used to create the index into that table.

The start of the table is set by the Gear.CamLine variable and the length (in

PDATA statements), is set by Gear.CamLen variable. Each PDATA statement corresponds to 1024 increments.

If there is a 2-pole resolver on RD2 and you want 2 turns on RD2 equal one turn on the CAM, and 17 PDATA statements are desired.

The PDATA vector length is 17 * 1024 = 17408 increments.

Two turns on RD2 is 8192 * 2 = 16384 increments.

To map 16384 to 17408, the gearbox must be setup like this:

Set *Gear.In* = 17 and *Gear.Out* = 16

to accomplish this.

Fill the PDATA statements with the positions for the corresponding index values. The positions given in the PDATA statements are scaled by the Gear.CamScale, which has the same function as the PG.ProScale.

In this version, only linear interpolation between index points is possible. The scaling is disabled when incremental cam is used.

TIME LOCKED CAM

The same as Position Lock cam but RD2 is replaced by a time function to generate the index into the table.

MASTER/SLAVE

In this mode the gearbox is used to follow a value given by a master. The master can be as simple as an analog input, in this case a CONNECT command can be used to connect an analog input to Gear.SlaveSPos. The master can also be another DMC² unit over the LAN, in that case the distributed position can be written to Gear.SlaveSPos by a user written PL program.

In both cases the Gear.SlaveSPos must be written in a timely manner and the firmware will automatically calculate the time difference between the writes and store that value in Gear.SlaveUTime.

The simple interpolation is done internally as,

 $Gear.SlaveSpeed = \frac{Gear.SlavePos - Gear.SlaveAPos}{Tmr.Abs - Gear.SlaveUTime}$

If Gear.SlaveFixTm <> 0 the calculation will use the fixed value instead.

INCREMENTAL CAM

This mode adds an indexing function to the cam. Each time the index to the cam table wraps, the Gear.CamInc is added to the output. Gear.CamLen must be set to the "number of Pdata files minus one". Gear.CamInc should normally be set to the last value in the Pdata table. The scaling with Gear.CamScale is disabled in this mode.

GROUP MEMBERS (GROUP 7)

Group.Member	Member No	Range	Ability
Gear.	0	0255	RW
	Set the oper	rating mode of the Electronic	Gearbox.
Bit0 (1)Gear.Mode=0		ot active. In this mode the Ge et-position offset value by the	
Gear.Mode=1	Gearing is a	ctive.	
Bit1 (2)Gear.Mode=2+1	Gearing into	o index of "POSITION LOCK	CAM".
Bit2 (4)Gear.Mode=4+ 1	source POS	ised as source for the Gear b is incremented by one for ea cond. This allows the POS L OCK CAM.	ach servo cycle. i.e.
Bit3 (8)	Reserved.		
Bit4 (16)	Reserved.		
Bit5 (32)Gear.Mode=3 2+1		e mode with simple interpolat iven in Gear.SlaveSPos	or. The master
Bit6 (64)	Reserved, N forward.	laster/slave mode, interpolat	or with speed feed
Bit7 (128)	Incremental lines-1>).	cam active. (Gear.CamLen	must be <number of<="" td=""></number>
Gear.In	1	-3276732767	RW
	be a negativ	e number of cogs on the inpu ve value. It is possible to clam endent of the size of assigned	np the maximum
Gear.Out	2	132767	RW
	be a negativ	e number of cogs on the outp re value. It is possible to clarr endent of the size of assigned	np the maximum
		and Gear.Out members has maximum value independer ned.	
Gear.Speed	3	-32767 000 32767 000	R
	This is the g	eared speed from En2 or from	m the CAM profile
Gear.Pos	4	-2 ³¹ 2 ³¹ -1	R(W)
	4-2 ³¹ 2 ³¹ -1R(W)This is the geared position from En2. Because the gearing is incremental, the position starts from the current value when Gear.Mode is set to 1.Writing to Gear.Pos when gearing is active may result in a "lost position". The incremental gearing also allows changes of Gear.In and Gear.Out anytime during Gear operation. However, this is not recommended during CAM operation.		

i	By using RD2.Mode 5 or 7 the input to the gearing is filtered.			
Gear.CamLine	5	18191	RW	
		art of CAM profile. The Gear ATA statement that defines th		
Gear.CamLen	6	24000	RW	
	Specifies the length of the CAM profile in PDATA statements. Each PDATA statement corresponds to an index-position of 1024 increments. The profile wraps from the last statement to the first. The normal positioning and speed commands (POS ABS etc.) are usable during CAM operation, since both GEAR and CAM modes generate an offset that is fed together with the normal position into the regulator. For incremental cam, Gear.CamLen should be set to <length -1>.</length 			
Gear.CamPos	7	-2 ³¹ 2 ³¹ -1	R(W)	
	The resultin	g CAM PROFILE position.		
Gear.CamScale	8	-2 ³¹ 2 ³¹ -1	R(W)	
•	Scale factor for CAM profiles. The data obtained from the profile is multiplied by GEAR.CamScale and the result is then a divided by 1024. If the value in the PDATA * Gear.CamScale is greater than 2 ⁴⁷ , the generator gets an overflow and the CAM motion is suspended while the overflow is present. The scaling of the cam is disabled when the incremental cam is used. The POS LOCK CAM does currently only use linear			
1	each PDAT	on. Therefore, if the segmer A is active) exceeds a few not run as smooth as desi	milliseconds, the	
Gear.Offset	9	-2 ³¹ 2 ³¹ -1	R(W)	
	of Gear.Of Cam mode.	s calculated circulary so that of fset is possible		
	The offset is calculated circulary but not in respect to the length of the CAM. In order to move within a single CAM turn user can calculate the offset as: <i>Gear.Offset = offs modulo cam_length.</i>			
	this membe change in a	Note. When the 'POS MOD ON xxx' instruction is executed this member is cleared, to avoid startup movement. This may change in a future release so that the Gear.Offset is used when the start position is calculated.		
Gear.Incr	10	0 32767	RW	
		ant for the gearing. The actu h this value every servo cycle		

	soft activation	on of the gearbox. Set to 819	1 for no ramp.
Gear.InAct	11	-3276732767	R
	Actual value	ofor Gear. In, after the ramp	function.
Gear.OffsetAct	12	-2 ³¹ 2 ³¹ -1	R(W)
		e of the offset, after the ramp the gear or cam function.	function, added to
Gear.OffsetInc	13	032767	RW
	Gear.Offs	ant for the offset. The actual setAct changes with this val soft phase shifting of the gea	ue every ms. It can
Gear.SlaveSpeed	14	-2 ³¹ 2 ³¹ -1	R(W)
	Master/Slav	e, The Slave's speed.	
Gear.SlaveSPos	15	-2 ³¹ 2 ³¹ -1	RW
	interpolator, will calculate based on th	e, The Slave's set position. F when writing to Gear.Slav e the speed required to reach e current time and the value reUTime and store this speed reSpeed.	eSPos the firmware the new position of
Gear.SlaveAPos	40	-31 -31	
Geal . DIAVEAPUS	16	-2 ³¹ 2 ³¹ -1	R(W)
Geal . DIAVEAPUS		-2 ⁵¹ 2 ⁵¹ -1 e, The Slave's actual position	. ,
Gear.SlaveUTime			. ,
	Master/Slav 17 Master/Slav	e, The Slave's actual position	R(W)
	Master/Slav 17 Master/Slav	e, The Slave's actual position -2 ³¹ 2 ³¹ -1 e, The time for the last write	R(W)
Gear.SlaveUTime	Master/Slav 17 Master/Slav Gear.Slav 18 Incremental	e, The Slave's actual position -2 ³¹ 2 ³¹ -1 e, The time for the last write reSPos. This is the lower 16	R(W) to bits of Tmr.Abs.
Gear.SlaveUTime	Master/Slav 17 Master/Slav Gear.Slav 18 Incremental	e, The Slave's actual position $-2^{31}2^{31}-1$ e, The time for the last write reSpos. This is the lower 16 $-2^{31}2^{31}-1$ cam period. Should be set to	R(W) to bits of Tmr.Abs.
Gear.SlaveUTime Gear.CamInc	Master/Slav 17 Master/Slav Gear.Slav 18 Incremental Pdata array 19 Indicate rela By adding G	e, The Slave's actual position $-2^{31}2^{31}-1$ e, The time for the last write reSpos. This is the lower 16 $-2^{31}2^{31}-1$ cam period. Should be set to used as cam.	R(W) to bits of Tmr.Abs. RW the last value in the R
Gear.SlaveUTime Gear.CamInc	Master/Slav 17 Master/Slav Gear.Slav 18 Incremental Pdata array 19 Indicate rela By adding G	e, The Slave's actual position -2 ³¹ 2 ³¹ -1 e, The time for the last write reSPos. This is the lower 16 -2 ³¹ 2 ³¹ -1 cam period. Should be set to used as cam. 065535 ative position in cam. ear.CamLine to this memb	R(W) to bits of Tmr.Abs. RW the last value in the R
Gear.SlaveUTime Gear.CamInc Gear.CamCurLine	Master/Slav 17 Master/Slav Gear.Slav 18 Incremental Pdata array 19 Indicate rela By adding G statement lin 20 The speed of	e, The Slave's actual position -2 ³¹ 2 ³¹ -1 e, The time for the last write reSPos. This is the lower 16 -2 ³¹ 2 ³¹ -1 cam period. Should be set to used as cam. 065535 ative position in cam. ear.CamLine to this memb ne is achieved.	R(W) to bits of Tmr.Abs. RW the last value in the R er the current PData
Gear.SlaveUTime Gear.CamInc Gear.CamCurLine	Master/Slav 17 Master/Slav Gear.Slav 18 Incremental Pdata array 19 Indicate rela By adding G statement lin 20 The speed of	e, The Slave's actual position -2 ³¹ 2 ³¹ -1 e, The time for the last write reSPos. This is the lower 16 -2 ³¹ 2 ³¹ -1 cam period. Should be set to used as cam. 065535 ative position in cam. ear.CamLine to this memb ne is achieved. -32767*FS32767*FS of the 'CAM'.	R(W) to bits of Tmr.Abs. RW the last value in the R er the current PData

Gear.CamInterp	22	02	RW	
1=	Linear interpolate between two points as STD. Cubic trigonometric interpolation (4 points). The interpolator interpolates through each specified point. This may introduce undershoots, but by carefully selecting points a very nice smooth cam can be achived. Cubic BSpline interpolation (4 points). Does not interpolate through the control points, and does not undershoot. Normal PDATA lines are used as for the linear interpolation and it is possible to switch between the interpolation modes in real time, and also modify points in real time.			
i	Be aware that the motor will move to the new position with no speed limit! This is of the same nature as modifying the point we are currently interpolating.			
Gear.SlaveFixTm	23	23 0255		
	Fix time base for virtual master mode of gearbox			
Gear.PreCamLine	24 See Gear.Camline			
	Preset value for Gear.Camline			
Gear.PreCamLen	25 See Gear.Camlen			
	Preset value for Gear.Camlen			
Gear.PreCamscale	26 See Gear.CamScale Preset value for Gear.CamScale			
Gear.PreCamInc	27 See Gear.CamInc			
	Preset value	e for Gear.CamInc		
Gear.PreCamSet	28			
	Force setting of preset values by writing to Gear.PreCamSet when written the above Preset values are copied into the corresponding gearbox parameters. This allowing for dynamic switching of cam parameters			
Gear.CamPeriods	29 -2 ³¹ 2 ³¹ -1 RW			
	Number of periods of the cam. This value increments for each period of the cam, (signed).			
Gear.PosRef	30	-2 ³¹ 2 ³¹ -1	R	
	Actual reference out from the Gear/Cam function that are used by the regulator. Valid only if Pos Mod On has been activated. Shows Gear.Pos in the case of gearing and shows Gear.CamPos in the case of cam usage.			

TMR, SYSTEM TIMERS

Group	Group No	Description
Tmr	8	System timers for timekeeping, etc.

GENERAL

The timer system is based on the cycle time of the DMC² software. A crystal controlled frequency (40 MHz) is divided down to a 1 kHz cycle using the CPU's internal interrupt system. This 1 ms cycle time is then used for all timer functions. Due to crystal tolerances, 1 ms in one DMC² is not exactly the same as 1 ms in another DMC². Time measurements must therefore be non-critical in application usage. To achieve simultaneous cycles in several DMC²'s the 1 kHz clock can be synchronized between units.

FUNCTION

Tmr.Abs	The timer system has one absolute measurement in the Tmr. Abs. This counter holds the number of cycles since the last power up (or reset). The timers are all 32 bit wide, except for the word wide Tmr.CycInt, which means that they will wrap around after 596.5 hours (24.9 days).
Tmr.CycInt	The Tmr.CycInt is intended to be used for generating a cyclical event (timer interrupt) within the application software. The rest of the timers (Tmr.T0 through Tmr.T3) are free for

RELATED ITEMS

Vector.CycInt System interrupt vector for timer interrupt.

application usage

- Int.SysMask Bit mask for system interrupts, bit 0 (bit value 1) enables the cyclical event.
- Bit mask for pending events, bit 0 (bit value 1) indicates the cyclical event. Int.SysPend
- Ireturn sys 1 Return statement.

EXAMPLE USAGE

5	Vector.CycInt , @CycEvent Tmr.CycInt , 100 or Int.SysMask , 1	;pointer to service routine ;100 ms event rate ;enable the event
	clr Tmr.T2 wait Tmr.T2 > 186	;reset timer T2 ;wait here for 186 ms
	Cyclical event	
:	Ireturn sys 1	;return from event

GROUP MEMBERS (GROUP 8)

Group.Member	Member No	Range	Ability	Default			
Tmr.Abs	0 -2 ³¹ 2 ³¹ -1 RW						
		olute time (in mi er about 24.8 da	lliseconds) since sta ys	artup, wraps to			
Tmr.CysInt	1	065535	RW				
	the interrupt specified in currently 1 r When Tmr. to the same Therefore, the cycles. To generate	To generate a cyclical timer interrupt, use Tmr.CycInt to setup the interrupt frequency. The time between the interrupts is specified in servo cycles, (at FS) where each servo cycle is currently 1 ms. When Tmr.CycInt is set, the internal interrupt-timer is also set to the same value. Therefore, the first interrupt occurs after Tmr.CycInt servo cycles. To generate a single-shot interrupt, setup Tmr.CycInt and enable the interrupt;					
i	<u>Do not</u> re-e routine.	nable the interr	rupt when exiting t	he interrupt			
Tmr.T0	2	-2 ³¹ 2 ³¹ -1	RW				
	This is the time-value for timer 0. The timers are implemented by using an adjustment offset from an absolute time. By writing to Tmr.T0 the offset, Tmr.A0 changes so Tmr.T0 shows the desired time. To increment or decrement this time, by a fixed amount without risking that the timer will change values during the operation, add or subtract from Tmr.A0 instead of Tmr.T0.						
Tmr.A0	3	-2 ³¹ 2 ³¹ -1	RW				
	This is the c	ffset adjustment	value for timer 0.				
Tmr.Tl	4	-2 ³¹ 2 ³¹ -1	RW				
	This is the time-values for timer 1. The timers are implemented by using an adjustment offset from an absolute time. By writing to Tmr.T1 the offset, $Tmr.A1$ is changed so $Tmr.T1$ shows the desired time. To increment or decrement this time, by a fixed amount without risking timer value changes during the operation, add or subtract from $Tmr.A1$ instead of $Tmr.T1$.						
Tmr.Al	5	-2 ³¹ 2 ³¹ -1	RW				
	This is the offset adjustment value for timer 1.						
Tmr.T2	6	-2 ³¹ 2 ³¹ -1	RW				
	This is the time-values for timer 2. The timers are implemented by using an adjustment offset from an absolute time. By writing to Tmr.T2 the offset, Tmr.A2 is changed so Tmr.T2 shows the desired time.						

_	To increment or decrement this time, by a fixed amount without risking timer value changes during the operation, add or subtract from Tmr.A2 instead of Tmr.T2.				
Tmr.A2	7	-2 ³¹ 2 ³¹ -1	RW		
	This is the o	This is the offset adjustment values for timer 2.			
Tmr.T3	8	-2 ³¹ 2 ³¹ -1	RW		
	This is the time-values for timer 3. The timers are implemented by using an adjustment offset from an absolute time. By writing to Tmr.T3 the offset, Tmr.A3 is changed so Tmr.T3 shows the desired time. To increment or decrement this time, by a fixed amount without risking timer value changes during the operation, add or subtract from Tmr.A3 instead of Tmr.T3.				
Tmr.A3	9	-2 ³¹ 2 ³¹ -1	RW		
	This is the o	ffset adjustment	value for timer 3		
Tmr.Nudge	10	±16 bit	RW	0	
	This member makes it possible to adjust the time for the next timer interrupt. Reading this member will always return a zero. Writing this signed value will adjust the next timer interrupt either ahead or behind. The adjustment is done immediately and will then continue with the value programmed in Tmr.CycInt.				
i	In the case an adjustment will result in an immediate timeout then the Tmr.CycInt interrupt pending bit will be set. This can result in very high interrupt frequency.				

Syslo, System I/O

Group	Group No.	Description
SysIo	9	System I/O for internal supervisory functions etc.

GENERAL

The Sysio group holds information mainly for monitoring and control of the hardware system. There are also some members in this group for adjusting the software flow.

Most of the registers in this group are normally not used in application programs.

FUNCTION

SysIo.Pin SysIo.Pout	The logical interface between the software system and the digital hardware. In these registers individual bits can be manipulated to reset and enable the output power stage and also monitor error events in the hardware.
SysIo.Led SysIo.Pout	The LED's on the DMC ² front plate are manipulated as bits in the Syslo.Led register except for CPU Ok, which is handled from the Syslo.POut byte.
SysIo.PWM0	Syslo.PWM0 controls the amplitude of the resolver supply signal, the range of 3 to 13 V is mapped to 255 - 0 in this parameter. A measuring routine (PL2 coded) for this parameter is included in the SW package.
	NOTE! Not fully backward compatible from Ver.4.0. or later.
SysIo.ChkTmr	Syslo.ChkTmr sets the rate for system monitoring of PosError, Bleederload, Overtemperature and Resolver errors.
SysIo.Sync SysIo.SyncMode	SysIo.Sync and SysIo.SyncMode controls the synchronization functions needed for some gearing applications.
SysIo.ADC8	SinCos encoder (sin).
SysIo.ADC9	SinCos encoder (cos).
SysIo.ADC10	Strain gauge input # 1.
SysIo.ADC11	
SysIo.SysTime	Indicate system time usage in 100 ns.
SysIo.FBCTime	Indicate field bus communication time usage in 100 ns.
SysIo.Servorate	Servo cycle frequency in Hz.
SysIo.SyncRate	The synchronization signal frequency.

RELATED ITEMS

Vector.ResolvErr	System interrupt vector for resolver monitoring.
Vector.BleedErr	System interrupt vector for bleeder monitoring.
Vector.TempErr	System interrupt vector for temperature monitoring.
Vector.PosErr	System interrupt vector for position monitoring.
Int.SysMask	Bit mask for system interrupts.
Int.SysPend	Bit mask for pending events.

EXAMPLE USAGE

SysIo.ChkTmr , 25	;25 ms check rate
or SysIo.POut , 1 or SysIo.POut , 4 bclr SysIo.POut , 4 or SysIo.POut , 2 or SysIo.POut , 8 or SysIo.Led , 1+8	;set CPU Ok led alive ;reset the power stage ;with a short pulse ;enable the power stage ;activate the brake relay ;set LED1 and LED 4 alive

GROUP MEMBERS (GROUP 9)

Group.Member	Member No.	Range	Ability	Default
SysIo.PIn	0	0255	R	
	System parallel input port (on CPU board).	_	
Bit0 (1)	High voltage level	0 = Active	R	
Bit1 (2)	Comp. current sign V	2 = Active	R	
Bit2 (4)	Comp. current sign U	4 = Active	R	
Bit3 (8)	Motor Temp. High	0 = Active	R	
Bit4 (16)	Drive Temp. High	0 = Active	R	
Bit5 (32)	Current Regulator fault	0 = Active	R	
Bit6 (64)	Shunt regulator active (on/off) (Dynamic Brake)	0 = Active	R	
Bit7 (128)	Short circuit, power stage 0 = Active		R	
SysIo.POut	1 0255		RW	
	System parallel output port (on CPU board).			
Bit0 (1)	Green LED on front panel CPU OK.	1 = Active	RW (CPL	JA)
Bit1 (2)	Software enables.	2 = Active	RW (SW	EN)
Bit2 (4)	Power reset.	4 = Active	RW (PRES)	
(P1)				

	Pulse duration. 10	00 μs.	(Pulse)			
Bit3 (8)	Motor Brake relea	ase	8 = Activ	/e	RW (BRRL)	
Bit4 (16)	Master/Slave Dire	ection	16 = Ma	ster	RW (MASL)	
	Disable current regulator hardware integrator. This bit controls the behavior of the drive's motor current regulator. With this bit set the integrator of the motor current regulator is disabled Also affected by setting Motor.Mode = 8 (Induction motor)					
Bit6 (64)	Reserved.					
Bit7 (128)	Reserved.					
SysIo.Led	2		0255		RW	
	LED control port (LD10 are user-pr		e on fro	nt panel. LD3 to		
i	The CPU OK led is contro		lled by s	ysIo.	POut bit 0.	
Bit(0) 1	LED1 (GREEN)		0,1		RW	
Bitl (2)	LED2 (YELLOW)		0,2		RW	
Bit2 (4)	LED3 (YELLOW)		0,4		RW	
Bit3 (8)	LED4 (YELLOW)		0,8		RW	
Bit4 (16)	LED5 (RED)		0,16		RW	
Bit5 (32)	LED6 (RED)		0,32		RW	
Bit6 (64)	LED7 (RED)		0,64		RW	
Bit7 (128)	LED8 (RED)		0,128		RW	
SysIo.RD1Sin	3	-327673	2767	R		
	Demodulated s	I sinus input from resolve		olver #1		
SysIo.RD1Cos	4	4 -3276732767		2767 R		
	Demodulated c	emodulated cosinus input from resolv		esolver		
SysIo.RD2Sin	5	-3276732767		R		
	Demodulated s	lated sinus input from resolver		olver #2	#2.	
SysIo.RD2Cos	6	-		R		
CIPTO . KD2COP	Demodulated cosinus input from resolver #2.					
DIDIO.INDZCOD	Demodulated c	osinus inp	ut from re	esolver	#2.	
SysIO.ADC0	Demodulated c	osinus inp 016383	ut from re	esolver R	#2.	

Inmotion Technologies AB

SysIo.ADC1	8	016383	R	
	System analog	input channel #1. L	Jsed for resolver #1 cos.	
SysIo.ADC2	9	016383	R	
	System analog input channel #2. Normally used for reso			
SysIo.ADC3	10	016383	R	
	System analog cos.	input channel #2. N	lormally used for resolver #2	
SysIo.ADC4	11	016383	R	
	User analog in	out ANA.Inl raw va	alue.	
SysIo.ADC5	12	016383	R	
	User analog in	out ANA.IN2 raw va	alue.	
SysIo.ADC6	13	016383	R	
	System Filtered	d shunt regulator (D	ynamic Brake).	
SysIo.ADC7	14	016383	R	
	DC-bus level, r	aw value. Only valio	d for 4-10A.	
SysIo.PWM0	15	0255	RW	
	 This PWM output is used to set the resolver excitation amplitude. Note. The content of the SYSIO.PWM0 register affects both resolver #1 and #2; since both resolvers are driven from the same excitation circuitry. 			
	NOTE! Not fully backward compatible from Ver.4.0. or later.			
SysIo.PWM1	16	0255	RW	
	NIU	•		
SysIo.PWM2	17	0255	RW	
	NIU			
SysIo.Sync	18	01	RW	
	Adjustment range: 9501050 Hz Time step: ± 400 n <u>s.</u>			
Note. Normally the nominal servo cycle is 1000Hz, we master is another DMC ² . Using the servo cycle synce mechanism with other master devices running at oth frequencies then remember that all groups with men where the servo cycle time is used, like speed and acceleration, will be inaccurate. In other words, speed such_are calculated assuming a fixed 1000 Hz servo Enables servo cycle synchronization for slave if 1. Master should use 0 here.			e servo cycle synchronization ces running at other I groups with members I, like speed and other words, speed and red 1000 Hz servo cycle rate.	

	Writing here affects bit 4 of SysIo.POut to set the direction of the external RS422 transceiver properly. Writing to SysIo.POut does not affect the SysIo.Sync setting! Getting into synchronization to the master after enabling slave synchronization may take several seconds. DMC ² units that share resolvers must be synchronized and remain synchronized while the shared resolvers are used. A resolver is considered shared if a DMC ² unit that is not driving the excitation for said resolver reads it. Synchronization must also take effect before the resolver RD1.SHAdj and RD2.SHAdj parameters are calibrated. If a slave wants to desynchronize, it must first set: SysIo.Sync = 0 To become master, and then immediately turn OFF the synchronization-line driver by clear bit 4 in SysIo.POut = 0. (Write BCLR SysIo.POut, 16) to prevent jamming the synchronization-line for the other units.		
SysIo.MemStat	19	065536	RW
	Status of system bit values.)	m memory. Suppor	t two blocks of EEProm (32
Bit0 (1)=1	EEprom activity	/ completed. (EELo	ad/EEStore done.)
Bit1 (2)=1	Checksum erro	r in firmware PRON	Л.
Bit2 (4)=1	Block0 (EEProm.0 – EEProm.63) Checksum error in configuration EEprom variables. (EEProm.0 – EEProm.28) Set by the EELoad instruction. Must be cleared by the PL program as the EELoad instruction does not clear this bit.		
Bit3 (8)=1	Block0 (EEProm.0 – EEProm.63) Checksum error in user EEprom variables. (EEProm.30 – EEProm.62) Set by the EELoad instruction. Must be cleared by the PL program as the EELoad instruction does not clear this bit.		
Bit4 (16)	EEprom size, 0 = EEProm size is 1024 bit (93C46) 1 = EEProm size is 4096 bit (93C66) If the EEProm size is 1024bit then only the lower 64 EEProm registers will be saved.		
Bit5 (32)=1	Block1 (EEProm.64 – EEProm.126) Checksum error in configuration EEprom variables. (EEProm.64 – EEProm.92) See Bit2.		
Bit6 (64)=1	Block1 (EEProm.64 – EEProm.126) Checksum error in user EEProm variables. (EEProm.94 – EEProm.126) See Bit3		
Bit7 (128)	1 = EEProm siz	ze is 16384 bit (93C	
Bit8 (256)	Reserved		
Bit9 (512)	Reserved.		

Inmotion Technologies AB

<u> </u>	<u> </u>		
Bit10 (1024)	Reserved.		
Bit11 (2048)	Error in loading FPGA circuitry. Will indicate if FPGA is present and can be used to select configuartions.		
SysIo.RB	20	25400	RW
	NIU		
SysIo.ChkTMR	21	0255	RW
	Determines the check-rate for auxiliary regulator code. Such as the position error interrupt generator, motor thermal models, resolver monitorin The default value is 20 ms.		
SysIo.RevNo	22	032767	R
	Firmware revision number= (MajorVersion * 100 + MinorVersion). This must match the EEprom. 0 value, if the startup options set in the EEProm group are to be used by the system. If Syslo.RevNo <= EEProm.0, the startup setting are not used		
SysIo.SyncMode	23	0255	RW
	Only default mo	ode is available in D	DMC ²
=0	Synchronization	n of DMC ² s. (Defau	lt).
SysIo.ADC8	24		R
	SinCos encoder (sin)		
SysIo.ADC9	25		R
	SinCos encode	r (cos)	
SysIo.ADC10	26		R
	Strain gauge #	1,	·
SysIo.ADC11	27		R
	Not used		
SysIo.SysTime	28	04096	R
	Indicate system time usage in 100ns. The actual system load can be observed. It shows the amount of time spent by the firmware to do all calculatiobns before any PL2 sw is executed.		
SysIo.FBCTime	29	04096	R
	Indicate field bu	us communication t	ime usage in 100ns
SysIO.ServoRate	30	9501055	R
	The servo cycle	e frequency in Hz. N	Nominal rate is 1000 Hz.
SysIO.SynchRate	31	9501055	R
		-	ncy in Hz. achronization master when

	For a master, w	vhen SysIo.Syna	is 0, the	n this member is 0.	
SysIO.PowerStage	32	07	R		
	Indicate the power stage type. Old power stages types will return 0.				
	0 = No such inf	ormation available	e.		
	1 = DMC50412	, 12Amp peak.			
	2 = DMC30515	, 15Amp peak.			
	3 = DMC50720	, 20Amp peak.			
	4 = DMC31025	, 25Amp peak. (N	YI)		
	5 = DMC51540	, 40Amp peak. (N	YI)		
	6 = DMC32050	, 50Amp peak. (N	YI)		
	7 = DMC53080	or DMC34080, 80)Amp pea	ak. (NYI)	
SysIo.DCBUS	33	01000	R		
	Indicate the DC	-bus voltage in Vo	olts.		
	Note. Only new	ver power parts su	pport this	, 4-10 A.	
SysIO.Compatible	34	01	RW	0	
	Change the standard functionality of system functions. b0 (1) = Get and Set instruction, added functionality				
Sysio.SyncStat	35	031	R		
	Status on exter	nal synch, only va	lid if Sys	io.Sync = 1.	
	pulses. Normal when synchron disappears, the missing synch a becomes 0. Bit is higher than 1 indicates if the (outside locking	bit0 holds a counter ly these 3 bits sho ization is stable if a value becomes 0 signal the variable 3, (8), indicates if 050 Hz (outside lo incoming synch si g range). Checking a monitoring of the	ws the co the extern after 6 m Sysio the incor ocking rar gnal is lov Sysio.Sy	ombined value of 6 nal signal nS. In this case of SyncRate also ning synch signal nge). Bit4, (16), wer than 950 Hz yncStat for these	
	Ex: If Sysio.S	yncStat = 6 ther	n SyncOk	ζ	
Sysio.EditNo	36	099	F	२	
	is a Beta releas	e firmware. If EditN se. Together with s er can be formed.			

INT, INTERRUPT CONTROL

Group	Group No.	Description
Int	10	Interrupt handling.

GENERAL

EXTENDED REGISTER GROUPS

The interrupt system in the DMC² application software recognizes two different types of events, input related events and system related events. The interrupts are controlled with a bit mask for enabling (or inhibiting) each event and an interrupt pending register that indicates events waiting to be recognized.

FUNCTION

Int.Mask	Int.Mask enables the input related events. Bit 0 controls the event for digital input 1, bit 1.digital input 2 and so on.
Int.SysMask	Int.SysMask enables the system related events. Bit 0 controls the cyclical timer event and so on, according to the Vector group
Int.Level	For input events, the logical level for the interrupts can be set individually for each input in the Int.Level register.
Int.PosErr	The Int.PosErr parameter sets the "window" used for checking of position error. 0 means no checking.
Int.TempMask	The Int.TempMask register holds bit information on which sources should cause the TempErr interrupt. Initialised from EEProm.5 at startup
Int.BleedLim	The limit for bleeder supervision is set in the Int.BleedLim parameter.

RELATED ITEMS

SysIo.ChkTmr	Rate for system monitoring of PosError, Bleederload, Overtemperature and Resolver errors.
Vector.Di1Di10	Vectors for input related events.
Vector.Fault	Vectors for input related events.
Vector.Enable	Vectors for input related events.
Vector.Ptc	Vectors for input related events.
Vector.ResolvErr	System interrupts vector for resolver monitoring.
Vector.BleedErr	System interrupts vector for bleeder monitoring.
Vector.TempErr	System interrupts vector for temperature monitoring.
Vector.SysErr	System interrupts vector for interpreter monitoring.
Vector.CtrlC	System interrupt vector for "control C" handling.
Vector.PosErr	System interrupt vector for positions monitoring.

Vector.CapInt	System interrupts vector for captures event.
Vector.CycInt	System interrupts vector for cyclical event.
Ireturn in 8	Return statement.

EXAMPLE USAGE

```
Vector.DI4 , @InDi4Event
clr Int.Pend
clr Int.SysPend
Int.Level , 8
Int.Mask , 8
```

;remove pending events ;remove pending events ;positive edge for Di4 ;enable Di4 event

; Input event

InDi4Event

ireturn in 8

;return and enable interrupt again

GROUP MEMBERS (GROUP 10)

Group.Member	Member No.	Range	Ability	Default
Int.Pend	0	065535	RW	
	Pending inte	errupts from in	puts.	
Bit0 (1) = 1	Pending inte	errupt from In	.Dil.	
Bit1 (2) = 1	Pending inte	errupt from In	.Di2.	
Bit2 (4) = 1	Pending inte	errupt from In	.Di3.	
Bit3 (8) = 1	Pending inte	errupt from In	.Di4.	
Bit4 (16) = 1	Pending inte	errupt from In	.Di5.	
Bit5 (32) = 1	Pending inte	errupt from In	.Di6.	
Bit6 (64) = 1	Pending inte	errupt from In	.Di7.	
Bit7 (128) = 1	Pending interrupt from In.Di8.			
Bit8 (256) = 1	Pending interrupt from In.Di9.			
Bit9 (512) = 1	Pending interrupt from In.Dil0.			
Bit10 (1024) = 1	Pending interrupt from In.Enable.			
Bit11 (2048) = 1	Pending interrupt from In.PTC.			
Bit12 (4096) = 1	Pending interrupt from In.Fault.			
Int.Mask	1	065535	RW	
	Enables inte	errupts from in	outs.	
Bit0 (1) = 1	Enables interrupt from In.Dil.			
Bit1 (2) = 1	Enables interrupt from In.Di2.			

Inmotion Technologies AB

Bit2 (4) = 1	Enables interrupt from In.Di3.		
Bit3 (8) = 1	Enables interrupt from In.Di4.		
Bit4 (16) = 1	Enables interrupt from In.Di5.		
Bit5 (32) = 1	Enables interrupt from In.Di6.		
Bit6 (64) = 1	Enables interrupt from In.Di7.		
Bit7 (128) = 1	Enables interrupt from In.Di8.		
Bit8 (256) = 1	Enables interrupt from In.Di9.		
Bit9 (512) = 1	Enables interrupt from In.Di10.		
Bit10 (1024) = 1	Enables interrupt from In.Enable.		
Bitll (2048) = 1	Enables interrupt from In.PTC.		
Bit12 (4096) = 1	Enables interrupt from In.Fault.		
Int.Level	2 065535 RW		
	Sets active edge for input interrupts. (Level sampled after possible changes caused by the In.Level variable.)		
Bit0 (1) = 1	In.Dil interrupt active high else active low.		
Bit1 (2) = 1	In.Di2 interrupt active high else active low.		
Bit2 (4) = 1	In.Di3 interrupt active high else active low.		
Bit3 (8) = 1	In.Di4 interrupt active high else active low.		
Bit4 (16) = 1	In.Di5 interrupt active high else active low.		
Bit5 (32) = 1	In.Di6 interrupt active high else active low.		
Bit6 (64) = 1	In.Di7 interrupt active high else active low.		
Bit7 (128) = 1	In.Di8 interrupt active high else active low.		
Bit8 (256) = 1	In.Di9 interrupt active high else active low.		
Bit9 (512) = 1	In.Dil0 interrupt active high else active low.		
Bit10 (1024) = 1	In.Enable interrupt active high else active low.		
Bit11 (2048) = 1	In.PTC interrupt active high else active low.		
Bitl2 (4096) = 1	In.Fault interrupt active high else active low.		
Int.SysPend	3 065535 RW		
	Pending system interrupts.		
Bit0 (1) = 1	Pending CycInt interrupt.		
Bit1 (2) = 1	Pending CapInt interrupt.		
Bit2 (4) = 1	Pending PosErr interrupt.		
Bit3 (8) = 1	Pending Ctrl C interrupt.		
Bit4 (16) = 1	Pending Syserr interrupt.		
Bit5 (32) = 1	Pending Temperr interrupt.		

Inmotion Technologies AB

Bit6 (64) = 1	Pending Bleederr interrupt.			
Bit7 (128) = 1	Pending Resolverr interrupt.			
Bit8 (256) = 1	Pending Cascade1 interupt.			
Bit9 (512) = 1	Pending Ca	scade2 interup	ot	
Bit10 (1024) = 1	Pending Ca	scade3 interup	ot	
Bitll	Reserved			
Bit12 (4096) = 1	Pending An	yBus-S interup	ot	
Bit13	Reserved			
Bit14	Reserved			
Bit15	Reserved			
Int.SysMask	4	065535	RW	
	Enables sys	tem interrupts		
Bit0 (1) = 1	Enable Cyc	Int interrupt.		
Bit1 (2) = 1	Enable Cap	Int interrupt.		
Bit2 (4) = 1	Enable Pos	Err interrupt.		
Bit3 (8) = 1	Enable Ctrl	C interrupt.		
Bit4 (16) = 1	Enable Syserr interrupt.			
Bit5 (32) = 1	Enable Temperr interrupt.			
Bit6 (64) = 1	Enable Bleederr interrupt.			
Bit7 (128) = 1	Enable Resloverr interrupt.			
Bit8 (256) =1	Enable Cascade1 interrupt.			
Bit9 (512) = 1	Enable Cascade2 interrupt			
Bit10 1024) = 1	Enable Cascade3 interrupt			
Bit11	Reserved			
Bit12 (4096) = 1	Enable Any	Bus-S interrup	t	
Bit13	Reserved			
Bit14	Reserved			
Bit15	Reserved			
Int.PosErr	5 32 bit RW 65536			
	Setting this to zero will prevent detection and generation of position error interrupt.			
Int.TempMask	6	028	RW	
	To prevent thermal overload of the system when there is no PL-program present (or running), there is a possibility within the firmware to get thermal protection. Internal temperature too high event Bit 4 (bitvalue = 16), should be set if automatic trip on Drive temp high is wanted.			

	Termistor input in Motor connector event Bit 3 (bitvalue =8), should be set if automatic trip on Motor temp high is wanted. In.PTC eventBit 2 (bitvalue = 4), should be set if automatic trip on In.PTC "low" is wanted. If no PL program is running when an event occurs, the power stage will be shut off on the conditions specified in Bit2, 3 and 4. If a program is running and Vector.TempErr = 0 (default value), the power stage will be shut of on the conditions specified in Bit2, 3 and 4. If Vector.TempErr <> 0, the program must handle this event by using the system interrupt on this vector, (enable by setting bit 5 in Int.SysMask). These conditions are checked with the rate set in SysIo.ChkTmr. Int.TempMask is set to a default value defined in EEprom.5, bit 4, 3 and 2 at startup, If EEprom.0 matches the revision number of the firmware.		
Bit2 (4) = 1	Enable In.PTC interrupt.		
Bit3 (8) = 1	Enable interrupt on motor over temperature.		
Bit4 (16) = 1	Enable interrupt on drive over temperature.		
Int.BleedLim	70 8191RWLimit for bleeder monitoring. The default value for this 0. The function is disabled. If set > 0 the function monitors the bleeder load, SysIo. ADC6, with the rate set in SysIo. ChkTmr. A value of 400 allows a load equal to 0.5 seconds of continuous bleeding of the DC-bus. A value of 8000 allows a load equal to 10 seconds of continuous bleeding of the DC-bus. If the program (interpreter) is stopped, the power stage will be shut of when the bleeder load reaches this limit. If the program (interpreter) is running and the Vector . BLeedErr = 0 (the default value), the power stage will be shut of when the bleeder load reaches this limit. If the Vector . BLeedErr is <> 0 then the program is supposed to handle the condition by using the system interrupt on this vector, (enabled by setting bit 6 in Int . SysMask).The shunt regulator resistors can withstand a defined amount of energy from the regenerative power stage. This amount can be translated to a time of constant operation. A value in this parameter of 400 is equal to 500 ms of continuous operation. The internal resistors in the DMC2 can be used for 500 ms continuous shunting.		
Int.Mode	8 01 RW		
=0	Normal mode. This is the default at startup.		
=1	When an interrupt is detected the firmware will push the content of INT.IntMask and INT.SysMask on the stack and then clear them, (disabling all interrupts). On leaving an		

	INT.IntM stack and t	interrupt, (using ireturn) the previously pushed values of INT.IntMask and INT.SysMask will be popped from the stack and then combined with the arguments given with the ireturn statement.			
Int.Trap	9	0255	R	0	
	Last system errors that caused the system interrupt				
	1 = Control-C character detected in terminal mode.				
	2 = END in	2 = END instruction is executed.			
	3 = STOP instruction is executed.				
	4 = Illegal instruction.				
	5 = Line not found, goto, gosub, idxgoto and idxgosub.				
	6 = Invalid module (not supported).				
	7 = Unknown group.				
	8 = Unsupported baud rate given to comm.baud.				
	9 = LAN, invalid message object.				
	10 = LAN, zero pointer.				
	11 = Obsolete instruction.				
	12 = CSend, constant values no supported.				
	13 = CSend, must be in computer mode.				
	-1 = Other error.				

IN, DIGITAL INPUTS

Group	Group No.	Description
In	11	Digital Inputs to the DMC controller.

GENERAL

The digital inputs are polled by the system at 1 ms interval. This means that a change of state on input must be present during two samples in order to be detected as an edge. The interrupt system operates on these polled events only. The capture event uses digital input Di1 or the Encoder reference input for a special function parallel to the normal input function.

FUNCTION

Each input, In.Di1 through In.Fault, can be observed as an individual bit register. All inputs can also be read in parallel in the In.pdi register where each bit corresponds to one input. Di1 is bit 0, Di2 is bit 1 and so on. The inputs can be individually inverted by setting the corresponding bit in the In.Level register. This capability permits easy adaptation to transducers with negative logic since it does not affect the interrupt settings. The In.Level function should be thought of as, if an external inverter is connected to the input.

RELATED ITEMS

Vector.Dil Vector.Dil0 Vector.Enable	Vectors for input related events.
Vector.PTC	
Vector.Fault	
Int.Mask	Bit mask for input interrupts, bit 0 (bit value 1) enables the event on .Di1.
Int.Pend	Bit mask for pending events, bit 0 (bit value 1) indicates the .Di1 event.
Ireturn in 1	Return statement.

EXAMPLE USAGE

```
if In.Di2 = 1 then Labl1 ;conditional jump on input
    "Else Do this"
    goto Labl2
Labl:
    "Do this"
Labl2:
    . . . . . . . . . .
```

register InData . InData = In.PDI AND 15

;defines a register

;read Di4,Di3,Di2 and Di1 as a nibble

GROUP MEMBER (GROUP 11)

Group.Member	Member No.	Range	Ability	Default	
In.Dil	0	01	R		
	Represent a X7A:16.	a Boolean va	lue of the digital inp	out at terminal	
In.Di2	1	01	R		
	Represent a X7A:15.	a Boolean va	lue of the digital inp	out at terminal	
In.Di3	2	01	R		
	Represent a X7A:14.	a Boolean va	lue of the digital inp	out at termina	
In.Di4	3	01	R		
	Represent a Boolean value of the digital input at terminal X7A:13.				
In.Di5	4	01	R		
	Represent a Boolean value of the digital input at terminal X7A:12.				
In.Di6	5	01	R		
	Represent a Boolean value of the digital input at terminal X7A:11.				
In.Di7	6	01	R		
	Represent a X7A:10.	a Boolean va	lue of the digital inp	out at termina	
In.Di8	7	01	R		
	Represent a X7A:9.	a Boolean va	lue of the digital inp	out at termina	
In.Di9	8	01	R		
	Represent a Boolean value of the digital input at terminal X7A:8.				
In.Dil0	9	01	R		
	Represent a X7A:7.	a Boolean va	lue of the digital inp	out at termina	
In.Enable	10	01	R		
	Represent a	a Boolean va	lue of the digital inp	out at terminal	

	X7A:6.			
In.PTC	11	01	R	
			<u> </u>	
In.Fault	12	01	R	
	signals and	then brough	is binary AND'd with all internal fault t to the Ready relay output. AND can be read in In.Fault	
(Reserved)	13	01	R	
	NIU			
(Reserved)	14	01	R	
	NIU			
(Reserved)	15	01	R	
	NIU			
In.Level	16	065535	RW	
	Sets the active level for each bit of the I/O ports. This variable can be used to adjust the input logic when an inverting input buffer board occurs, etc. Normally is not changed. Bit = 0: Active level is High. Do not invert data from input (default). Bit = 1: Active level is Low. Invert data from input.			
Bit0 (1) = 0 Bit0 (1) = 1	Active level is High for DI1. Do not invert data from input. Active level is Low for DI1. Invert data from input.			
Bit1 (2) = 0	Active level is High for DI2. Do not invert data from input.			
Bit2 (4) = 0	Active level	is High for D	N3. Do not invert data from input.	
Bit1 (8) = 0	Active level	is High for D	014. Do not invert data from input.	
Bitl (16) = 0	Active level	Active level is High for DI5. Do not invert data from input.		
Bitl (32) = 0	Active level	is High for D	16. Do not invert data from input.	
Bitl (64) = 0	Active level	Active level is High for DI7. Do not invert data from input.		
Bitl (128) = 0	Active level	is High for D	018. Do not invert data from input.	
Bitl (256) = 0	Active level	is High for D	019. Do not invert data from input.	
Bitl (512) = 0	Active level	is High for D	0110. Do not invert data from input.	
In.PDI	17	04095	R	
	I/O at a time Bit0 corresp Bit1 corresp b13 (8192) indicates th	e. bonds to Di1 bonds to Di2 - User outpur at one or sev	O ports. Used to read more than one etc. t short circuit indication. This bit veral digital outputs are shorted to ort circuit protected).	

OUT, DIGITAL OUTPUTS

Group	Group No.	Description
Out	12	Digital Outputs from the DMC controller.

GENERAL

The digital outputs are normally activated by the system whenever an instruction to do so is executed. This function can be modified such that the actual timing of output changes is synchronized to a precise time in the servo cycle. This provides the capability to synchronize outputs between several DMC²'s.

FUNCTION

Out.DolDo6	Each output, Do1 trough Fault, can be handled individually via bit registers. They can also be accessed in parallel with the Out.PDO register.
Out.JamRS	Can be handled individually via bit registers.
Out.Fault	Can be handled individually via bit registers.
Out.Level	The outputs can be individually inverted by setting the corresponding bit in the Out.Level register. This capability can be used for easy adaptation to external actuators such as magnetic valves or similar devices.
Out.SyncMask	The Out.SyncMask enables each output to be synchronized to the servo cycle.
Out.PDO	Output word

RELATED ITEMS

EXAMPLE USAGE

Out.Dol, 1	;activate output1
bclr Out.PDO,13	;clr outputs Do4, Do3 and Do1

GROUP MEMBERS (GROUP 12)

Group.Member	Member No.	Range	Ability	Default
Out.Dol	0	01	RW	
	Represent a X7B:34.	l Boolean	value of the digital ou	utput at terminal
Out.Do2	1	01	RW	
	Represent a	Boolean	value of the digital ou	utput at terminal

Inmotion Technologies AB

	X7B:33.		-
Out.Do3	2	01	RW
	Represent a X7B:32.	a Boolean	value of the digital output at terminal
Out.Do4	3	01	RW
	Represent a X7B:31.	a Boolean	value of the digital output at terminal
Out.Do5	4	01	RW
	Represent a X7B:30.	a Boolean	value of the digital output at terminal
Out.Do6	5	01	RW
	Represent a X7B:29.	a Boolean	value of the digital output at terminal
Out.JamRS	6	01	RW
	Not used		
Out.Fault	7	01	w
brought to the Rea			ND'd with all internal fault signals and then relay output. Terminal X7B:35 and X7B:36. he binary AND can be read in In.Fault.
Out.Level	8	0255	RW
	Bit 0 = 1>	DO1 is a	of the user outputs. ctive high, 0> Active low. ctive high, etc.
Out.SyncMask	9	0255	RW
	Set the synchronization mask for the user outputs. Bit $0 = 1 \rightarrow DO1$ is in synchronous mode. Bit $1 = 1 \rightarrow DO2$ is in synchronous mode etc. If an output is in synchronous mode, the hardware is updated at a specific time in the servo-cycle. Further, this time is set so that if multiple synchronized DMC ² units are connected to this output, the signal on the same servo-cycle will be recognized. This can be used to simultaneously start a motion on many DMC ² 's. For this function to work properly, it is essential that the input/output filter for the participating units have a combined delay of 0.1 ms or less.		
Out.PDO	10	0255	RW
		e or more D1	outputs. Can also be used to inspect the writes to individual bits using Out.DOx.

VECTOR, INTERRUPT VECTORS

Group	Group No.	Description
Vector	13	Vector table for various interrupts. Holds the start address for an interrupt routine associated with the member. To enable an interrupt in this group, the appropriate bit must be set in Int.SysMask or Int.Mask.

GENERAL

The registers in the vector group are the pointers to all interrupt routines. The registers contain line numbers within the application program.

FUNCTION

When an event occurs, system or input related the interpreter would set the pending bit for that event. If the mask bit for the event is set, the program will start to execute on the line pointed out by the related vector provided that it is not zero.

	The Ireturn statement causes program execution to resume at the instruction where normal program flow was interrupted. If a normal return statement is used the interrupt will be executed only			
i	once. DO NOT USE NORMAL RETURN IF INT:MODE = 1. Use Ireturn with argument 0.			

RELATED ITEMS

Int.SysMask	Bit mask for system interrupts.
Int.SysPend	Bit mask for pending events.
Int.Mask	Bit mask for input interrupts; bit 0 (bit value 1) enables the event on Di1.
Int.Pend	Bit mask for pending events, bit 0 (bit value 1) indicates the Di1 event.
Ireturn sys 1	Return statement for system events.
Ireturn in 1	Return statement for input events.

EXAMPLE USAGE

Vector.CapInt , @Caplabl Vector.DI7 , @Inp7.	;set the vector to the line number of Caplabl ;set the vector to the line number of Inp7
Caplabl:	
Ireturn sys 2	
Inp7:	
Ireturn in 64	

GROUP MEMBERS (GROUP 13)

Group.Member	Member No.	Range	Ability	Default
Vector.CycInt	0	032767	RW	•
	Vector.Cy	ne cyclic timer timesou rcInt is executed. his interrupt: OR Int.s		
Vector.CapInt	1	0 32767	RW	0
	To enable th	nis interrupt: OR Int.	SysMask,2	
Vector.PosErr	2	0 8192	RW	
	serial comm	n error is bigger than In nunication with the End t .mode for more info)		
	To enable th	nis interrupt: OR Int.	SysMask,4	•
Vector.CtrlC	3	032767	RW	
	To enable the	nis interrupt: OR Int.	SysMask,8	•
Vector.SysErr	4	032767	RW	
	To enable the	nis interrupt: OR Int.	SysMask,1	6.
Vector.TempErr	5	032767	RW	
		e is high in motor or dr his interrupt: OR Int.s		2.
Vector.BLeedErr	6	032767	RW	
		d exceeds Int.BLeed		4.
Vector.ResolvErr	7	032767	RW	
		nplitudes out of limits. his interrupt: OR Int.s	SysMask,1	28.
Vector.DI1	8	032767	RW	
	input with hi instruction c the interrupt	rrupt service routines f gher number has high of the interrupt routine i coccurs. ne Int.Mask, lower pr	er priority. The salways exe	he first ecuted when
Vector.DI2	9	032767	RW	
		1	1	
Vector.DI3	10	032767	RW	
		1	1	
Vector.DI4	11	032767	RW	

User's Manual 5.1 Doc. No.9032 0027 01 (B), Rev. 11.07.2001 115

Vector, Interrupt vectors

Vector.DI5	12	032767	RW
		1	1
Vector.DI6	13	032767	RW
Vector.DI7	14	032767	RW
Vector.DI8	15	032767	RW
Vector.DI9	16	032767	RW
			1
Vector.DI10	17	032767	RW
Vector.Enable	18	032767	RW
Vector.PTC	19	032767	RW
Vector.Fault	20	032767	RW
(Reserved)	21	032767	RW
(Reserved)	22	032767	RW
(Reserved)	23	032767	RW
Vector.Cascade1	24	032767	RW
	Int.Sy A casca sources,	, and needs a group ar group implementat	es the available interrupt handler that is specific for a
	or Int.S	SysMask, 256 ; En	dler; Use the LAN1's handler able the cascadel Vector or able LAN1's interrupts.
Vector.Cascade2	25	032767	RW

	Cascaded interupt. To enable this interrupt: OR Int.SysMask, 512. A cascaded interrupt increases the available interrupts sources, and needs a group handler that is specific for a particular group implementation. Example: Vector.Cascade1 = LAN1.Handler; Use the LAN1's handler or Int.SysMask, 512 ; Enable the cascade1 Vector or LAN1.Mask, xxxx ; Enable LAN1's interrupts.			
Vector.Cascade3	26	032767	RW	
	Int.SysMa A cascaded sources, and particular gr Example: Vector.Casc	adel = LAN1.Handler; ask, 1024. interrupt increases the d needs a group handl oup implementation.	e available interrupt er that is specific for a Use the LAN1's handler	
Vector.ID0	27	032767	RW	
Not supported	CANopen, extensions interrupt. To enable this interrupt: OR Int.SysMask, 2048.			
Vector.SANYBUS	28	032767	RW	
	Anybus-S o Int.SysMa	ption interrupt. To enal sk , 4096 .	ble this interrupt: OR	
Vector.29-31	2931	032767	RW	
	NIU			

CAPTURE, CAPTURE EXACT TIME OF EXTERNAL EVENTS

Group	Group No.	Description
Capture	14	The Capture group is used to capture a precise time for an external event. For the DMC ² the capture signal is parallel to the In.DI1 input pin. It is possible to reroute the capture function to use the Encoder reference input, by setting capture.mode = 8. However, since the response time of this signal is typically in the microsecond region, it is not certain that an event seen on the capture input is seen on the In.DI1. The Capture function is <u>not</u> affected by the In.Level parameter.

GENERAL

The capture function is intended for fast detection of an external event. The time, speed and position are sampled and saved for later use when this event occurs. Figure 7. The capture uses a real HW interrupt within the processor. This can be used for "flying calibration of movements" to increase the accuracy.

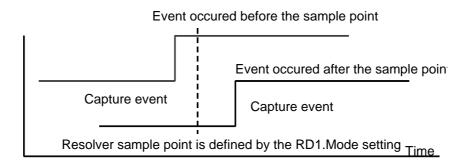


Figure 7. Timing chart for Capture event.

COMPATIBILITY DMC1 TO DMC²

The captured Pg values, Pg.APos and Pg.ASpeed are now sampled when the capture event is handled. The old DMC used a one servo cycle newer value. This may affect applications that used Capture.APos or Capture.ASpeed. The Capture.Enable mode bit 1, 'Auto apply SetTorque and SetPhDelay' for rapidly stopping the motor, is implemented but does not respond quickly.

FUNCTION

The capture uses the digital input 1 (or the Encoder reference input) as trigger source for the event. The electrical time constant for this input is much shorter when used by this function, than it is for the normal In.Di1 function. This means that the noise immunity is lower for this function.

Capture.Mode	The capture function can be set up to occur on positive, negative or both edges of the input signal. This setting is made in the Capture.Mode register and is not affected by the in.level bits.
Capture.Time	When the Capture.Enable register has been set, the first condition met will cause the HW interrupt to sample the absolute time and store this in Capture.Time.
Capture.FTime	The Capture.FTime register will hold the time within the cycle for the interrupt in microseconds.
Capture.Pos Capture.RPos	The Capture.Pos and Capture.RPos will be extrapolated with that time from the real sampled values of RD1.Pos and RD1.RPos.
Capture.Speed	The Capture.Speed will be the sampled value of RD1.Speed. When this interrupt is serviced, the Capture.Enable will be cleared.

If the Vector.CapInt is defined and the Int.SysMask bit 1 is set, the program will start to execute at the line defined.

HARDWARE CHANGE

The old DMC used only IN.DI1 as the high-speed input. In theDMC² a Encoder reference input can be used by setting capture.mode bit3.

Connector X6B has the balanced input at X6B:8 and X6B:21. THIS IS A BALANCED 5 V INPUT.

The DMC² does not support the prescaler on the capture input that the DMC1 has.

RELATED ITEMS

Vector.CapInt System interrupts vector for captures event.

Int.SysMask Bit mask for system interrupts.

Int.SysPend Bit mask for pending events.

EXAMPLE USAGE

```
Vector.CapInt , @Caplabl
Capture.Mode,1
Capture.Enable , 1
or Int.SysMask , 2
wait Capture.Enable = 0
.
.register Target
Caplabl:
```

;set up the pointer ;positve edge ;activate ;enable the PL2 interrupt ;wait for capture

CAPTURE, Capture exact time of external events

Target = Capture.RPos + 25000
pos abs Target
wait PG.Rdy
return

;corrected target ;move to captured position+25000 ; ;one shot wanted

GROUP MEMBERS (GROUP 14)

Group.Member	Member No.	Range	Ability	Default	
Capture.Mode	0	03	RW		
Bit0, Bitl	on the captu	de setting. DMC1 had n ure input (divide by 8). E IS NOT SUPPORTED			
	Capture mo	de AND 1 = Capture po	sitive edg	e.	
	Capture mo	de AND 2 = Capture po	sitive edg	е.	
	Capture mo	de AND 3 = Capture ev	ery edge.		
Bit0(1)	Capture pos	sitive edges.			
Bitl(2)	Capture neg	gative edges.			
Bit2 (4)		e bit2, this bit indicate h Time is to be displayed			
Bit2 (4) = 0		Standard display as old DMC, in microseconds. Capture.FTime is displayed as the fractional part of			
Bit2 (4) = 1	the event ar When the va the previous	oture.FTime as a signed nd the RD sample point, alue is negative the eve s servo cycle. This value terpolations written in Pl	with 100r nt actually e is better	ns resolutior	
i	standard di	All Tmr.Abs and position interpolation is done as standard display mode. The display mode can be modified and the Capture.FTime member reread.		can be	
Bit 3	This bit sele	cts the input that trigger	rs a captu	re.	
Bit 3 = 0 (0)	Select In.DI	1 to trigger a capture. D	efault at s	tartup.	
Bit 3 = 1 (8)	Select ENC	_REF to trigger a capture	re. (X6B c	onnector)	
Capture.Time	1	-2 ³¹ 2 ³¹ -1	R		
	whether the	The captured Tmr. Abs time is adjusted depending on whether the event occurred before or after the resolver sampling point (Rd1).			
Capture.FTime	2	0FS-1	R		
	whether the	d Tmr. Abs time is adju event occurred before			
	sampling po	oint (Rd1).		eresolver	

120

Inmotion Technologies AB

	sampled wit	os at the time of the event. T th the FS (currently 1000 Hz) g position is then interpolated d speed. Captured and interp	frequency, and from that
Capture.RPos	4	-2 ³¹ 2 ³¹ -1	R
	Same as Ca	apture.Pos, but affected by	PG.PosOffs
Capture.Enable	5	03	RW
	Control and indicate operation of the CAPTURE mechanism. Capture.Enable is cleared when the ev occurs and therefore, must be re-enabled every time a new capture is desired.		
Bit0 (1) = 1	Enable this	function and PL-code capture	es interrupt.
Bit0 (1) = 1 Bit1 (2) = 1	The mode f	or rapidly stopping the motor	
Capture.Speed	6	-32767000 32767000	R
		value of RD1.Speed when t aptured RD1.Speed.	he event
Capture.SetTorque	7	-32767 32767	RW
	Laplure.	SetPHDelay values are used	
OP Dog Mode 120	HSI capture interrupt car	e interrupt is executed. The H n be used if a minimum delay s desired. The interrupt does	SI capture start or stop of the following:
OR Reg.Mode, 128 LET Reg.Torque = Ca LET Motor.PhDelay = Capture.SetPhDela ; The user Capture remaining control.	HSI capture interrupt can the motor is apture.Set	e interrupt is executed. The H n be used if a minimum delay s desired. The interrupt does ; Turn off reg	SI capture y start or stop of the following: ulator output ecified torqu commutation ECEL.
LET Reg.Torque = Ca LET Motor.PhDelay = Capture.SetPhDela ; The user Capture	HSI capture interrupt can the motor is apture.Set	e interrupt is executed. The H n be used if a minimum delay desired. The interrupt does to ; Turn off reg Torque ; Set user sp ; Set optimum for fast ACC/D	SI capture y start or stop of the following: ulator output ecified torqu commutation ECEL.
LET Reg.Torque = Ca LET Motor.PhDelay = Capture.SetPhDela ; The user Capture remaining control.	HSI capture interrupt can the motor is apture.Set ay interrupt 8	e interrupt is executed. The H n be used if a minimum delay s desired. The interrupt does f ; Turn off reg .Torque ; Set user sp ; Set optimum for fast ACC/D t routine is then call	SI capture y start or stop of the following: ulator output ecified torqu commutation ECEL. ed to do the R
LET Reg.Torque = Ca LET Motor.PhDelay = Capture.SetPhDela ; The user Capture remaining control.	HSI capture interrupt can the motor is apture.Set ay interrupt 8	e interrupt is executed. The H n be used if a minimum delay s desired. The interrupt does f ; Turn off reg Torque ; Set user sp ; Set optimum for fast ACC/D routine is then call -32767 * FS 32767 * FS	SI capture y start or stop of the following: ulator output ecified torqu commutation ECEL. ed to do the R
LET Reg.Torque = Ca LET Motor.PhDelay = Capture.SetPhDela ; The user Capture remaining control. Capture.SetPHDelay	HSI capture interrupt can the motor is apture.Set ay interrupt 8 See Captu 9 Captured th event. The 1000 Hz) fre	e interrupt is executed. The H n be used if a minimum delay s desired. The interrupt does f ; Turn off reg Torque ; Set user sp ; Set optimum for fast ACC/D routine is then call -32767 * FS 32767 * FS re.SetTorque for description	SI capture y start or stop of the following: ulator output ecified torqu commutation ECEL. ed to do the R on. R the time of the p FS (currently position is then
LET Reg.Torque = Ca LET Motor.PhDelay = Capture.SetPhDela ; The user Capture remaining control. Capture.SetPHDelay	HSI capture interrupt can the motor is apture.Set ay interrupt 8 See Captu 9 Captured th event. The 1000 Hz) fre	<pre>e interrupt is executed. The H n be used if a minimum delay s desired. The interrupt does f ; Turn off reg Torque ; Set user sp ; Set optimum for fast ACC/D routine is then call -32767 * FS 32767 * FS re.SetTorque for description -2³¹2³¹-1 ne Gear.Pos interpolated to f Gear.Pos is sampled with the equency, and the resulting po</pre>	SI capture y start or stop of the following: ulator output ecified torqu commutation ECEL. ed to do the R on. R the time of the p FS (currently position is then
LET Reg.Torque = Ca LET Motor.PhDelay = Capture.SetPhDela ; The user Capture remaining control. Capture.SetPHDelay Capture.GPos	HSI capture interrupt can the motor is apture.Set ay interrupt 8 See Captu 9 Captured th event. The 1000 Hz) fre interpolated 10	e interrupt is executed. The H n be used if a minimum delay desired. The interrupt does to ; Turn off reg Torque ; Set user sp ; Set optimum for fast ACC/D routine is then call -32767 * FS 32767 * FS re.SetTorque for description -2 ³¹ 2 ³¹ -1 ne Gear.Pos interpolated to the Gear.Pos is sampled with the equency, and the resulting post from that position and speed	SI capture y start or stop of the following: ulator output ecified torqu commutation ECEL. ed to do the R on. R the time of the production is then d. R
LET Reg.Torque = Ca LET Motor.PhDelay = Capture.SetPhDela ; The user Capture remaining control. Capture.SetPHDelay Capture.GPos	HSI capture interrupt can the motor is apture.Set ay interrupt 8 See Captu 9 Captured th event. The 1000 Hz) fre interpolated 10	<pre>e interrupt is executed. The H n be used if a minimum delay s desired. The interrupt does f ; Turn off regr .Torque ; Set user sp ; Set optimum for fast ACC/D routine is then call -32767 * FS 32767 * FS re.SetTorque for description -2³¹2³¹-1 ne Gear.Pos interpolated to f Gear.Pos is sampled with the equency, and the resulting po from that position and speed -32767 * FS 32767 * FS</pre>	SI capture y start or stop of the following: ulator output ecified torqu commutation ECEL. ed to do the R on. R the time of the production is then d. R
LET Reg.Torque = Ca LET Motor.PhDelay = Capture.SetPhDela ; The user Capture remaining control. Capture.SetPHDelay Capture.GPos	HSI capture interrupt can the motor is apture.Set ay interrupt 8 See Captu 9 Captured th event.The 1000 Hz) fre interpolated 10 Captured th 11 Captured th	<pre>e interrupt is executed. The H n be used if a minimum delay s desired. The interrupt does f ; Turn off reg Torque ; Set user sp ; Set optimum for fast ACC/D routine is then call -32767 * FS 32767 * FS re.SetTorque for description -2³¹2³¹-1 ne Gear.Pos interpolated to f Gear.Pos is sampled with the equency, and the resulting po from that position and speed -32767 * FS 32767 * FS ne Gear.Speed to the time o </pre>	SI capture y start or stop of the following: ulator output ecified torqu commutation ECEL. ed to do the R on. R the time of the p SS (currently position is then d. R f the event. R

CAPTURE, Capture exact time of external events

		ne Pg.ASpeed at the time of atibility issue".	the event.			
Capture.CamCurrLine	13	065535	R			
	Captured va	alue of Gear.CamCurLine.	at the time of th			
Capture.CamScale	14	-2 ³¹ 2 ³¹ -1	R			
	Captured va	alue of Gear.CamScale.				
Capture.CamPos	15	-2 ³¹ 2 ³¹ -1	R			
	Captured va	Captured value of Gear. CamPos. Un-interpolated.				
Capture.CamSpeed	16	-32767 * FS 32767 * FS	R			
	Captured va	alue of Gear.CamSpeed.				
Capture.PosErr	17	-2 ³¹ 2 ³¹ -1	R			
	follow PG.A (RD.Pos) at Capture.Po the event. All verificati	alue of Reg.PosErr, Indica Pos. When comparing the C nd the Capture.APos (PG.AP sErr indicate the position erro on uses Capture.FTime differ ode, and constant speed	apture.Pos los) the or at the time of			
	Verification of Capture.Pos interpolation.Capture.FTime = $\frac{Capture.PosErr + Capture.Pos - Capture.APos}{Capture.Speed *10^7}$					
	(When runn <i>Capture.Pos</i> = When the G content of C	n of Capture.GPos interpola ing gear box). <i>Capture.GPos</i> + <i>Capture.APos</i> - <i>Ca</i> Gear group is used for CAM g Capture.GPos is the offset interpolation pture.GPos = Capture.Cam 1024	apture.PosErr eneration the o the cam table.			
	Note. Capt	ure.Gpos is interpolated.				
	Capture.PosE	n of Capture.CamPos. <i>Err + Capture.Pos – Capture.APos –</i> the Capture.CamPos is a raw y the servo cycle closest to the even	value, the value			
Capture.Pin	18	01	R			
	This signal capture inp	is not captured, it indicates th ut source.	he state of the			
Capture.RD2Pos	19	01	R			
	Captured a	nd interpolated value of RD2.	Pos <u>.</u>			
Capture.RD2RPos	20	-2 ³¹ 2 ³¹ -1	R			
	Captured a	nd interpolated value of RD2	.RPos.			

Capture.RD2Spd	21	-2 ³¹	2 ³¹ -1		R
	Captured va	alue of	RD2.Speed		
Capture.RD2Time	22	-2 ³¹	2 ³¹ -1		R
		e event	. Abs time is ac occurred befor d2).	•	
Capture.RD2FTime	23	-2 ³¹	2 ³¹ -1		R
		event	. Abs time is ac occurred befor d2).		
Capture.SAPos	24	-2 ³¹	2 ³¹ -1		R
	Captured va	alue of	Gear.Slave	APos	
Capture.SSpd	25		-2 ³¹ 2 ³¹ -1	R	
	Captured va	alue of	Gear.Slaves	Speed	
Capture.SFTime	26		-2 ³¹ 2 ³¹ -1	R	
	gearbox fur	nction.	update point of Can be used fo Gear.SlaveApo	r interpo	

ANA, ANALOG I/O

Group	Group No.	Description
Ana	15	The Ana group is the analog user input/output interface. Inputs: The standard user analog inputs have 14 bits resolution and approximate 12 bits of linearity. The result from the inputs can be both scaled and offset- adjusted to be directly usable as set-speed, set- torque, etc. in the user program. The RANGE parameter sets the numerical range for the input and the OFFS parameter sets the offset. The result is calculated as: (RAW-RESULT / 16384) * RANGE + OFFSET For example: RANGE = 10000 OFFSET = -2000. This results in a range from -2000 to 8000. Outputs: The RAW range for the analog outputs is - 32768 to 32767 with 12 bits of resolution. The RAW_OUTPUT is calculated as: $RAW_OUTPUT := Ana.Out * 2^{Ana.OutSF} + Ana.OutOffs$ There is no range-check to clamp the RAW_OUTPUT to -32768 32767. In case of overflow, the analog voltage will wrap from full positive to full negative, and vice versa.

GENERAL

The analog interface in the DMC² consists of two 14 bit inputs and two 12 bits outputs. These analog channels have no secondary functions and can be used freely by the application program. The inputs can be scaled to any 32 bit range and the outputs can be scaled with a shift factor (binary scale). The outputs are limited to 1mA of current (10 kOhm) load by the meens of a 1 kOhm output impedance. The outputs are short ciruit proof.

The scale of the outputs are set so that full logical output (16bit) gives 10.6 V. This means that a +/- 10 V output scale is mapped to +/- 31000 in the output value.

FUNCTION

Ana.In1Ana.In2 Ana.In1Range Ana.In1Offs Ana.ConnTMR.	The Ana.In1Range and Ana.In1Offs scale the value in Ana.In1 (Ana.In2 is handled in the same way). The values of the inputs can be read from the program whenever needed and treated as any values or the inputs can be "connected" to registers with an update rate set with Ana.ConnTMR.
Ana.Out1Ana.Out2	The output is scaled with Ana.Out1Sf for Ana.Out1 and Ana.Out2Sf for Ana.Out2.
Ana.Out1Sign Ana.Out2Sign	The sign of the outputs can be set in the Ana.Out1Sign and Ana Out2Sign registers

and Ana.Out2Sign registers.

Ana.ConnTMR The outputs can be written from the program or connected to any register with the rate set in Ana.ConnTMR.

RELATED ITEMS

Connect Statement for defining cyclical updates of analog functions.

EXAMPLE USAGE

Ana.In1Range , 100 000 Ana.In10ffs , -50000	;+/- 10 V is mapped to +/- 50 000
Ana.In2Range , -16000 Ana.In2Offs , 8000	;+/- 10 V is mapped to -/+ 8000
Ana.Out1SF , -2	
Ana.Out10ffs,0	;+/- 131068 is mapped to +/- 10 V
Ana.OutlSign , 1	· · · · · · · · · · · · · · · · · · ·
Ana.Out2SF , 2	,
Ana.Out2Offs,0	\sim / 0101 is manual to / 10)/
Ana.Out2Sign , -1	;+/- 8191 is mapped to -/+ 10 V
connect Ana.Inl to Pg.Speed Ana.ConnTMR,1	, , ,
	;connect analog input 1 to the speed command

GROUP MEMBERS (GROUP 15)

	•	/		
Group.Member	Member No.	Range	Ability	Default
Ana.Inl	0	-2 ³¹ 2 ³¹ -1	R	
		offset-adjusted value e SysIo0.ADC4)		
Ana.In2	1	-2 ³¹ 2 ³¹ -1	R	
	Scaled and offset-adjusted value for user analog input 2. (For raw data, see SysIo.ADC5) Terminal: X7A:1,2			
Ana.In1Range	2	-2 ³¹ 2 ³¹ -1	RW	
	Range for Ana. In1			
Ana.In2Range	3	-2 ³¹ 2 ³¹ -1	RW	
	Range for Ana. In2			
Ana.In10ffs	4	-2 ³¹ 2 ³¹ -1	RW	
	Offset for Ana.In1			
Ana.In2Offs	5	-2 ³¹ 2 ³¹ -1	RW	
	-	•		

;1 ms update rate

	Offset for Ana.In2		
Ana.Out1	6	-2 ³¹ 2 ³¹ -1	RW
	Scaled and offset-adjusted Analog output value. Terminal: X7A:22		alog output value. Terminal:
Ana.Out2	7	-2 ³¹ 2 ³¹ -1	RW
	Scaled and X7A:23	offset-adjusted ana	log output value. Terminal:
Ana.Out1SF	8	-3131	RW
	Scale factor	for Ana.Out1	
Ana.Out2SF	9	-3131	RW
	Scale factor	for Ana.Out2	
Ana.Out10ffs	10	-3276832767	RW
	Offset for Ana.Out1		
Ana.Out20ffs	11	-3276832767	RW
	Offset for Ana.Out2		
Ana.ConnTMR	12	1255,0	RW
	Interval in Servo Cycles between updates setup by the CONNECT command. The default value is 0 (connection disabled). If no connection is used set this value to 0 since this generates less software overhead than connecting all the channels to 0. When looking at registers with the CONNECT command, there is approximately a 1 ms delay between the internal value and the Analog Out. When looking at extended registers such as RD1.Speed, there is approximately a 1ms delay from the value to the Analog Out.		
Ana.Out1Sign	13	-3276832767	RW
	Sign of anal the output.	log output #1. A neg	gative value will electrically invert
Ana.Out2Sign	14	-3276832767	RW
	Sign of anal the output.	log output #2. A neg	gative value will electrically invert

EEPROM

Group	Group No.	Description
EEprom	16	Non-volatile parameter storage.

GENERAL

The EEprom group has 128 registers. Each EEprom register is 32 bit wide. The registers EEprom.29, 63, 93, 127 are reserved for storage of partial checksums of the data

NOTE: At startup, the DMC² unit will always print the sign on text (and eventual error messages) at 9600 baud. The EEprom variables are then used to setup other addresses, etc. This is allows a standard terminal to be used to verify that the system is working properly. It also allows firmware errors to be reported prior to a system crash.

The initial printout (done without enabling the interrupt system) may look something like this:

1: DMC <u>Ver 5.00<1></u>

2: ?FirmWare checksum error: SUM = xxxx<2>

3: <3>

If line 2: is printed, the System Firmware is damaged or the CPU board may be malfunctioning.

If the cursor stops at <2> instead of going to <3>, the system locked (crashed) when the interrupt system was enabled.

If only line 1 is printed and the cursor stops at position <1>, the firmware checksum was ok but the system crashed when the interrupt system was initiated. If the cursor stops at <3>, i.e. at the beginning of a new line, the problem may be one of the following:

A baud rate different from 9600 is setup by code in the EEprom.

A baud rate different from 9600 is setup by auto starting PL-code.

A comm-mode indicating computer mode, deselected unit, or xoff status bit set is setup in the EEprom.

FUNCTION

In the DMC² there is a 16 kbit serial EEprom which may be used for nonvolatile storage of application parameters. Some system parameters are taken from the EEprom at power up. Only 4 kbit are used for the 128 EEProm registers. The rest is used by the ParArea resource.

At power up (reset), or when forced by the EEload statement, the contents of the EEprom device is read by the processor and put in RAM memory (in the EEprom register group). The consistency is checked using the checksum calculated at the previous storage.

The EEstore statement forces a store procedure of the data in the EEprom group to the EEprom device.

It is important to understand that when an EEProm register i read or written, it is affecting only the image held in RAM memory. To actually store the contents, an EEstore instruction has to be executed.

RELATED ITEMS

Eeload	Statement for unpacking the contents of the EEprom.
EEstore	Statement for storing the data into the EEprom.
SysIo.MemStat	Status of memories.
Pararea.load	Parameter storage in Eeprom with windowing.

EXAMPLE USAGE

EEprom.36 , 278 Eestore wait SysIo.MemStat and 1	;write a value to the group member (in RAM) ;force a storage to the serial EEprom device ;wait for this to complete (takes a while)
Eeload wait SysIo.MemStat and 1	;force a unpacking of the serial EEprom device ;wait for this to complete (takes a while)

GROUP MEMBERS (GROUP 16)

Group.Member	Member No.	Range	Ability	Default
EEprom.0	0	-2 ³¹ 2 ³¹ -1	RW	
	This entry must be equal to the Syslo.RevNo for the other EEProm settings to take effect. This is to prevent an uninitialized or uninstalled EEProm to set abnormal parameters. In addition, if the firmware is updated, existing parameters may have modified values while new parameters may be present.			
EEprom.1-3	13	-2 ³¹ 2 ³¹ -1	RW	
	Reserved for	r system use.		
EEprom.4	4	7519200	RW	
		er is used to specify so aud rate will be taker		
	The value is	s set directly in bau	d rate values.	
EEprom.5	5	031	RW	
	The default	value for Int.TempM	lask. Normal v	alue is 24.
EEprom.6	6	-2 ³¹ 2 ³¹ -1	RW	
		ge. Bit mask for vario mber without affecting		• •
	out	m.6,3 ; Set 1		
		lo this in a program to complete (see EE		

EEprom

Bit(03) 1+2+4+8=15	Daisy Chain Node number assigned to this unit.		
Bit(46) 16+32+64=112	The default baud rate if Eeprom. $4 = 0$. Currently 0 = 75, 1 = 150, 2 = 300, 3 = 600, 4 = 1200, 5 = 2400, 6 = 4800, 7 = 9600 baud.		
Bit(7) = 128			
Bit(815)	Reserved fo	r future expansion.	
EEprom.7	7	-2 ³¹ 2 ³¹ -1	RW
	System usa	ge.	
Bit(07)	The Comm.	Mode setting.	
Bit(815)	The termina	I line length. (for LIST	etc).
EEprom.8	8	-2 ³¹ 2 ³¹ -1	RW
	LAN1, Lan1	communication frequ	Jency. See LAN1.Init
EEprom.9-12	912	-2 ³¹ 2 ³¹ -1	RW
	Reserved. C	AN1 ACC protocol C	AN TxID and RxID.
EEprom.13	13	-2 ³¹ 2 ³¹ -1	RW
	LAN2, Lan2 communication frequency. See LAN2.Init		
EEprom.14-17	1417	-2 ³¹ 2 ³¹ -1	RW
	Reserved CAN2.		
	Reserved C	AN2.	
EEprom.18-28	Reserved C	AN2. -2 ³¹ 2 ³¹ -1	RW
EEprom.18-28	1828		
EEprom.18-28 EEprom.29	1828	-2 ³¹ 2 ³¹ -1	
	1828 Reserved fo 29	-2 ³¹ 2 ³¹ -1 r system use; is defir -2 ³¹ 2 ³¹ -1	ned later.
	1828 Reserved fo 29	-2 ³¹ 2 ³¹ -1 r system use; is defir -2 ³¹ 2 ³¹ -1	RW
EEprom.29	1828 Reserved fo 29 Checksum o 3062	-2 ³¹ 2 ³¹ -1 r system use; is defir -2 ³¹ 2 ³¹ -1 of entries 028 (LSW	RW of 2's complement of sum).
EEprom.29	1828 Reserved fo 29 Checksum o 3062	$-2^{31}2^{31}-1$ r system use; is defir $-2^{31}2^{31}-1$ of entries 028 (LSW $-2^{31}2^{31}-1$	RW of 2's complement of sum).
EEprom.29 EEprom.30-62	1828 Reserved fo 29 Checksum o 3062 Free for USI 63	$-2^{31}2^{31}-1$ r system use; is defin $-2^{31}2^{31}-1$ of entries 028 (LSW $-2^{31}2^{31}-1$ ER parameters. $-2^{31}2^{31}-1$	RW of 2's complement of sum). RW
EEprom.29 EEprom.30-62	1828 Reserved fo 29 Checksum o 3062 Free for USI 63	$-2^{31}2^{31}-1$ r system use; is defin $-2^{31}2^{31}-1$ of entries 028 (LSW $-2^{31}2^{31}-1$ ER parameters. $-2^{31}2^{31}-1$	RW RW RW
EEprom.29 EEprom.30-62 EEprom.63	1828 Reserved fo 29 Checksum of 3062 Free for USI 63 Checksum of 6492	$-2^{31}2^{31}-1$ r system use; is defin $-2^{31}2^{31}-1$ of entries 028 (LSW $-2^{31}2^{31}-1$ ER parameters. $-2^{31}2^{31}-1$ of entries 3062 (LSW	RW RW V of 2's complement of sum). RW V of 2's complement of sum). RW
EEprom.29 EEprom.30-62 EEprom.63	1828 Reserved fo 29 Checksum of 3062 Free for USI 63 Checksum of 6492	$-2^{31}2^{31}-1$ r system use; is defin $-2^{31}2^{31}-1$ of entries 028 (LSW $-2^{31}2^{31}-1$ ER parameters. $-2^{31}2^{31}-1$ of entries 3062 (LSW $-2^{31}2^{31}-1$	RW RW V of 2's complement of sum). RW V of 2's complement of sum). RW
EEprom.29 EEprom.30-62 EEprom.63 EEprom.64-92	1828 Reserved fo 29 Checksum of 3062 Free for USI 63 Checksum of 6492 Reserved fo 93	$-2^{31}2^{31}-1$ r system use; is defin $-2^{31}2^{31}-1$ of entries 028 (LSW $-2^{31}2^{31}-1$ ER parameters. $-2^{31}2^{31}-1$ of entries 3062 (LSW $-2^{31}2^{31}-1$ r system use; is defin $-2^{31}2^{31}-1$	RW V of 2's complement of sum). RW RW RW V of 2's complement of sum). RW N of 2's complement of sum). RW
EEprom.29 EEprom.30-62 EEprom.63 EEprom.64-92	1828 Reserved fo 29 Checksum of 3062 Free for USI 63 Checksum of 6492 Reserved fo 93	$-2^{31}2^{31}-1$ r system use; is defin $-2^{31}2^{31}-1$ of entries 028 (LSW $-2^{31}2^{31}-1$ ER parameters. $-2^{31}2^{31}-1$ of entries 3062 (LSW $-2^{31}2^{31}-1$ r system use; is defin $-2^{31}2^{31}-1$	RW RW V of 2's complement of sum). RW V of 2's complement of sum). RW Med later. RW
EEprom.29 EEprom.30-62 EEprom.63 EEprom.64-92 EEprom.93	1828 Reserved fo 29 Checksum of 3062 Free for USI 63 Checksum of 93 Checksum of 94126	$-2^{31}2^{31}-1$ r system use; is defin $-2^{31}2^{31}-1$ of entries 028 (LSW $-2^{31}2^{31}-1$ ER parameters. $-2^{31}2^{31}-1$ of entries 3062 (LSW $-2^{31}2^{31}-1$ r system use; is defin $-2^{31}2^{31}-1$ of entries 6492 (LSW	ned later. RW of 2's complement of sum). RW V of 2's complement of sum). RW ned later. RW v of 2's complement of sum).
EEprom.29 EEprom.30-62 EEprom.63 EEprom.64-92 EEprom.93	1828 Reserved fo 29 Checksum of 3062 Free for USI 63 Checksum of 93 Checksum of 94126	$-2^{31}2^{31}-1$ r system use; is defin $-2^{31}2^{31}-1$ of entries 028 (LSW $-2^{31}2^{31}-1$ ER parameters. $-2^{31}2^{31}-1$ of entries 3062 (LSW $-2^{31}2^{31}-1$ r system use; is defin $-2^{31}2^{31}-1$ of entries 6492 (LSW $-2^{31}2^{31}-1$	ned later. RW of 2's complement of sum). RW V of 2's complement of sum). RW ned later. RW v of 2's complement of sum).

129

COMM, SERIAL COMMUNICATION

Group	Group No.	Description
Comm	17	Serial Communication Interface.

GENERAL

The DMC² has a serial interface for both programming purposes and for application use. The function of the communication is defined in the Comm group.

FUNCTION

Comm.Node	Several DMC ² 's can be connected in a "Daisy Chain" configuration. Each unit must then have a unique address set in the Comm.Node register. The number will be shown in the prompter when using terminal mode.
Comm.Baud	The speed of the communication can be set in Comm.Baud. From Version 4.x support 19200 baud
Comm.TLines	The number of lines shown in the terminal window is set in Comm.TLines where 0 means no limit at all.
Comm.Mode	The DMC ² can operate in different communication modes. Standard terminal mode is set with Comm.Mode = 0 .

RELATED ITEMS

EEprom.0	Version number of system software.
EEprom.6	Baud rate and node number. Forced run + baud + Comm.Node (baud = BaudMask: 0=75, 1=150, 2=300 aso)
EEprom.7	Number of lines and communication mode. 256*Comm.Tlines +Comm.Mode

EXAMPLE USAGE

EEprom.6	Forced run
	Baud rate =9600
	Node = 8
	EEprom.6 = 128 + 16*5+8
EEprom.7	Comm.Tlines = 27
	Mode = 3
	EEprom.7 = 256*27 + 3

GROUP MEMBERS (GROUP 17)

Group.Member	Member No.	Range	Ability	Default	
Comm.Mode	0		RW		
	The Comm. Mode at startup is determined by the LSB of EEprom.7. Useful bits to set are 0, 1, 4 and 7. Set Bit 7 for all nodes in a daisy chain, except for one node. This setting determines the default node to communicate with at startup (i.e. before the first select sequence is sent.)				
Bit0 (1)	Output from are thrown a		disabled. All DISP,	error messages, etc	
Bit1 (2)	Computer m disabled.	ode enabled	l on serial channel a	and terminal mode	
Bit2 (4)	The unit will	not echo cha	inication mode is er aracters when typed he values, not the r	d and the DISP	
Bit3 (8)	Enables special behaviour of the computer mode protocoll for downloading applicaion SW. Normally the contents of the application memory is cleared by the downloadi process prior to tha actual transfer of new PL2 SW. This bit overides that behaviour so that partial download of PL2 SW is possiblee. Typically this can be used to speed up the dowmload of say a Camtable or another part of an application. The part of SW handled this way must be set to a specific part of the memory by using the .ORG directive.				
Bit4 (16)	Xon/Xoff protocol is enabled. Xoff (Control-S) stops output; Xon (Control-Q) resumes output. If the node is deselected, the output is stopped when Xon/Xoff is enabled; it is thrown away otherwise.				
Bit5 (32)	Output is disabled due to a received Xoff.				
Bit6 (64)	A start of Select is detected (Control-Z) and the controller is now waiting for the next character in the sequence (the node number).				
Bit7 (128)	Node is deselected. No text output can be made at the moment. If an output is attempted (DISP, etc.), the result is thrown away if Bit $4 = 0$. If Bit $4 = 1$, the result stays in the output buffer. If the output buffer becomes full, the executing DISP statement waits until the node is selected again.				
Comm.Baud	1 7519200 RW				
	Supported baud rates are: 75,150, 300, 600, 1200, 2400, 4800, 9600 and 19200. (Only from Version 4.x. The baud rate value is now checked for validity before accepted.)				
Comm.Node	2	015	RW		
	The node number to use when using the daisy-chain option. The initial value used after power up is stored in EEprom.6.Setting				

	Comm.Node takes effect immediately. If an EEstore is done after, the new setting is valid after a power up; otherwise, the old value remains valid. To change the node number immediately to 3:				
	>Comm.No	>Comm.Node, 3			
	To change the node number used when the DMC ² is powered up to 3:				
		>BCLR EEprom.6, 15 >OR EEprom.6, 3 >EEStore			
Comm.TLines	3	0256	RW		
	The number of lines displayed sequentially when many lines will follow. After Comm.TLines is displayed, the system prompts the user to continue. The user has the option of pressing the space bar for another screen page, or the ENTER key for one line at the time. Pressing Q terminates the listing.				
Comm.Rdy	4	0.	.1		R
			mmunication i outer mode se		/ handling a Csend is active.
	Bit 0: 1	: Csend is lo	lle		
	(): Csend is B	usy		
	Bit 1: 1	: Computer	mode Idle		
	0	0: Computer mode Busy (start of record received)			
	Typical use:				
	\ \	Vait Comm.F	Rdy and 2 ;wa	ait for i	dle condition
	(Csend R7	;se	nd the	emessage
	١	Vait Comm.F	Rdy and 1 ;wa	ait for r	message to be sent

RD1CORR, POSITION CORRECTOR

Group	Group No.	Description		
RD1Corr	18	Position correction values for RD1. This table can bused to increase the accuracy of RD1. This is useful if RD1 is a low accuracy type, such as a HALL sensor, etc. Turning ON bit 2 of RD1.Mode enables use of this table.		
	To swap to alternate table, use the following:			
<pre>; Assume R19 is 1 for forward and 0 for reverse direction. 10 IF RD1Corr.34 = R19 then 12 ; Check if right direction. 11 RD1Corr.34 = R19 ; Nope, swap table 12</pre>				

GENERAL

The DMC² is intended for use with resolvers as feedback devices. If other devices are to be used, or the resolver is of low quality, it may be necessary to correct the values from the feedback device before the angle is calculated. The RD1Corr group is a table of such correction values.

The correction table does not operate in high-resolution mode. Version 4.x

FUNCTION

RD1Corr.

The DMC² can measure and create the values in the correction table using a special mode of the RD1.Interface.The motor must run with high and constant speed for several seconds to be able to find the values. Bit 3 in RD1.Mode activates the measurement procedure and bit 2 activates the correction.

RELATED ITEMS

RD1.Mode Resolver 1 mode register.

EXAMPLE USAGE

RD1.Mode,13 Reg.SetTorq , 500	,	use and create the correction table the torque control
clr Tmr.T0 wait Tmr.T0 > 20000	;run a v	while
RD1.Mode,5	;1+4	use the correction table

GROUP MEMBERS (GROUP 18)

Group.Member	Member No.	Range	Ability	Default	
RD1Corr.0-15	0-15	-3276732767	RW		
	This is the c resolver turr		increments for ea	ch 1/16 of a	
RD1Corr.16-31	16-31	-3276732767	RW		
	This is curre	ently only used as	storage for alterna	ate table.	
RD1Corr.32	32	-3276732767	RW		
	This is the Integrated speed error. This is only valid when bit 3 of RD1.Mode is set.				
RD1Corr.33	33	-3276732767 RW			
	This is the Integrates position error. This is only valid when bit 3 of RD1.Mode is set.				
RD1Corr.34	34	-3276732767	RW		
	When entry 34 is written, the entries 015 are swapped with entries 1631. This is useful since the optimal table may differ between varying speeds or rotation direction.				

OPTAD, ANALOG TO DIGITAL CONVERTER.

Group	Group No.	Description
OptAD	22	Optional analog to digital conversion.

GENERAL

The DMC equipped with this option has an analog input named M1. This channel has an individual gain setting. The gain setting is controlled with the OptAD.GainM1 member. The input is intended for a strain gauges transducer i.e. a load cell or a torque transducer. The connector also incorporates a balanced supply voltage of +/- 5 VDC.

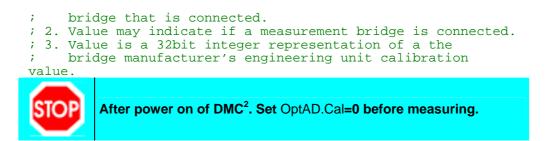
Channel	Measuring range	Purpose	
M1	±50 mVDC	Strain gauge transducer	Extern measurement bridge is required.

CONVERSION RESULOTION

The AD resolution is 14 bit, and the result is sign extended to utilize the 32 bit PL register set.

CALIBRATION

The M1 channel has two resistances, 390 k Ω and 47k Ω , that can be used to calibrate an externally provided measurement bridge. When the value in the table is written to OptAD.Cal then the selected calibration resistance will be connected in parallel with one of the four legs in the Measurement Bridge.


Value Channel		Resulting calibration resistance.	
0	none	Disconnect all calibration resistances.	
8	M1	390 kΩ	
9	M1	47 kΩ	

EXAMPLE USAGE

```
; On startup.
OptAD.Cal = 0
                 ; disconnect all calibration resistances.
.. <other initializations>
                   ; Start calibration
OptAD.Cal = 8 ; M1, calibration resistance = 390 kOhm
R200 = OptAD.M2 ; Conversion is done within 200 us.
.. <measure and store values>
OptAD.Cal = 0
               ; disconnect all calibration resistances.
<other code>
; Start measuring
R100 = OptAD.M1 ; and the result is stored in R100.
; The calibration value in R200 is application dependent and
; bridge dependent, and it can be used in several different
ways.
; 1. Value may indicate what type of measurement
```

135

OptAD, analog to digital converter.

AMPLIFIER GAIN SETTING

Setting a value in the OptAD.GainM1 member controls the gain of the input amplifier. The following values are possible:

	Value Resulting gain			
0		internal_signal = 1 * external_signal		
1		internal_signal = 1.5 * external_signal		
2		internal_signal = 3 * external_signal		
3		internal_signal = 6 * external_signal		
4		internal_signal = 12 * external_signal		
>4		internal_signal = 1 * external_signal		

EXAMPLE USAGE

OptAD.GainM1 = 1 ; internal_signal = 1 * external_signal

GROUP MEMBERS (GROUP 22)

Group.Member	Member No.	Range	Ability	Default	
OptAD.Mode	0	04	RW		
	Reserved				
OptAD.Cal	1	0 or 813	RW		
	Select calib	ration resistance. See	Group descript	ion.	
OptAD.GainM1	2	04	RW		
	Amplifier gain for the M1 channel. See Group description				
OptAD.GainM2	3	04	RW		
_	Not used in DMC2				
OptAD.4	4				
	NIU				
OptAD.5	5				
	NIU	·			
OptAD.6	6				

Inmotion Technologies AB

	NIU		
OptAD.7	7		
	NIU		
OptAD.8	8		
	NIU		L
OptAD.M1	9	-2 ³¹ -12 ³¹ -1	R
		nember is read, a conv asured value input rang	rersion on channel M1 is ge ± 50 mVDC.
OptAD.M2	10	-2 ³¹ -12 ³¹ -1	R
	Not used		L
OptAD.11	11		
	NIU		
OptAD.12	12		
	NIU	I	
OptAD.13	13		
	NIU	I	
OptAD.14	14		
	NIU		<u> </u>
OptAD.15	15		
	NIU		<u> </u>
OptAD.OffsetM1	16	-3276732767	
	OptAD.M1 a	tment of M1 signal. Th and OptAD.sM1. Set th etM1 = OptAD.OffsetM	e offset using:
	1		
OptAD.OffsetM2	17	-3276732767	R
OptAD.OffsetM2	17 NIU	-3276732767	R
OptAD.OffsetM2 OptAD.ScaleM1		-3276732767 -2 ³¹ -12 ³¹ -1	R
	NIU 18 Scale factor OptAD.Sca Example: We have an display that	-2 ³¹ -12 ³¹ -1 for the M1 signal. The leM1 = DispValue	RW e scale factor is calculated as: DIVMUL maxvalue 2760 incremnts and we want to
	NIU 18 Scale factor OptAD.Sca Example: We have an display that OptAD.Sca DIVMUL, In currently b	-2 ³¹ -12 ³¹ -1 for the M1 signal. The leM1 = DispValue OptAD.M1 range of ± as 7.400 Nm. leM1 = 7400 DIVMUL the divmul function e ±32767 only to avoi	RW e scale factor is calculated as: DIVMUL maxvalue 2760 incremnts and we want to

OptAD, analog to digital converter.

	NIU				
OptAD.sM1	20	-2 ³¹ -12 ³¹ -1	R		
	Scaled and offset adjusted measured value. The calculation done by the system is:				
	$OptAD.sM1 = \frac{(OptAD.M1 - OptAD.Offset) * OptAD.ScaleM1}{65536}$				
	Note. The numerator product must be restricted to 48 bit. In case an overflow is detected then OptAD.OvfM1 is non-zero after OptAS.sM1 is read. To detect overflow a user should read OptAD.sM1 first then OptAD.OvfM1.				
OptAD.sM2	21	-2 ³¹ -12 ³¹ -1	R		
	NIU				
OptAD.OvfM1	22	01	R		
	If non-zero indicates an overflow condition after OptAD.sM1 was read.				
OptAD.OvfM2	23	01	R		
	NIU				

LAN1, LOCAL AREA NETWORK 1 Group Group Description Description

Group	No.	Description
LAN1	28	Local area network group. LAN channel number 1. This group is the interface to the Local Area Network. The OSI reference model for LAN communication: Application layer Presentation layer Session layer Transport layer Network layer Datalink layer Physical layer

LAN1, INTERRUPT HANDLING

There are two types of interrupts that can be generated by the LAN1 group.

1. Net Error	When the LAN1 low level protocol (the CAN chip) detects an error it will go bus off. For this event the system will generate a PL interrupt and execute the code specified at LAN1.ErrVector. This interrupt is always enabled but if a user does not specify any line where to execute PL code, leaving LAN1.ErrVector = 0, then the CAN communication line will only go bus off and no other action will be done by the firmware. A user can specify what action to take, when an error occurs in a PL written interrupt routine.
2. Message Object interrupt	A message object that has either been received or transmitted can generate an interrupt. The PL service routine is specified in the MsgObjLan1.Vector when the object is defined. The following must be done before any LAN1 related interrupts will be generated:
1.	A MsgObjLan1.xx must be initialized and mapped to a priority level. The MsgObjLan1.Vector member must have a valid PL code line # at the time when the SetObjLan1 instruction is used to program the priority level.
2.	The corresponding ${\tt LAN1.Mask}$ bit for the level used must be set.
3.	The Vector.Cascade1 member must be set to LAN1.Handler
4.	The Int.SysMask must be set to enable the Vector.Cascade1. Before enabling Vector.Cascade1, a user should clear all bits in LAN1.Pend and the bit for the Vector.Cascade1 in Int.SysPend, to avoid generating interrupt on old events.

LAN1, DOUBLE BUFFERING

The firmware uses a double buffering method to communicate between the CAN lower protocol and the PL interpreter. The Read and Write instructions are used for manipulating the buffers.

LAN1, SPECIFIC INSTRUCTIONS

SetObjLAN1 </evel>

This instruction will map a previously defined MsgObjLan1 to a <level>, priority level, in the CAN low protocol, thereby activating the content of the MsgObjLAN1 (make it alive). Lower numbers yield higher priority. A MsgObjLAN1 is mapped to a priority level. The number of usable priority levels depends on the setting of LANx.lowprot as:

Standard = 8 priority levels.

Extended = 15 priority levels where level 15 has special possibilities.

Note. Priority level 13, 14 and 15 are reserved for system usage and may not be available in future releases.

It is possible to remap an already activated object, just issue a new SetObjLAN1 instruction with the same priority level. Example:

<Activate LAN1 ..>

MsgObjLAN1.Id, 1234 MsgObjLAN1.Type = 1 ; receive MsgObjLAN1.....

SetObjLAN1 1

. . .

The Message Object with the ID 1234 is made active and mapped to priority level 1. For each message object received with ID 1234 the content will be stored in the buffer related to priority level 1.

To read the content into a register, the following code should be executed:

ReadLAN1 r45, 4, 1

This code is typically put into a interrupt service routine.

Here is how to deactivate a message object:

MsgObjLAN1.Type = 0 SetObjLAN1 1

A previous defined Message Object is deactivated.

GetObjLAN1 </evel> Fill in the MsgObjLAN1 with the message object at </evel>.

ReadLAN1<reg>,Read <len> bytes and put in register <reg> from the<len>,buffer for message object at <level>.<level>Multiple reads after the initial first, can be done by

specifying - <level>.
An internal offset is maintained that allows a user to pack
the data in the 8 available bytes in a message.
Example:
Read LAN1 R5, 4, 1
; Read 4 bytes of data into register R5
from level #1

Read LAN1 R6, 1, -1 ; Read the fifth byte into register R6 Read LAN1 R7, 2, -1 ; Read two bytes beginning at the sixth byte into register R7

CAUTION:

. . .

Lan1 interrupt routines, automatically disables other Lan1 interrupts until the Ireturn statement is executed. To enable another Lan1 interrupt the corresponding bit in Int.sysmask has to be set.

<	<reg>, <len>, <level></level></len></reg>	Write <i><len></len></i> bytes to the buffer for message object at <i><level></level></i> from register <i><reg></reg></i> . Multiple writes, after the initial first, can be done by specifying - <i><level></level></i> . See ReadLAN1 .
SendObjLAN1	<level></level>	Send the buffer content for the message object at <i><level></level></i> on to the CAN bus. The data size sent will be the length that was previously defined when the object was defined. If the len member of the MsgObjLAN1 was zero when the SetObjLAN1 instruction was executed then a message object with no data will be transmitted. The content of the data should be filled in using the WriteLAN1 instruction prior to this instruction.
IReturnCAS1	<priority -level></priority 	A return from a user written PL interrupt service routine should end with this instruction. It will behave as the normal IReturn, but affect the individual message object interrupts. The <i><priority-level></priority-level></i> value is binary added (OR) to LAN1.Mask. The Int.SysMask is automatically re-enabled.

LAN1, REMOTE FRAMES IN CAN

The CAN 'Remote Frame' concept is implemented in hardware by the low-level communication protocol. The name of this mechanism, 'Remote Frame', is unfortunate it would have been better with 'Respond Frame', because the receiver of a 'Remote Frame' shall respond with it's contents. The receiver here is the transmit descriptor that owns the requested data and the sender is a receive descriptor that wants this data.

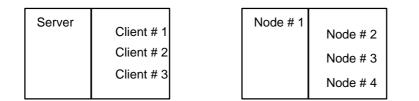
To generate a 'Remote Frame' in PL a user can send, use the instruction SendObjLAN1, on a descriptor that was defined as a receive type. The low level communication protocol will in this case send a CAN 'Remote Frame' so that somewhere on the net a transmit object with the same ID will respond and send the content of its descriptor.

A user controls how to handle 'Remote Frame' responses on transmit descriptors. See MsgObjLAN1.Status and MsgObjLAN1.Frame.

LAN1, POWER UP

On power up the low-level protocol initializes itself and sets up CAN communications rate at the content of EEprom.8. A user can change the can frequency. See LAN1.Ini.

LAN1, HIGH LEVEL COMMUNICATION PROTOCOLS.


No higher-level communication protocols are implemented that require their own groups.

A higher protocol uses some user defined "live" message objects and the underlying protocol uses these to implement communication services, as:

- On-demand data, (server/client relation ship).
- Broadcast data.
- Sporadic data.
- Periodic data.
- Data synchronization.
- Large data messages, up/download of application code.
- User defined services. (User defined protocol).
- Multi data services, uses a communication area, when more that one parameter is required before a service can be performed.

LAN1 COMMUNICATION SCENARIOS.

Server uses periodic receive objects to trigger the slave owning the object to transmit its data. A slave transmits data on demand from the server.

All nodes use periodic receives objects to trigger the owner of the object to transmit its data. Any node can send or receive sporadic 'alert' message objects.

All message objects must have a unique object ID. Make sure that each and every node/server use unique transmits object IDs. In other words, there cannot be more than one unit that transmit an object with the same ID, at the same time. Sporadic message objects have the disadvantage that the user must be sure that these messages will not clogging the network. And the firmware cannot handle back-to-back messages. The time between two messages sent back-to-back

1

Inmotion Technologies AB

is approx. 50us when 1Mbit/sec CAN frequency is used. Conceptually, a particular node owns a message object. But any node can listen to this message object by defining a received message object with the same ID.

If multiple messages are sent on a channel without any confirmation the some data will be overwritten in the receiving ends.

There is no buffer for incoming messages so if a new message comes in (on the same channel) before the previous message was read, the old message is lost !!!!

GROUP MEMBERS (GROUP 28)

Group.Member	Member No.	Range	Ability	Default						
LAN1.Mode	0	0255	R(W)							
	Bit 0 is the only write able bit. All other bits are reserved and Read only.									
Bit0 = 0 Bit0 = 1	Normal operation. This bit should be low for normal operation. When this bit is high the CAN controller is disconnected from the net (bus off). If this bit is set high then the CAN controller will be forced bus off. It will reset the internal error handling and start a recovery sequence where the CAN low level protocol expects to see an idle bus.									
LAN1.Status	1	0255	RW							
Bit 0-2 (07) Bit3(8)										
Bit4(16) Bit5(32)										
Bit6(64)										
Bit7(128)	on the CAN The only wa	ere was an abnormal ra bus. The unit is discon y to reset this situation d then low (or cycle po	nected from the is to force the	the CAN bus.						

Bit8(256)	Valid only For LAN2.Mode Indicates when the LAN2 bus external power connected.							
LAN1.Init	2	02 ²⁴ -1	RW					
		= 41857 = 41859	he default is					

			Bit	No.				Description
31	30	29	28	27	26	25	24	
х	x	х	х	х	х	x	x	Bit 2431 Not used

			Bit	No.				Description
23	22	21	20	19	18	17	16	Bus configuration register.
0	x	_	0	_	0	_	_	$\frac{x = CoBy, Compare Bypass bit.}{1 = input comparator is by passed and RX0 regarded as valid bus input.}$ $0 = normal operation RX0 and RX1 are the inputs to the input comparator. (Should never be changed).$
0	_	x	0	0	0	_	-	$\frac{x = Pol, Polarity bit.}{1 = If the input comparator is bypassed then a logical one is interpreted as dominant and a logical zero is recessive on the RX0 input. 0 = normal operation. If the input comparator is bypassed the logical one is interpreted as recessive and a logical zero is dominant on the RX0 input. (Should never be changed).$
0	_	_	0	x	0	_	_	<u>x = DcT1 bit, disconnect TX1 output.</u> 1 = Disables TX1 output. 0 = normal operation, enables TX1 output.
0	_	_	0	_	0	X	_	$\frac{x = DcR1 \text{ bit, disconnect RX1 input.}}{1 = RX1 \text{ is disabled and disconnected.}}$ $0 = \text{normal operation.}$
0	_	_	0	_	0	_	x	$\frac{x = DcR0 \text{ bit, disconnect RX0 input.}}{1 = RX0 \text{ is disabled and disconnected.}}$ $0 = \text{normal operation.}$

	-		Bit	No.	-	-		Description
15	14	13	12	11	10	9	8	Bit Timing Register 2
x	_	_	_	_	_	_	_	x = Spl bit, Number of samples per bit Bit24, 1 = 1 spl, 1 = 3 spl.

_	x	x	x	_	_	_	_	x = TSEG2 1-7, time segment <u>after</u> the sampling point.
_	_	_	_	x	x	x	x	x = TSEG1 2-15, time segment <u>before</u> the sampling point.

	Bit No.							Description
7	6	5	4	3	2	1	0	Bit Timing Register 1.
x	x	_	_	_	_	_	_	SJW 0-3 Sync. jump width.
_	_	x	x	x	x	x	x	BRP 0-63 Baud Rate prescaler.

Group.Member	Member No.	Range	Ability
LAN1.LowProt	3	02	R
	the physical		This member represents the OSI reference model. es:
		ntention, mechanism to f the message id numl	resolve collisions based on per.
#	Standard Da	ata and Remote frames	s, 11 bit id (CAN 2.0 part A).
#	Extended Da	ata and Remote frame	s, 29 bit id (CAN 2.0 part B).
#	12 "Live" Me	essage objects. (CAN 2	2.0 part B).
#	0 to 8 byte c	lata per message.	
#		ble bit rate (higher bit r te is not the same as th	ate for shorter distances). hroughput).
	about the pr 0 = Not avai 1 = Standard 2 = Standard supported. The Standar The CAN pr configuration nodes of the to as CSMA Collision Re As defined in	esence of the LAN. lable d, CAN specification 2. d and Extended, CAN of CAN spec is a subsection of CAN spec is a subsection of transfer of "comm e network. This multi-m /CR or Carrier Sense, solution. n ISO/DIS 11898 Road nation - Controller area	specification 2.0 part B is et of the Extended spec. ster (contention based) bus unication objects" between aster node is also referred
LAN1.HighProt	4	0	R
	what protoco		. This member indicate, layers that are not defined in rotocol implemented.

LAN1.StdFilter 5 0.2047 RW Message Acceptance Filter for Standard Frames. Allows the user to globally mask, or "don't care" any identifier bits in the incoming message object. Range, 11-bit message ID. Default is that all bits must match. NOTE. This is a global filter, it affects all descriptors, and use only if you are familiar with the arbitration method of CAN. LAN1.ExtFilter 6 0.536870911 RW Message Acceptance Filter for Extended Frames. Allows the user to globally mask, or "don't care" any identifier bits in the incoming message object. Range, 29-bit message ID. Default is, all bits must match. NOTE. This is a global filter, it affects all descriptors, and use only if you are familiar with the arbitration method of CAN. LAN1.Mask 7 0.65535 RW Specify the object(s) at respective level that can generate interrupt to the PL code interpreter. Also the error vector. 0 No message object at level 2 will generate interrupt Bit1(2) Message object at level 3 will generate interrupt Bit1(2) Message object at level 3 will generate interrupt Bit2(4) Message object at level 4 will generate interrupt Bit2(3) Message object at level 9 will generate interrupt Bit16(64) Message object at level 1 will generate interrupt Bit16(1024) Message object at level 1 will generate interrupt Bit11(1024) Message object at level 1 will genera		1	1		
user to globally mask, or "don't care" any identifier bits in the incoming message object. Range, 11-bit message ID. Default is that all bits must match. NOTE. This is a global filter, it affects all descriptors, and use only if you are familiar with the arbitration method of CAN. LAN1.ExtFilter 6 0.536870911 RW Message Acceptance Filter for Extended Frames. Allows the user to globally mask, or "don't care" any identifier bits in the incoming message object. Range, 29-bit message ID. Default is, all bits must match. NOTE. This is a global filter, it affects all descriptors, and use only if you are familiar with the arbitration method of CAN. LAN1.Mask 7 0.65535 RW Specify the object(s) at respective level that can generate interrupt to the PL code interpreter. Also the error vector. 0 No message object at level 1 will generate interrupt Bit1(2) Message object at level 2 will generate interrupt Bit1(2) Message object at level 3 will generate interrupt Bit2(1) Message object at level 3 will generate interrupt Bit2(1) Message object at level 4 will generate interrupt Bit2(1) Message object at level 1 will generate interrupt Bit2(2) Message object at level 3 will generate interrupt Bit2(2) Message object at level 3 will generate interrupt Bit2(1) Message object at level 1 will generate interrupt Bit2(10) Message object at level	LAN1.StdFilter	5	02047	RW	
Image: Second		user to globally mask, or "don't care" any identifier bits in the incoming message object. Range, 11-bit message ID. Default is that all bits must match. NOTE. This is a global filter, it affects all descriptors, and use			
user to globally mask, or "don't care" any identifier bits in the incoming message object. Range, 29-bit message ID. Default is, all bits must match. NOTE. This is a global filter, it affects all descriptors, and use only if you are familiar with the arbitration method of CAN.LAN1.Mask70.65535RWLAN1.Mask70.65535RWSpecify the object(s) at respective level that can generate interrupt to the PL code interpreter. Also the error vector.0No message object can generate interrupt.Bit10(1)Message object at level 1 will generate interruptBit12(2)Message object at level 2 will generate interruptBit12(4)Message object at level 3 will generate interruptBit4(16)Message object at level 4 will generate interruptBit5(32)Message object at level 5 will generate interruptBit6(64)Message object at level 7 will generate interruptBit10(1024)Message object at level 9 will generate interruptBit11(2048)Message object at level 10 will generate interruptBit11(2048)Message object at level 10 will generate interruptBit11(2048)Message object at level 11 will generate interruptBit13(8192)Message object at level 13 will generate interruptBit113(8192)Message object at level 14 will generate interruptBit15(32768)CAN low level error will generate interruptBit113(8192)Message object at level 15 will generate interruptBit113(20768)CAN low level error will generate interruptBit113(20768)CAN low level error will generate interrupt <td< th=""><th>LAN1.ExtFilter</th><th colspan="4">6 0536870911 RW</th></td<>	LAN1.ExtFilter	6 0536870911 RW			
Image: 10.00000 (1000) Image: 10.00000 (1000) Specify the object(s) at respective level that can generate interrupt to the PL code interpreter. Also the error vector. 0 No message object can generate interrupt. Bit0(1) Message object at level 1 will generate interrupt Bit1(2) Message object at level 2 will generate interrupt Bit2(4) Message object at level 3 will generate interrupt Bit3(8) Message object at level 4 will generate interrupt Bit4(16) Message object at level 5 will generate interrupt Bit5(32) Message object at level 6 will generate interrupt Bit5(32) Message object at level 7 will generate interrupt Bit5(32) Message object at level 8 will generate interrupt Bit7(128) Message object at level 9 will generate interrupt Bit10(1024) Message object at level 10 will generate interrupt Bit11(2048) Message object at level 12 will generate interrupt Bit13(8192) Message object at level 13 will generate interrupt Bit13(16384) Message object at level 15 will generate interrupt Bit15(32768) CAN low level error will generate interrupt LAN1.Pend 8 065535 RW Indicate a pending interrupt at the respectiv		user to glob incoming m is, all bits m NOTE. This	ally mask, or "don't car essage object. Range, ust match. is a global filter, it affe	re" any identifier bits in the 29-bit message ID. Default cts all descriptors, and use	
interrupt to the PL code interpreter. Also the error vector.0No message object can generate interrupt.Bit0(1)Message object at level 1 will generate interruptBit1(2)Message object at level 2 will generate interruptBit2(4)Message object at level 3 will generate interruptBit3(8)Message object at level 4 will generate interruptBit5(32)Message object at level 5 will generate interruptBit6(64)Message object at level 7 will generate interruptBit7(128)Message object at level 8 will generate interruptBit9(512)Message object at level 9 will generate interruptBit10(1024)Message object at level 10 will generate interruptBit11(2048)Message object at level 12 will generate interruptBit13(8192)Message object at level 13 will generate interruptBit13(8192)Message object at level 13 will generate interruptBit15(32768)CAN low level error will generate interruptAlstanderMessage object at level 15 will generate interruptBit15(32768)CAN low level error will generate interruptBit15(32768)CAN low level error will generate interruptLAN1.Pend8065535RWIndicate a pending interrupt at the respective level.	LAN1.Mask	7	065535	RW	
Bit0(1)Message object at level 1 will generate interruptBit1(2)Message object at level 2 will generate interruptBit2(4)Message object at level 3 will generate interruptBit3(8)Message object at level 4 will generate interruptBit4(16)Message object at level 5 will generate interruptBit5(32)Message object at level 6 will generate interruptBit6(64)Message object at level 7 will generate interruptBit7(128)Message object at level 8 will generate interruptBit9(512)Message object at level 9 will generate interruptBit10(1024)Message object at level 10 will generate interruptBit11(2048)Message object at level 12 will generate interruptBit13(8192)Message object at level 13 will generate interruptBit13(2048)Message object at level 14 will generate interruptBit13(8192)Message object at level 14 will generate interruptBit115(32768)CAN low level error will generate interruptBit15(32768)CAN low level error will generate interruptBit15(32768)RWLAN1.Pend80.65535RWIndicate a pending interrupt at the respective level.					
Bit1(2)Message object at level 2 will generate interruptBit2(4)Message object at level 3 will generate interruptBit3(8)Message object at level 4 will generate interruptBit4(16)Message object at level 5 will generate interruptBit5(32)Message object at level 6 will generate interruptBit6(64)Message object at level 7 will generate interruptBit8(256)Message object at level 8 will generate interruptBit9(512)Message object at level 10 will generate interruptBit11(2048)Message object at level 11 will generate interruptBit12(4096)Message object at level 13 will generate interruptBit13(8192)Message object at level 14 will generate interruptBit15(32768)CAN low level error will generate interruptBit15(32768)CAN low level error will generate interruptAnnu. Pend8065535RWIndicate a pending interrupt at the respective level.	0	No message object can generate interrupt.			
Bit2(4)Message object at level 3 will generate interruptBit3(8)Message object at level 4 will generate interruptBit4(16)Message object at level 5 will generate interruptBit5(32)Message object at level 6 will generate interruptBit6(64)Message object at level 7 will generate interruptBit8(256)Message object at level 9 will generate interruptBit9(512)Message object at level 9 will generate interruptBit10(1024)Message object at level 10 will generate interruptBit11(2048)Message object at level 12 will generate interruptBit13(8192)Message object at level 13 will generate interruptBit13(8192)Message object at level 14 will generate interruptBit15(32768)CAN low level error will generate interruptBit15(32768)CAN low level error will generate interruptAnn . Pend8065535RWIndicate a pending interrupt at the respective level.	Bit0(1)	Message object at level 1 will generate interrupt			
Bit3(8)Message object at level 4 will generate interruptBit4(16)Message object at level 5 will generate interruptBit5(32)Message object at level 6 will generate interruptBit5(32)Message object at level 6 will generate interruptBit6(64)Message object at level 7 will generate interruptBit7(128)Message object at level 9 will generate interruptBit9(512)Message object at level 9 will generate interruptBit10(1024)Message object at level 10 will generate interruptBit11(2048)Message object at level 12 will generate interruptBit13(8192)Message object at level 13 will generate interruptBit14(16384)Message object at level 15 will generate interruptBit15(32768)CAN low level error will generate interruptIThe objects at level 13, 14 and 15 are reserved for system usage, they may not be available in future versions.LAN1.Pend8065535RWIndicate a pending interrupt at the respective level.	Bit1(2)	Message object at level 2 will generate interrupt			
Bit14(16)Message object at level 5 will generate interruptBit5(32)Message object at level 6 will generate interruptBit6(64)Message object at level 7 will generate interruptBit7(128)Message object at level 7 will generate interruptBit8(256)Message object at level 9 will generate interruptBit9(512)Message object at level 10 will generate interruptBit10(1024)Message object at level 11 will generate interruptBit11(2048)Message object at level 12 will generate interruptBit12(4096)Message object at level 13 will generate interruptBit13(8192)Message object at level 14 will generate interruptBit14(16384)Message object at level 15 will generate interruptBit15(32768)CAN low level error will generate interruptCAN low level error will generate interruptBit15(32768)The objects at level 13, 14 and 15 are reserved for system usage, they may not be available in future versions.LAN1.Pend8065535RWIndicate a pending interrupt at the respective level.	Bit2(4)	Message object at level 3 will generate interrupt			
Bit5(32)Message object at level 6 will generate interruptBit6(64)Message object at level 7 will generate interruptBit7(128)Message object at level 8 will generate interruptBit8(256)Message object at level 9 will generate interruptBit9(512)Message object at level 10 will generate interruptBit10(1024)Message object at level 11 will generate interruptBit12(4096)Message object at level 12 will generate interruptBit13(8192)Message object at level 14 will generate interruptBit14(16384)Message object at level 15 will generate interruptBit15(32768)CAN low level error will generate interruptLAN1.Pend8065535RWIndicate a pending interrupt at the respective level.	Bit3(8)	Message object at level 4 will generate interrupt			
Bitt6(64)Message object at level 7 will generate interruptBit7(128)Message object at level 8 will generate interruptBit8(256)Message object at level 9 will generate interruptBit9(512)Message object at level 10 will generate interruptBit10(1024)Message object at level 11 will generate interruptBit11(2048)Message object at level 12 will generate interruptBit13(8192)Message object at level 13 will generate interruptBit14(16384)Message object at level 15 will generate interruptBit15(32768)CAN low level error will generate interruptImage: they may not be available in future versions.LAN1.Pend8065535RWIndicate a pending interrupt at the respective level.	Bit4(16)	Message object at level 5 will generate interrupt			
Bit7(128)Message object at level 8 will generate interruptBit8(256)Message object at level 9 will generate interruptBit9(512)Message object at level 10 will generate interruptBit10(1024)Message object at level 11 will generate interruptBit11(2048)Message object at level 12 will generate interruptBit12(4096)Message object at level 13 will generate interruptBit13(8192)Message object at level 14 will generate interruptBit15(32768)CAN low level error will generate interruptCAN low level error will generate interruptBit15(32768)The objects at level 13, 14 and 15 are reserved for system usage, they may not be available in future versions.LAN1.Pend8065535RWIndicate a pending interrupt at the respective level.	Bit5(32)	Message object at level 6 will generate interrupt			
Bit8(256)Message object at level 9 will generate interruptBit9(512)Message object at level 10 will generate interruptBit10(1024)Message object at level 11 will generate interruptBit11(2048)Message object at level 12 will generate interruptBit12(4096)Message object at level 13 will generate interruptBit13(8192)Message object at level 14 will generate interruptBit14(16384)Message object at level 15 will generate interruptBit15(32768)CAN low level error will generate interruptImage: The objects at level 13, 14 and 15 are reserved for system usage, they may not be available in future versions.LAN1.Pend8065535RWIndicate a pending interrupt at the respective level.	Bit6(64)	Message object at level 7 will generate interrupt			
Bit9(512)Message object at level 10 will generate interruptBit10(1024)Message object at level 11 will generate interruptBit11(2048)Message object at level 12 will generate interruptBit12(4096)Message object at level 13 will generate interruptBit13(8192)Message object at level 14 will generate interruptBit15(32768)Message object at level 15 will generate interruptCAN low level error will generate interruptCAN low level error will generate interruptThe objects at level 13, 14 and 15 are reserved for system usage, they may not be available in future versions.LAN1.Pend8065535RWIndicate a pending interrupt at the respective level.	Bit7(128)				
Bit10(1024)Message object at level 11 will generate interruptBit11(2048)Message object at level 12 will generate interruptBit12(4096)Message object at level 13 will generate interruptBit13(8192)Message object at level 14 will generate interruptBit14(16384)Message object at level 15 will generate interruptBit15(32768)CAN low level error will generate interruptImage: Comparison of the transformed state of the transfo	Bit8(256)	Message object at level 9 will generate interrupt			
Bitl1(2048)Message object at level 12 will generate interruptBitl2(4096)Message object at level 13 will generate interruptBitl3(8192)Message object at level 14 will generate interruptBitl4(16384)Message object at level 15 will generate interruptBitl5(32768)CAN low level error will generate interruptImage: Comparison of the transmission of transmission of the transmission of transmission o	Bit9(512)	Message ob	pject at level 10 will ger	nerate interrupt	
Bit12(4096) Message object at level 13 will generate interrupt Bit13(8192) Message object at level 14 will generate interrupt Bit14(16384) Message object at level 15 will generate interrupt Bit15(32768) CAN low level error will generate interrupt CAN low level error will generate interrupt The objects at level 13, 14 and 15 are reserved for system usage, they may not be available in future versions. LAN1.Pend 8 065535 RW Indicate a pending interrupt at the respective level.	Bit10(1024)	Message ob	oject at level 11 will ger	nerate interrupt	
Bitl3(8192) Message object at level 14 will generate interrupt Bitl4(16384) Message object at level 15 will generate interrupt Bitl5(32768) CAN low level error will generate interrupt CAN low level error will generate interrupt The objects at level 13, 14 and 15 are reserved for system usage, they may not be available in future versions. LAN1.Pend 8 065535 RW Indicate a pending interrupt at the respective level.	Bit11(2048)	Message object at level 12 will generate interrupt			
Bit14(16384) Message object at level 15 will generate interrupt Bit15(32768) CAN low level error will generate interrupt CAN low level error will generate interrupt Image: the state of the stat		Message object at level 13 will generate interrupt			
Bit15(32768) CAN low level error will generate interrupt 1 The objects at level 13, 14 and 15 are reserved for system usage, they may not be available in future versions. LAN1.Pend 8 065535 RW Indicate a pending interrupt at the respective level.	Bit13(8192)	Message object at level 14 will generate interrupt			
1 The objects at level 13, 14 and 15 are reserved for system usage, they may not be available in future versions. LAN1.Pend 8 065535 RW Indicate a pending interrupt at the respective level.	Bit14(16384)	Message object at level 15 will generate interrupt			
1 usage, they may not be available in future versions. LAN1.Pend 8 065535 RW Indicate a pending interrupt at the respective level.	Bit15(32768)	CAN low lev	vel error will generate i	nterrupt	
Indicate a pending interrupt at the respective level.	i				
	LAN1.Pend	8	065535	RW	

Inmotion Technologies AB

LAN1.ErrVector	9	1Max. line of PL2 program lines	RW			
	Address of occurs.	the PL-code line to exe	ecute when a comm error			
LAN1.LastErr	10	17	R			
		ror reported by the low most useful when the I	level CAN protocol. This ErrVector is used.			
	0. No erro	r				
		an5 equal bits in a seq	uense have occured in a here this is not allowed.			
	2. Form E The fixe format.		ivedframe has the wrong			
	The me	 Acknowledgment Error The message transmitted by this device was not acknowledged by another node. 				
	 Bit 1 Error During the transmission of a message, the 82527 wanted to send a recessive level, (bit of logical value 1), but the monitored CAN bus value dominant. 					
	to send monitor	the transmission of a m a recessive level, (bit o red CAN bus value was y, this status is set eac	smission of a message, the 82527 wanted sive level, (bit of logical value 0), but the I bus value was recessive. During busoff tatus is set each time a recessive bit is			
	 CRC Error The CRC checksum was incorrect in the message received. The CRC received for an incoming message does not match with the CRC value calculated by this device for the received data. 					
	7. Unused	J.				
LAN1.Handler	11	1xx	R			
	An interrupt handler for cascading interrupts from the LAN1 group. See cascading interrupts, Vector and Int. This member is used when installing an interrupt cascade handler for the LAN1 group. The Vector.Cascade member must be initialized with this handler before interrupts can be generated from the LAN1 group. Example:					
	rrupt handler. ndler Or ded system RR e an interrupt					

LAN1.ErrStat	12	-2 ³¹ 2 ³¹ -1	RW			
	Error statisti	c. Number of errors si	nce power on or reset.			
LAN1.RxStat	13	-2 ³¹ 2 ³¹ -1	RW			
		tistic. Number of succe on or reset.	essfully received frames			
LAN1.TxStat	14	-2 ³¹ 2 ³¹ -1	RW			
		atistic. Number of succ	essfully transmitted frames			
LAN1.RemStat	15	-2 ³¹ 2 ³¹ -1	RW			
	Indicates nu	mber of received 'rem	ote frame' packets.			
LAN1.ICount	16	-2 ³¹ 2 ³¹ -1	RW			
	Debug usag	Debug usage. Indicates number of total service interrupts.				
LAN1.VecNum	17	0xx	R			
	Indicates the cascaded level that the LAN1.Handler is connected to					
	1 means that cascade 1 is used					
	2 means that cascade 2 is used					
	4 means that cascade 3 is used.					
LAN1.Port	18	0255	RW			
	Not used					
LAN1.OvrWrite	19	065535	R			
	times that th the same bi other words performed b Note. There	te LAN1 . Pend bit was t was to be set as a res , the PL interrupt servine fore a new interrupt v is no indication on wh				

MSGOBJLAN1, HELPER FOR LAN1

Group	Groupe No.	Description	
MsgObjLAN1	29	CAN message descriptor temporary storage. A message object descriptor must be initialized and then activated with the SetObjLAN1 instruction. It is the responsibility of the user to fill in the MsgObjLAN1 group prior the use of the instruction SetObjLAN1. The system fills in the MsgObjLAN1 group when the GetObjLAN1 instruction is used. Example:	
	<pre><do initialize="" lan=""> MsgObjLAN1.Id = 2000 ; ID number for this message object MsgObjLAN1.Type = 1 ; Receive type MsgObjLAN1.Frame = 0; Standard frame MsgObjLAN1.DataLen = 2 ; Two bytes in this</do></pre>		

GROUP MEMBERS (GROUP 29)

Group.Member	Member No.	Range	Ability	Default	
MsgObjLAN1.ID	0	11-bit and 29-bit ID	RW		
	an 11-bit nu If MsgObjL2 number. Note1. If use the use of a protocols.	bjLAN1.Frame type is mber. AN1.Frame type is ' Ex ed on an existing CAN ny reserved ID used in standard' frames, ids a	t ended' the i net the user other	d is a 29-bit must avoid	
MsgObjLAN1.Type	1	03	RW		
	The object type.				
		lidate, this can be use ting message object.	d to deactivat	te an	
	1. Receive	•			
	2. Transmi	t, with automatic respo	onse to a rem	ote frame.	
	should b	it, respond to a remote be written in PL code, th with an interrupt.			

MsgObjLAN1.Frame	2	01	RW
	use. 0 = Standar 1 = Extende Can only be indicating th Note. A des 'Extended' f a message receive 'Ext net follow C	criptor that is program rames will not receive programmed to receive	wProt equals 2 2.0 part B is supported. med to receive 'Standard' frames nor wil e 'Standard' frames ossible, if all units on the o mix 'Standard' and
MsgObjLAN1.DataLen	3	08	RW
	efficient to u		object. Normally it is mos s not necessary to read re using it.
MsgObjLAN1.Vector	4	1Max. line of PL2 program lines	RW
	specified. Specify a lir reception or	or on a reception/transion the # where to execute the a transmission of an o the stansmission of an o	code when a
MsgObjLAN1.Status	5	03 (when read) 112 (when written)	RW
	instruction h On read, ind the value w a response 0 = Undefin 1 = The des 2 = A remot 3 = The des Usually use	to a remote frame.	e descriptor. On write, it is to transmit a frame as smitted. sived with this ID. ived.
	MsgObjLAN ; Tx, wit response MsgObjLAN MsgObjLAN MsgObjLAN setObjLAN	nterrupt system> N1.id = 400 MsgOb Th semi automatic N1.frame = 0 N1.DataLen = 4 N1.Vector = @isrL N1 5 or lan1.mask interrupt	remote frame an
isrLan:	;Message GetObjLAN	initialization object 5 interru 11 5 scriptor content	pt service routine

if MsgObjLAN1.status ;<> 2 then IsrDone
This was a remote frame
;request for the data ;in this descriptor,
now ;we can update the data
write LAN1 R10, 1, 5
MsgObj.status = 5
isrDone: ; we are done with it, it will now be sent.
IreturnCAS1 16
; Re-enable this interrupt:

LAN2, LOCAL AREA NETWORK 2

Group	Group No.	Description
LAN2	30	Local area network group. LAN channel number 1. This group is the interface to the Local Area Network. The OSI reference model for LAN communication: Application layer Presentation layer Session layer Transport layer Network layer Datalink layer Physical layer

GENERAL

The main difference between LAN2 and LAN1 is that LAN2 has an isolated interface and the connector configuration follows the CANOPEN standard.

LAN2 COMMANDS

LAN2 have the same commands as LAN1. See chapter LAN1.

MSGOBJLAN2, HELPER FOR LAN2

Group	Groupe No.	Description	
MsgObjLAN2	31	CAN message descriptor temporary storage. A message object descriptor must be initialized and then activated with the SetObjLAN2 instruction. It is the responsibility of the user to fill in the MsgObjLAN2 group prior the use of the instruction SetObjLAN2. The system fills in the MsgObjLAN2 group when the GetObjLAN2 instruction is used. Example:	
	<pre><do initialize="" lan=""> MsgObjLAN2.Id = 2000 ; ID number for this message object MsgObjLAN2.Type = 1 ; Receive type MsgObjLAN2.Frame = 0; Standard frame MsgObjLAN2.DataLen = 2 ; Two bytes in this</do></pre>		

MSGOBJLAN2 COMMANDS

 $\mathsf{MsgObjLAN2}$ have the same commands as $\mathsf{MsgObjLAN1}.$ See chapter $\mathsf{MsgObjLAN1}.$

MULTDIV,

Group	Group No.	Description
MultDiv	49	The operation support full 64-bit precision in the multiplication and division. Also division by zero and overflow detection has been added. In case an overflow is detected result will be +-MAXINT. The division does automatic round off.

GENERAL

This group performs the following operation,

 $\frac{MultDiv.Num1 * MultDiv.Num2}{MultDiv.Denom} = MultDiv.Re\,sult, MultDiv.Re\,min\,der$

FUNCTION

An Internal calculation method that uses 64-bit precision.

The calculations are made when a result variable is read.

Automatic roundoff is done by adding 50% of the Denominator to the Numerator before dividing.

RELATED ITEMS

MulDiv, DivMul instructions.

EXAMPLE USAGE

For all scaling purposes where 32-bit precision is inadequate.

GROUP MEMBERS (GROUP 49)

	-	. –		
Group.Member	Member	Range	Ability	Default
	No.			
MultDiv.Num1	0	-2 ³¹ 2 ³¹ -1	RW	
	Numerator #1 is a 32bit signed value, the numerator is formed by the product: MultDiv.Num1 * MultDiv.Num2. The product has 64-bit precision but is not available to read.			
MultDiv.Num2	1	-2 ³¹ 2 ³¹ -1	RW	
	Numerator #2 is a 32bit signed value, the numerator is formed by the product: MultDiv.Num1 * MultDiv.Num2. The product has 64-bit precision but is not available to read.			
MultDiv.Denom	2	-2 ³¹ 2 ³¹ -1	RW	

	Denominator is a 32bit signed value.			
MultDiv.Quotient	3	-2 ³¹ 2 ³¹ -1	R	
	When this member is read then the quotient (integer part of the result) is calculated and the MultDiv.Flags are updated.			
MultDiv.Reminder	4	-2 ³¹ 2 ³¹ -1	R	
	When this member is read then the reminder (fractional part of the result) is calculated and the MultDiv.Flags are updated.			
MultDiv.Flags	5	07	R	
b0 (1) b1 (2)	Indicates a division by zero.			

FLASHMEM

Group	Group No.	Description
FlashMem	50	Flash memory control

GROUP MEMBERS (GROUP 50)

Group.Member	Member No.	Range	Ability	Default
FlashMem.Mode	0	01	RW	0
Bit0(1)	When set the download of an application SW will be automatically followed by a FSTORE command.			
FlashMem.Status	1			
	NIU		·	

Group	Group No.	Description
ABIn	52	Input buffer to the Anybus-S modules

GENERAL

This is an array of 8bit bytes. The group contains the first 255 bytes of the IN area.

FUNCTION

RELATED ITEMS

ABOut

EXAMPLE USAGE

GROUP MEMBERS (GROUP 52)

Group.Member	Member	Range	Ability	Default	
ABIn.	No. 0-254	0255	RW	0	
	Data received from DMC ² .				

ABOUT

Group	Group No.	Description
ABOut	53	Output buffer from the Anybus-S module

GENERAL

This is an array of 8bit bytes. The group contains the first 255 bytes of the OUT area.

FUNCTION

When the Anybus-S module has received and processed a fieldbus message the data will be available in this output buffer.

RELATED ITEMS

ABIn

EXAMPLE USAGE

Display incoming data from the fieldbus Disp ABOut.23 ;inspect byte 23 in the output buffer

GROUP MEMBERS (GROUP 53)

Group.Member	Member	Range	Ability	Default
	No.			
ABOut.	0-254	0255	RW	0
	Data received from the Anybus-S module.			

DSTORE,

Group	Group No.	Description
DStore	54	Stores 32bit signed values. The max-length of DStore is 2047. This group enables an application programmer to implement a FIFO (First In First Out) or a LIFO (Last In First Out), data structure.

GENERAL

The Dstore meachanism allows the user to store 2047 samples of any internal 32bit variable in each of the two available buffers. By using the Connect mechanism to do so the Dstore can be seen as a two channel digital oscilloscope within the DMC^2 .

The data stored can then be uploaded over the serial channel or connected to an analog output for analysis.

This group is not affected by a GDisp terminal mode command.

FUNCTION

When a sample of data is written to a Dstore buffer a pointer is incremented so that the next data can be written. When saturated the oldest data will be lost. The numebr of data (if less than 2047) can be seen in Dtorel.Lengthx

RELATED ITEMS

Connect statement allows the user to automatically store to or extract data from the dstore buffers

EXAMPLE USAGE

To store values to DStore

DStore.in1, Rd1.Speed ; or any other valid data

Connect Dstore.In1 to reg.torque

NOTE. If you store faster than once per servo cycle then multiple entries with the same value will be found in DStore..

To 'play' the recorded data to an analog output port do:

Connect Ana.Out1 to DStore.Peek1

To remove a value from DStore do,

R100, DStore	.Out1 :F	IFO structure (This is a queue)
R100, DStore		IFO structure (This is a stack)

To clear DStore from all values do,

Dstore.Length1, 0

GROUP MEMBERS (GROUP 54)

Group.Member	Member	Range	Ability	Default
	No.			
DStore.Mode	0	-2 ³¹ 2 ³¹ -1	RW	
	Not used			
DStore.In1	1	-2 ³¹ 2 ³¹ -1	RW	
	Input to DStore. On Write: The value is inserted at the top of the storage area, and the length will be incremented by one. On Read: Return the value at the top of the storage area. The length will be decrement by one.			
DStore.Out1	2	-2 ³¹ 2 ³¹ -1	RW	
	Output from Dstore. On Write: Not possible. On Read: Return the value at the bottom of the storage area, and decrement the length by one.			
DStore.Peek1	3	-2 ³¹ 2 ³¹ -1	RW	
	Peek into the storage area. On Write: Set offset where to peek. On Read: Return the value at the peek-index, and increment thepeek- index by one. The peek-index is internally kept within the value of DStore.LengthX.			
DStore.Length1	4	02047	RW	
X = 1 or 2	The currently used length of DStore, (not the max. length). On Write: Reset current length to zero. (The value given is ignored). On Read: Return the currently used length of DStore. (Return number of entries in Dstore).			

PARAREA,

Group	Group No.	Description
ParArea	55	Non-volatile parameter storage area.

GENERAL

This group uses a window technique to select a specific parameter set. The parameters can be configured to be 16 bit or 32-bit size.

FUNCTION

This group uses the same hardware resource as the EEprom group. Therefore a user must wait for a load/store action to finish the same way as for the EELoad/EEStore instructions, but use ParaArea.Mode Bit0 instead.

RELATED ITEMS

EXAMPLE USAGE

GROUP MEMBERS (GROUP 55)

Group.Member	Member Range Ability Defau				
	No.				
ParArea.Mode	0	07	RW		
	Operation m	node and status	information.		
b0 (1)	Operation done. After a Load/Store operation a wait instruction should follow to make sure that the operation has finished before executing the next instruction. This is actually an image of the bit in the SysIo.MemStat indicating that the physical Eeprom operation has finished. In order to be future compatible it is strongly suggested that this bit is used instead of the SysIo.MemStat.				
b1 (2)	Checksum e	error.			
b2 (4) =0 =1	Parameter organization. A parameter is 32 bit. A parameter is 16 bit.				
ParArea.Load	1 32bit=031 RW 16bit=063				
	Load all Raw members from the window given. After a Load/Store operation a wait instruction should follow to make sure that the operation has finished before executing the next instruction. In case the checksum calculation fails then b1 in ParArea.Mode is set.				

	ParArea.Load, 4 ; Load from window #4 wait ParArea.Mode and 1 <check pararea.csum=""></check>					
ParArea.Store	2	32bit=031 RW 16bit=063				
	Store all Raw members into specified window. After a Load/Store operation a wait instruction should follow to make sure that the operation has finished before executing the next instruction. The CSum member is automatically calculated by the firmware.					
		tore, 4 rea.Mode and	;Store from window #4 1			
ParArea.Raw010	3 - 13	-2 ³¹ 2 ³¹ -1	RW			
	Parameter #	n of the current	y loaded window.			
ParArea.CSum	14	-2 ³¹ 2 ³¹ -1	RW			
	Checksum v	/alue.				
ParArea.S0S10	15 - 25	-2 ³¹ 2 ³¹ -1	RW			
		X value. When t lculation is perfo	his member is read then the rmed,			
	$sX = \frac{Rawx}{s}$	X * ScaleX 65536				
	The intention is to use the DIVMUL operation to calculate the scale value as, ParArea.scale2 = 7400 DIVMUL 800 Scale s2 to return a full-scale reading of 7400 for a Raw value of 800.					
ParArea.S0S10	26 - 36	-2 ³¹ 2 ³¹ -1	RW			
	The scale value used in the calculation when a sX member is read.					

XENDAT,

Group	Group No.	Description
XENDAT	56	The ENDAT transducer interface group. Purpose is to initialize, control and readout position/speed from the ENDAT sensor.
		The interface supports ENDAT sensors that conforms to the Heidenhain document D297403-00-A-02, version 2.1.

GENERAL

This group is not affected by a GDisp terminal mode command.

FUNCTION

The sensor can be operated in four modes

MANUAL MODE.

In this mode the PL program controls each transmission and reception from the sensor. This is the mode used to initialize, configure and troubleshoot the sensor.

AUTOMATIC SERIAL MODE

The serial position of the sensor is read every servo cycle, or as often as the sensor/sensor clock allows, if this is slower.

This position is absolute up to the capacity of the serial capacity of the encoder, and then incrementally extended to the 32-bit position the DMC² uses. In case the encoder has a capacity of more than 32 bits, only the 32 least significant bits are used.

If this mode is used for commutating and regulating the motor, it must be ensured that the encoder is setup in such a way that it can respond every servo cycle. Also no manually transmitted commands that disturbs this is allowed. (At 2 MHz endatclock it is possible to run both parameter reads and regulation at the same time)

ANALOG MODE ONLY

The analog signals from the sensor is counted in and up/down quadrate counter to extract a coarse position and an Arctangent calculation is performed on the sin and cos signals to extract a fine position. These positions are then combined to a total position. The extra resolution that can be extracted this way is maximum 11 bits. The 13 least significant bits of this information is absolute, all other higher order bits are incremental.

COMBINED SERIAL AND ANALOG MODE

In this mode the position from the analog mode is combined with the serial data to get an absolute position from the encoder, and to extend it with up to 11 more bits. Thus for a 25 bit encoder the position can be extended by 7 bits to 32 bits fully absolute position. Extending the position with more than 7 bits will in this case

result in the most significant bits being discarded to keep the total position to 32 bits.

This is the preferred mode, since it allows running the encoder on lower clockfrequency, and allows interruptions in the serial data without affecting the regulation. Also any counting errors in the incremental signal will be corrected when next serial data arrives.

RELATED ITEMS

EXAMPLE USAGE

Before the ENDAT sensor can be used, the sensor must be initialized.

Example code to initialize:

; ; 1 RTmp, XENDAT.Status	Check that the ENDAT host interface has been initialized properly. if SYSIO.MEMSTAT and 2048 then INIT_ERR ; Resets any spurious flags.
; ; 2	Reset interface.
XENDAT.Mode, 128	; Reset host ENDAT interface.
; ; 3 ; XENDAT.Mode, 128	Check ENDAT power supply. ; if XENDAT.Status and 4 then PWR_ERR.
; ; 4 ;	Synchronize communication with the sensor.
XENDAT.Mode, 32	; Force CLK line low.
clr tmr.t0 wait tmr.t0 > 100	; This time is sensor dependent.
XENDAT.Mode, 64 clr tmr.t0	; Force CLK line high.

wait tmr.t0 > 2	; This time is sensor dependent.
XENDAT.Mode, 32+64+1	; Automatic clock mode, and enable.
XENDAT.Clock, 4 ;	; 2MHz transfer rate Transfer rate is cable length dependent.
; 5.	Ready to issue manual transfers.
;	Read position, read/write parameters.

GROUP MEMBERS (GROUP 56)

Group.Member	Member	Range	Ability	Default			
	No.						
XENDAT.Mode	0	0255	RW	0			
	ENDAT.Mo activated.	ode = 0.The ENI	DAT communic	ations not			
b0	Serial com	munication inter	face active.				
bl	Analog inte	erface active.					
b2	Standard e	encoder interface	e active. See th	e IENC group.			
b3		Enable ENDAT serial communication timeout interrupt See the VECTOR. PosErr member.					
b4	Serial data	timeout has occ	curred.				
b5	Serial com	m. manual mode	e, bit0.				
b6	Serial comm. manual mode, bit1.						
	Bit 0 to Bit 6 initialize the ENDAT sensor.						
0 0	Normal mode.						
01	Force cloc	k low.					
10	Force cloc	k high.					
11	Automatic	mode.					
	After this mode is given then Normal mode is automatic entered.						
b7	^{b7} Reset interface. When this bit is set then the ENE communication interface is reset.						
	Mode values:						
	0 = ENDAT interface turned off.						
	1 = Serial mode active.						

	2 = Ana	2 = Analog mode active.					
	3 = Con	nbined serial a	and analog mod	de.			
	4 + any of the above: The incremental encoder interactive. (See the IENC group)						
	The follo	-	are used for ini	tializing the interface			
	32 = Fo	rce the ENDA	T clock line LC	W			
	64 = Fo	rce the ENDA	T clock line HI	GH			
	64+32 =	= Start the EN	DAT CLOCK.				
	128 = R	eset the interf	ace hardware.				
XENDAT.Clock	1	499	RW	80			
	This set	s the clock fre	equency to the	ENDAT sensor. *			
	Frequer	ncy is calculate	ed as follows:				
	f = 10 0	00 000 / (valu	e + 1)				
	Max EN	IDAT clock is 2	2 MHz, which g	ives the value: 4			
	Min EN	DAT clock is 0	.1 MHz, which	gives the value: 99			
		x allowable clong the se		depending on the			
	*See the descript		cification for a ı	more detailed			
	** Up to 127 Accepted by hardware, but will generate an out-of-specification clock frequency.						
		kample values		unication. Below is a ng communication			
	99 => 1	00 kHz					
	79 => 1	25 kHz					
	39 => 2	50 kHz					
	19 => 5	00 kHz					
	9 => 1.0	9 => 1.0 MHz					
	4 => 2.0) MHz					
XENDAT.	2	065535	R	x			
	NIU		·	· · ·			
XENDAT.Status	3	065535	R	x			
	Shows status of hardware when (XENDAT.Mode and 1) = 0, otherwise gives status data returned for last manually transmitted command.						
	b0 (1) = ALRMbit, sensor alarm.						
	This bit is only valid after a position transfer,						

	XENDAT.Transfer = 0.					
	b1 (2) = CRCbit, CRC compare mismatch.					
	. ,			of the ENDAT power		
	b3b15 =	reserved.				
XENDAT.Config	4	063	RW	25		
	sensor in u sensor in u		nust be set to n	natch the actua		
	information the most s less than 3	can handle max n, thus if a sense ignificant bits are 2 bits, the drive osition to 32 bits, ctionality.	or with more that e discarded. If t r will increment	an 32 bits is use he sensor used ally extend the	d	
XENDAT.Rdy	5	01	R	1		
		ber indicates whe			าร	
XENDAT.Data	6	16 bit	RW	0		
	Data to/from a manually issued command.					
	Read:					
	Value received from the sensor as a result of a parameter read transfer.					
	Write:					
	Value to transmit to the sensor for a parameter writes transfer.					
XENDAT.Addr	7	32 bit	RW	0	-	
	Address to	read/write to se	ensor in manual	mode.	-	
	The ENDAT manual uses WORD as a notation for parameters, to convert a WORD value to an address use XENDAT.Addr = rWORD and 15.					
	Read:					
	Address received from the sensor as a result of a parameter read transfer.					
	Write:					
	Address to write ENDAT.Data to, within the ENDAT based sensor.					
XENDAT.Transfer	8	0-7	RW	0	-	
	To manua	lly issue a comm	and, command	type is 0 to 7.	-	
	After sensor initialization the following transfer types are available. Before a new transfer is issued with the ENDAT interface a programmer must check that					

167

	XENDAT.Rdy is 1.
0	Read absolute position from sensor.
	Setup: None
	Check:XENDAT.Status -> ALRMbit, CRCbit and PWRbit
	Result: If the check passed then, $ENDAT.Pos = The$ 32bit signed position.
1	Select memory area. The selected memory area will be valid until a new is choosen.
	Setup:
	Set ENDAT. Addr with the wanted MRS code. For MRS- codes see the ENDAT manual.
	Check:
	After the transfer is completed then verify that ENDAT.Addr holds the wanted MRS code.
	Result:
	If the check passed then the wanted MRS code, memory area is selected within the sensor.
2	Receive test values from sensor. NYI
3	Send parameter to sensor.
	Setup:
	Select the appropriate memory area, MRS-code, using a type 1 transfer.
	ENDAT.Addr = address of the parameter to write to.
	ENDAT.Data = 16-bit data to write.
	Check:
	After the transfer is completed verify that ENDAT.Addr holds the address of the parameter and check XENDAT.Status PWRbit,
	CRCbit. (ALRMbit is not valid at this time and must be ignored).
	Result:
	If the check passed then the data has been written to the parameter.
4	Receive parameter from sensor.
	Setup:
	Select the appropriate memory area, MRS-code, using
	a type 1 transfer.
	XENDAT. Addr = the address of the parameter to read.

		t XENDAT . Addr was read and				
	PWRbit, CRCbit. (ALRMbit is not valid at this time a must be ignored).					
	Result:					
	XENDAT.D	ata contain the	parameter va	alue.		
	XENDAT.A	ddr contain the	parameter a	ddress.		
5	Send reset	t to sensor.				
	Setup:					
	XENDAT.A	.ddr = value1				
	XENDAT.D	ata = value2				
	Check:					
	and XENDA	After the transfer is completed verify that XENDAT.Add and XENDAT.Data holds the values we programmed during setup. Result:				
	Result:					
	If the check passed, the sensor has been reset. Send test command to sensor. NYI.					
б						
7	Receive te	Receive test data from sensor. NYI.				
XENDAT.ManPos	9	32 bit	RW	0		
	Resulting position when a position was requested manually. Position read from the sensor after a type 0 transfer.					
XENDAT.Ver	10	16 bit	R	Current version		
	FPGA cod	e version used i	n the ENDAT	interface.		
XENDAT.Pos	11	±31 bit	R	0		
	Automatically retrieved position. This is the position used for regulation of the motor. The resolution and update rate for this value is depending on the selected operating mode.					
XENDAT.Speed	12	±31 bit	R	0		
	This is the	speed from the	ENDAT sens	or.		
	In the DMC ² the maximum supported speed for regulation and gear box etc is -32767000 32767000. Due to the possible high resolution of an ENDAT sensor this speed may be reached at a few 100 rpm. To avoid this problem the speed reading here does not have that limitation. If the ENDAT sensor is used as an input to the regulator or gearbox, the user must make sure that this lower speed is not exceeded.					

169

	The speed sent to the regulator and gearbox is limited to ±32767000. If this speed does not allow a sufficiently high rpm, the resolution of the sensor has to be decreased. (See XENDAT.PosShift).					
XENDAT.SerABSPos	13	Not A	R	0		
	sensor, the The value	serial absolute e position wraps is only updated	at the capacity	of the sensor.		
	set. Note A. Se	ensor dependent	t, max 32bit.			
XENDAT.SerPos	14	±31 bit	R	0		
	This is the	serial extended	position from t	he sensor.		
	The position	on wraps at the l	DMC ² 32 bit po	sition capacity.		
		AT. SerWrapCnt I between this po				
	The value set.	is only updated	if bit 0 in XEND	AT.Mode is		
XENDAT.SerErrors	15	±31 bit	RW			
	Error counter for transmission errors from the endat sensor.					
	The following errors are counted:					
	Alarm from endat. CRC error on received frame. 5 Volt supply error.					
XENDAT.IncErrors	16	±31 bit	RW	0		
	Error counter for detected errors in the UP/DOWN counter. This quadrature counter is used to count the whole sine/cosine periods of the analog ENDAT signal. When there is a situation where both input signal change state at the same time, the discriminator in the encoder cannot determine if this should be an UP or DOWN count. In this case <i>the l errors</i> counter is incremented.					
i	Since the same hardware counter is used in the IENC group, this error counter is also common to both groups.					
XENDAT.SerIncOffs	17	±31 bit	R	0		
	When combined serial and analog (incremental) mode is used, this value holds the difference between the incremental and the absolute position from the sensor. If there are no errors, this value will be constant, once the system is started.					

XENDAT.RPos	18	±31 bit	R	0	
	Referenced position, value = XENDAT.Pos - XENDAT.PosOffs.				
XENDAT.PosOffs	19	±31 bit	RW	0	
	Position offset between XENDAT.Pos and XENDAT.RPos.				
XENDAT.SerWrapCnt	20	±31 bit	RW	0	
	Position of XENDAT.S	fset between XI JerPos.	ENDAT.Ser	ABSPos and	
	sensor cap with aid of		se is to set s if the ENI	s of the ENDAT the home position DAT absolute	
XENDAT.SinOffs	21	016384	RW	8192	
	Offset calib	oration for END	AT sine-sig	nal.	
XENDAT.CosOffs	22	016384	RW	8192	
	Offset calib	pration for enda	t cosine-sig	nal.	
XENDAT.PosShift	23	011	RW	0	
	In ENDAT analog mode, or combined mode, this valu is the number of bits from the evaluation of the analog sine and cosine signals that is added to the serial position data.				
i	This parameter does not affect the values that are used for commutation of the motor.				
	The motor is commutated on the standard (non- extended) value from the ENDAT sensor. Motor.Ppr shall be set to the resolution the sensor has when XENDAT.PosShift is set to zero, and it is not to be changed when the XENDAT.PosShift is changed. Since this parameter changes the magnitude of speed and position sent into the regulator for a given mechanical movement, the regulator gain settings as well as motion profiles etc will have to be changed if the resolution of the sensor is changed.				
XENDAT.SerPosAge	24	03276	7	R	
Age(in milliseconds), of last serial position value find the Endta sensor (i					
XENDAT.SerTimeOut	25	0327	67	RW	
	Timeout (in milliseconds), before a position error interurpt is set pending. (See Xendat.mode)				

COUNTER

Group	Group No.	Description
Counter	57	The counter group can be configured to count an external hardware event, measure frequency, or to generate a high-resolution time count.
		The source signal can be an internal frequency of 10 Mhz or an external digital input.(Di1 or Encoder Zero pulse)

GENERAL

The DMC² can utilize an internal HW counter to count high frequencies.

FUNCTION

A hardware resource within the CPU is used to count every edge on a source signal. The frequency is derived as a number of edges counted during a specified timebase and then scaled. A prescaler is implemented to adjust the scale.

Be aware that the frequency value is only updated once every timebase period, which means that the value of Counter.Freq is not valid until at least one period has elapsed.

RELATED ITEMS

Capture.Mode

EXAMPLE USAGE

Measure the frequency of an external signal connected to the Incremental Encoder Interface:

Capture.Mode,8 Counter.mode,3 Counter.Timebase,100 ;redirect zero pulse input to counter ;activate with external source ;100 mS timebase for counting

GROUP MEMBERS (GROUP 57)

Group.Member	Member No.	Range	Ability	Default
Counter.Mode	0	0256	R (W)	0

^{b0} Enable or disable Counter group.

0 = Disabled.

1 = Enable.

b1 Counting source.

	0 = Internal	time counter.			
	1 = External event counter.(selcted with capture.mode)				
	The counter external edg		positive and th	ne negative going	
b2-b6	Reserved.				
b7	Frequency c				
	occurs in the	iency calculatior e case a too high ng time base va	h frequency is t		
Counter.Count	1	±31 bit	RW	0	
	divide the co Counter is c	alue. The Count ount value with a onfigured for inte counter value is	a fixed value. In ernal time meas		
Counter.Freq	2	±31 bit	R	0	
		equency in Hz.			
Counter.TimeBase	3	11000	RW	1	
	The time interval used for frequency calculation in milliseconds.				
	Note. If a time base value is too large for the given frequency then measurement overflow occurs. The overflow is indicated in Counter.Mode.				
	The theoretical measurement range for different values of Counter.TimeBase are:				
	1000ms	1Hz - 32k	Hz		
	500ms	2Hz - 65k	Hz		
	100ms	10Hz - 327	kHz		
	50ms	20Hz - 655	kHz		
	10ms	100Hz - 3M	MHz		
	5ms	200Hz - 6M	MHz		
	1ms	1000Hz - 3	2MHz		
Counter.PreScale	4	07	RW	1	
	Shift factor for Counter.Count value.				
	0 = divide by 1				
	1 = divide by	y 2			
	2 = divide by	y 4			
		. 0			
	3 = divide by	y 8			

 5 = divide by 32 6 = divide by 64 7 = divide by 128 In the case the counter is configured to measure time the resolution is given by reading Counter.Freq. If the frequency is 10000000 then the time resolution is 100ns. 	
7 = divide by 128 In the case the counter is configured to measure time the resolution is given by reading Counter.Freq. If the	5 = divide by 32
In the case the counter is configured to measure time the resolution is given by reading Counter.Freq. If the	6 = divide by 64
resolution is given by reading Counter. Freq. If the	7 = divide by 128
	resolution is given by reading Counter.Freq. If the

DENTIFIER

Group	Group No.	Description
Identifier	58	The identifier group is the interface to the front panel selector. The standard DMC^2 is equipped with a decimal encoded selector, the value from one single selector will be in the range 09.

GENERAL

The DMC² is equipped with two rotary switches on the front panel. The switches are BCD coded (0 - 9) and have no predefined function.

The intention is to use them as address switches for serial- or fieldbus communication.

FUNCTION

The switches are read as any other digital input.

RELATED ITEMS

EXAMPLE USAGE

Set node number for serial communication at startup:

GROUP MEMBERS (GROUP 58)

Group.Member	Member No.	Range	Ability	Default
Identifier.Mode	0	02	RW	0
	NYI.			
Identifier.Value	1	0255	R	0
	The decimal value of the combined selector.			
Identifier.V0	2	015	R	0
	The value of	f the least signifi	cant selector. (bottom switch)
Identifier.V1	3	115	R	0
	The value of	f next selector. (top switch).	

RDPDATA

Group	Group No.	Description
RDPDATA	59	Reading PDATA contents.

GENERAL

Data arrays can be define in the DMC² using the Pdata statement.

The standard usage of such an array is as input to the Profile Generator (Profile Acc) or as a Cam table.

FUNCTION

This group allows the user to read a Pdata array for any purpose.

RELATED ITEMS

Pdata statement

EXAMPLE USAGE

ptab: PDATA 89, 2 PDATA R3, R9 PDATA 0,0

The RPDATA group can be used for reading the content of the PDATA table.

R0, @ptab loop: RPDATA.Load, R0 if RPDATA.Status and 1 then LoopStop

> disp RPDATA.Arg1 disp RPDATA.Arg2 add R0, 1 goto loop

LoopStop:

stop

Running this program will show,

>run

>RPDATA.Arg1 = 89
>RPDATA.Arg2 = 2
>RPDATA.Arg1 = <content of R3>
>RPDATA.Arg2 = <content of R9>
>RPDATA.Arg1 = 0
>RPDATA.Arg2 = 0

>

GROUP MEMBERS (GROUP 59)

Group.Member	Member	Range	Ability	Default
	No.			
RDPDATA.Status	0	07	RW	0
bC	mulcale ma	t the value given A instruction.	for RDPDATA.	Load member is
b1	Indicate that constant.	t RPData.Arg1 v	alue came from	n a register not a
b2	Indicate that constant.	t RPData.Arg2 v	alue came from	n a register not a
RDPDATA.Load	1	08192	RW	0
	instruction.	nber specified m If the specified lin RPDATA.Statu	ne is not a PDA	TA instruction
RDPDATA.Arg1	2	±31 bit	R	0
	out by RPDA		PDATA line is	ATA line pointed specified using a
RDPDATA.Arg2	3	±16 bit	R	0
	pointed out	of the second a by RPDATA.Loa ster then the val	d. If the PDAT	A line is specified

SANYBUS

Group	Groupe No.	Description
SAnyBus	60	Interface to the Anybus-S board by Hassbjer Micro Systems AB.

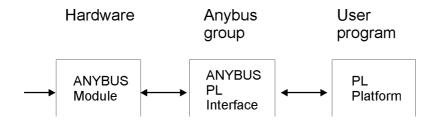


Figure 8. Blockdiagram, AnyBus support.

GENERAL

Before the SANYBUS group is operational some steps must be done to initialize the running environment. This is done by enabling the ANYBUS group and then use the mailbox communication mechanisms to initialize the ANYBUS-S module. The details can be found in the ANYBUS-S documentation from HMS Fieldbus systems AB. (http://www.hms.se/)

FUNCTION

This group provides an interface for a DMC2E application to the family of Anybus-S fieldbus interfaces available from HMS Fieldbus systems AB. Preferred bustypes are Profibus-DP, Interbus and Device NET. The interface is seen as an input and an output buffer where data can be read and written. Some commands are provided to to control the data flow. The application has to define how the data is to be used (no defined standard protocoll).

RELATED ITEMS

Vector	PL interrupts service routine vectors.
Int	PL2 interrupts masks.
SAnyBus	Anybus module control group.
ABOUT	Output buffer, from AnyBus-S module to the PL2 environment. This buffer is for debug only.
ABIN	Input buffer, to AnyBus-S module from the PL2 environment. This buffer is for debug only.

EXAMPLE USAGE

.

Testing the ANYBUS-S interface to the DMC2E.			
Sets up an ECHO of 4 bytes. Incoming data is echoed back on the Profibus Note. These names are only visible at compile time. The two groups ABInMail and ABOutMail are arrays of 16bit integers.			
DMC -> Fieldbus			
.define ABInMail.MessageID= { 61, 0 }.define ABInMail.MessageInfo= { 61, 1 }.define ABInMail.Command= { 61, 2 }.define ABInMail.DataSize= { 61, 3 }.define ABInMail.FrameCount= { 61, 4 }.define ABInMail.FrameNumber= { 61, 5 }.define ABInMail.OffsetHigh= { 61, 6 }.define ABInMail.OffsetLow= { 61, 7 }			
Profibus .define PBIn.InIOLen = { 61, 16 } .define PBIn.InDPRAMLen = { 61, 17 } .define PBIn.InTotalLen = { 61, 18 } .define PBIn.OutIOLen = { 61, 19 } .define PBIn.OutIDPRAMLen = { 61, 20 } .define PBIn.OutTotalLen = { 61, 21 }			
Generic			
.define ABInMail.ModuleStatus = { 61, 22 } .define ABInMail.IrqNotify = { 61, 23 }			
Fieldbus -> DMC			
.define ABOutMail.MessageID = { 62, 0 } .define ABOutMail.MessageInfo = { 62, 1 } .define ABOutMail.Command = { 62, 2 }			
.define ABOutMail.DataSize = { 62, 3 } .define ABOutMail.FrameCount = { 62, 4 } .define ABOutMail.FrameNumber = { 62, 5 } .define ABOutMail.OffsetHigh = { 62, 6 } .define ABOutMail.OffsetLow = { 62, 7 } .define ABOutMail.Error = { 62, 15 }			
.register rOnLine .register rProtNumber .register rTmp91,rTmp92,rTmp93 .register tmp10, tmp20			

.define cSTART_INIT = 1 .define cANYBUS_INIT = 2 .define cSET_ETN_CONFIG = 3 .define cCONNECT_TIMEOUT = 4 .define cEND_INIT = 5 .define cNoModule = 0 .define cProfibusDB = 1 Start ; ;init the module gosub SRou_SAnyBusInit wait 1=2 Give the fieldbus module time to start. SRou_SAnyBusInit: SAnybus.TimeOut,50 clr rOnLine clr tmr.t0 wait SAnybus.FBType <> cNoModule if SAnybus.FBType = cProfibusDB then ProfibusDP clr tmr.t0 wait tmr.t0 > 100 return _____ ProfiBus-DP ProfibusDP: Vector.SAnybus, @IRou ProfiBus ;set vector ;enable interrupt or int.sysmask, 4096 SAnybus.HasMail, 0 ; Clear mailbox flag SAnybus.Mode, 1+2+4+8+16 ; Enable SANYBUS and all interrupts and reverse ;read gosub SendStartInit gosub SendInit64_64 gosub SendEndInit return ;Interrupt entry for profibus ;Remember that the ABOut buffer is holds the OUTPUT FROM the Anybus module :seen frombthe PL2 side. ;The ABIn buffer holds the INPUT TO the Anybus module seen from the PL2 side. IRou_ProfiBus: if SAnybus.HasOutput = 0 then isrProfibus00 ;test if any data in output ;buffer SAnybus.HasOutput, 0 ; Clear flag

; Copy return data anybusout getlong rTmp91,0 anybusout getint rTmp92,4 anybusout getbyte rTmp93,6	;read byte 0 - 3 into reg ;read byte 4 - 5 into reg ;read byte 6 into reg
anybusin putlong rTmp91,0	;write back first long
AnybusIO Send	;send it back
isrProfibus00: if SAnybus.HasMail = 0 then is	rProfibus10
; We handle this in code. But we show ; disp SAnybus.HasMail	it here anyway.
isrProfibus10: if SAnybus.OnLine = rOnLine ; disp SAnybus.OnLine rOnLine, SAnybus.OnLine	hen isrProfibus20
isrProfibus20: ireturn sys 4096	
; ; START_INIT	
, SendStartInit : rProtNumber, cSTART_INIT SAnybus.Command, 1 wait SAnybus.Command = 0 SAnybus.Command, 7 wait SAnybus.HasMail = 1 ; Investigate response mail for errors h	; Send to fieldbus module ; Wait for response mail
if ABOutMail.MessageInfo < 0 SAnybus.HasMail, 0 return	
SendInit64_64: rProtNumber, cANYBUS_INIT SAnybus.Command, 3 wait SAnybus.Command = 0	; Prepare ANYBUS_INIT mail message ; Wait for it to be done
; Modify default values here in ABInMa ; Length in bytes! ;	il
PBIn.InIOLen, 64 PBIn.InDPRAMLen, 64 PBIn.InTotalLen, 64 PBIn.OutIOLen, 64 PBIn.OutDPRAMLen, 64 PBIn.OutTotalLen, 64	
ABInMail.ModuleStatus, 512+2	2 ; default value (you must keep 512)

181

ABInMail.IrqNotify, 7 ; default value, do not change SAnybus.Command, 7 ; Send to fieldbus module wait SAnybus.HasMail = 1 ; Wait for response mail ; Investigate response mail for errors here if ABOutMail.MessageInfo < 0 then ErrorProt if ABOutMail.Error <> 0 then ABIErrorProt SAnybus.HasMail, 0 ; Clear mailbox flag return ; END_INIT SendEndInit rProtNumber, cEND INIT : SAnybus.Command, 2 ; Prepare END_INIT mail message ; Wait for it to be done wait SAnybus.Command = 0 ; Send to fieldbus module SAnybus.Command, 7 wait SAnybus.HasMail = 1 ; Wait for response mail ; Investigate response mail for errors here if ABOutMail.MessageInfo < 0 then ErrorProt SAnybus.HasMail, 0 ; Clear mailbox flag return ErrorProt: tmp10 = ABOutMail.MessageInfo and 0ffh tmp20 = ABOutMail.MessageInfo and 0f00h tmp20 = tmp20 >> 8 iprint @txtProtError, rProtNumber image "Error in: %d" txtProtError: if ABOutMail.MessageInfo and 04000h then ErrCommand Response message clr tmr.t0 wait tmr.t0 > 100 stop ; Command error ErrCommand: clr tmr.t0 wait tmr.t0 > 100 stop ABIErrorProt: clr tmr.t0 wait tmr.t0 > 100 stop

GROUP MEMBERS (GROUP 60)

Group.Member	Member No.	Range	Ability	Default	
SAnyBus.Mode	0	0256	R(W)	128	
Mode = <bitvalue></bitvalue>	B0 (1) = B1 (2) = ABOutMa When this Routine c B2 (4) = ABOut ha When this Routine c B3 (8) = change, A When this Routine c B4 (16) = AnybusO 0 = Big er 1 = Lit b7 (128) = the ANYE module a	Enable grou Enable inte iil has new o s bit is activa an be used Enable inte is new data. s bit is activa an be used Enable inte Anybus.OnLis bit is activa an be used Byte order ut read/write ndian (or Mo tle endia ECONTROI AN BUS module	up. rrupt generation lata. ated a PL interru to service this e rrupt generation ated a PL interru to service this e rrupt generation ine changes. ated a PL interru to service this e selection for the instructions. torola) byte ord in (or Intel IYBUS-S reset s reset pin is ac PL routine sho	n for received mail, upt event. n for received data, upt event. n for module state upt event. e AnybusIn and ler.) byte order. pin. When this bit is set ctive. To reset the uld keep this bit active	
	may have	to be resta	rted).	e, the field bus master	
	0 = Reset	pin is inacti	ve.		
	1 = Reset	pin is active	ə.	t	
SAnyBus.HasMail	1	01	RW 0		
	Indicates	that mail is a	available in the	ABOutMail group.	
	It is the users responsibility to reset this bit when the data has been acted upon				
SAnyBus.HasOutput	2	01	RW	0	
	Indicates	that data is	available in the	ABOut group.	
	It is the users responsibility to reset this bit when been acted upon.				
SAnyBus.Error	3	015	RW	0	
	Errors reported during access/release of the dual ported memory (DPM).				
	b0 (1) = Timeout trying to access IN area.				
	b1 (2) = T	imeout tryin	g to release IN	area.	
	b2 (4) = T	imeout tryin	g to access OU	T area.	

	b(8) = Timeout trying to release OUT area.				
	. ,	The timeout time can be set in SAnybus.Timeout			
SAnyBus.Online	4	01	RW	0	
	-				
	Indicates that the module changed the online state. 0 = Offline.				
	0 = Onlir 1 = Onlir	-			
SAnyBus.State			D		
SAHybus.State	5	0255	R	0	
	and outp	ut. The value	e actually indica	ite for full duplex input ite the state of two iroup (IN and OUT),	
	Out acce	ess/release			
	0 = Idle	9			
	1 = Init	access to ou	ut area.		
	2 = Wa	it for access	to out area.		
	4 = Wa	it for release	of out area.		
	In acces	s/release			
	0 = Idle	9			
	256 = In	it access to i	n area.		
	512 = W	2 = Wait for access to in area.			
	768 = W	768 = Wait for release of in area.			
SAnyBus.Command	6	0255	RW	0	
	Control t	he behavior o	of the interface.	The user must wait	
	For SAN new com		nand member to	o be 0 before giving a	
	Commar	nds:			
	0 - No op	peration.			
	1 – Copy	default STA	RT_INIT mail d	lata to ABInMail.	
	Use com	mand #7 to s	send mail to mo	dule.	
	2 – Copy	a to ABInMail.			
	Use command #7 to send mail to module				
	3 - Copy	data to ABInMail.			
	The user comman	nMail before using			
	4 - reserv	ved, do not u	se.		
	5 - reserved, do not use.				
	6 - reserved, do not use.				
	6 - reserv	ved, do not u	se.		

	As a res	As a response to this command the ANYBUS.HasMail				
	bit should be activated, indicating that response mail is available.					
SAnyBus.FBType	7 032767 R Module dependa					
	The field	The field bus type connected to the interface.				
	1 = Pro	1 = ProfiBus-DP				
	16 = Int	terbus				
	21 = LonWorks					
	32 = C/	ANopen				
	8 = Inte	erBus-S				
	37 = De	eviceNet				
	64 = M	odbus Plus				
	69 = M	odbus RTU				
	101 = C	ontrolNet				
	128 = E	thernet (Mod	bus/TCP)			
	See (<u>http://www.hms.se/</u>)					
SAnyBus.SWVer	8	032767	R	Module dependant		
		The version number of the ANYBUS module firmware. See (<u>http://www.hms.se/</u>)				
SAnyBus.ModType	9	032767	R	Module dependant		
	The AN	BUS module	e type. See (<u>htt</u>	p://www.hms.se/)		
SAnyBus.ModuleSta t	10	032767	R	Module dependant		
	Module status.					
	b0 (1) = Fieldbus on/off line.					
	b1 (2) = The out area is freezed/cleared when going off					
	line.					
	B8 (256) = The in area freezed/cleared when going off line.					
	b9 (512) = Changed data field is active.					
	This register indicates the way that the module has been programmed. See (<u>http://www.hms.se/</u>)					
SAnyBus.InIOLen	11	032767	R	0		
	This register indicates the way that the module has been programmed.					
	See (<u>http</u>	o://www.hms.s	<u>se/)</u>			
SAnyBus.InDPRAMLen	12	032767	R	0		
	This regi program		s the way that t	he module has been		

	See (<u>http://www.hms.se/</u>)					
SAnyBus.InTotLen	13 032767 R 0					
			s the way that the the the the the the the the the th	ne module has been /)		
SAnyBus.OutIOLen	14	0				
	This regi program		s the way that th	ne module has been		
	See (<u>http</u>	://www.hms.s	<u>e/)</u>			
SAnyBus.OutDPRAML en	15	032767	R	0		
	This register indicates the way that the module has been programmed.					
	See (<u>http://www.hms.se/</u>)					
SAnyBus.OutTotLen	16	032767	R	0		
	This register indicates the way that the module has been programmed. See (<u>http://www.hms.se/</u>)					
SAnyBus.InCount	19	32 bit	RW	0		
		of times that S-S module.	the ABIn area I	nas been given to the		
SAnyBus.OutCount	20	32 bit	RW	0		
	Number application		the ABOut area	a has been given to the		
SAnyBus.InMailCou nt	nMailCou 21 32 bit RW 0 Number of times that the ABInMail area has been given to the ANYBUS-S module.					
SAnyBus.OutMailCo unt	22	32 bit	RW	0		
	Number of times that the ABOutMail area has been given t the application			area has been given to		
SAnyBus.TimeOut	23	32 bit	RW	2		
			ccess/release c eout error is rep	of the dual ported ported.		

ANYBUS RELATED PL INSTRUCTIONS

Instructions to communicate with the AnyBus module via the buffers. These instructions are doing the Intel byte order to Motorola byte order conversion. The following parameters define the data type that is passed to the instruction:

PutDWORD	Will write a 32 bit unsigned value.
PutWORD	Will write a 16 bit unsigned value.
PutBYTE	Will write an 8 bit unsigned value.

PutLONG	Will write a 32 bit signed value.
PutINT	Will write a 16 bit signed value.
PutSCHAR	Will write an 8 bit signed value.
GetDWORD	Will read a 32 bit unsigned value.
GetWORD	Will read a 16 bit unsigned value.
GetBYTE	Will read an 8 bit unsigned value.
GetLONG	Will read a 32 bit signed value.
GetINT	Will read a 16 bit signed value.
GetSCHAR	Will read an 8 bit signed value.

MANIPULATE THE ANYBUS INPUT BUFFER

Data in the InPut buffer is to be transmitted onto the field bus. These instructions can manipulate data in a specified location of a field bus frame. The instructions below are used to manipulate the AnyBus input buffer.

-	
offs = 0479 (index into data array	
AnyBusIN putDWORD Reg, offs	Put 32 bit unsigned data from register Reg at index offs.
AnyBusIN putWORD Reg, offs	Put 16 bit unsigned data from register Reg at index offs.
AnyBusIN putBYTE Reg, offs	Put 8 bit unsigned data from register Reg at index offs.
AnyBusIN putLONG Reg, offs	Put 32 bit signed data from register Reg at index offs.
AnyBusIN putINT Reg, offs	Put 16 bit signed data from register Reg at index offs.
AnyBusIN putSCHAR Reg, offs	Put 8 bit signed data from register Reg at index offs.

AnyBusIN getBYTE Reg, offs AnyBusIN getLONG Reg, offs AnyBusIN getINT Reg, offs

AnyBusIN getDWORD Reg, offs Get 32 bit unsigned data from index offs and store in register Reg. AnyBusIN getWORD Reg, offs Get 16 bit unsigned data from index offs and store in register Reg. Get 8 bit unsigned data from index offs and store in register Reg. Get 32 bit signed data from index offs and store in register Reg. Get 16 bit signed data from index offs and store in register Reg. AnyBusIN getSCHAR Reg, offs Get 8 bit signed data from index offs and store in register Reg.

MANIPULATE THE ANYBUS OUTPUT BUFFER

Data in the OutPut buffer is received on the field bus. When a field bus 'receive' is completed then the entire field bus frame is stored in the OUTPUT buffer and a PL interrupt is generated. The instructions below are used to manipulate the AnyBus output buffer.

offs = 0479 (index into data array AnyBusOUT putDWORD <i>Reg, offs</i> AnyBusOUT putWORD <i>Reg, offs</i> AnyBusOUT putBYTE <i>Reg, offs</i> AnyBusOUT putLONG <i>Reg, offs</i> AnyBusOUT putINT <i>Reg, offs</i> AnyBusOUT putSCHAR <i>Reg, offs</i>	Put 32 bit unsigned data from register <i>Reg</i> at index offs. Put 16 bit unsigned data from register <i>Reg</i> at index offs. Put 8 bit unsigned data from register <i>Reg</i> at index offs. Put 32 bit signed data from register <i>Reg</i> at index offs. Put 16 bit signed data from register <i>Reg</i> at index offs. Put 8 bit signed data from register <i>Reg</i> at index offs.
AnyBusOUT getDWORD Reg, offs AnyBusOUT getWORD Reg, offs AnyBusOUT getBYTE Reg, offs AnyBusOUT getLONG Reg, offs AnyBusOUT getINT Reg, offs AnyBusOUT getSCHAR Reg, offs	Get 32 bit unsigned data from index <i>offs</i> and store in register <i>Reg.</i> Get 16 bit unsigned data from index <i>offs</i> and store in register <i>Reg.</i> Get 8 bit unsigned data from index <i>offs</i> and store in register <i>Reg.</i> Get 32 bit signed data from index <i>offs</i> and store in register <i>Reg.</i> Get 16 bit signed data from index <i>offs</i> and store in register <i>Reg.</i> Get 8 bit signed data from index <i>offs</i> and store in register <i>Reg.</i> Get 8 bit signed data from index <i>offs</i> and store in register <i>Reg.</i>

TRANSFERS THE ANYBUS INPUT BUFFER

,	AnyBusIO Send	Send the buffer onto the fieldbus
---	---------------	-----------------------------------

ABINMAIL

Group	Group No.	Description	
ABInMail	61	Mail message handling with the Anybus-S modules.	

GENERAL

Area where mail is build ups by the application program and transmitted to the Anybus-S module.

This is an array of 16bit words.

It is used to send commands to the Anybus-S module.

FUNCTION

RELATED ITEMS

EXAMPLE USAGE

GROUP MEMBERS (GROUP 61)

Group.Member	Member	Range	Range Ability De	
	No.			
ABINMail	0-143	16bit	RW	0
	ABInMail.0	Messagell	C	
	ABInMail.1	MessageIr	nfo	
	ABInMail.2	Command		
	ABInMail.3	DataSize		
	ABInMail.4	FrameCou	int	
	ABInMail.5	FrameNun	nber	
	ABInMail.6	OffsetHigh	1	
	ABInMail.7	OffsetLow		
	ABInMail.8	143 Depends of	on context. See	(2).

ABOUTMAIL

Group	Group No.	Description
ABOutMail	62	Mails received from the Anybus-S modules

GENERAL

Area where mail is received from the Anybus-S module.

This is an array of 16bit words. It is used to hold response messages from the Anybus-S module until processed by a user program.

FUNCTION

RELATED ITEMS

EXAMPLE USAGE

GROUP MEMBERS (GROUP 62)

Group.Member	Member	Range	Ability	Default		
	No.					
ABOutMail	0-143	16bit	RW	0		
	ABOutMail.) Messag	elD			
	ABOutMail.1	l Messag	elnfo			
	ABOutMail.2 Command		nd			
	ABOutMail.3	B DataSiz	DataSize			
	ABOutMail.4	FrameC	ount			
	ABOutMail.5	5 FrameN	lumber			
	ABOutMail.6 Offse		OffsetHigh			
	ABOutMail.7	7 OffsetLo	OffsetLow			
	ABOutMail.8	3143 Depend	s on context. se	e (2)		

ABFBUS

Group	Group No.	Description
ABFBus	63	Fieldbus specific information from the Anybus-S modules.

GENERAL

The content of this area is fieldbus specific. This is an array of 8bit bytes. It is the fieldbus specific area. The manual, (Anybus-S interface manual) referes to this as beeing located at 0x640 (hexadecimal) and also specifies positions into this area in the manual as absolute. To find the ABFBus member based on an absolute specification from the manual then simply subtract0x640 from the specification.

Example:

The DeviceNet module has "Explicit Connection" status at 0x642, 0x642-0x640 = 0x2.

ABFBus.2 contains "Explicit Connection" status.

Note. Only the first 255 bytes are available out o 384 bytes.

Some fieldbus types does not provide any information in this area,

ProfiBus-S	Area not used.
Interbus	Area not used.
DeviceNet	Connection status information.
Ethernet	Socket information.

FUNCTION

RELATED ITEMS

EXAMPLE USAGE

GROUP MEMBERS (GROUP 63)

Group.Member	Member	Range	Ability	Default
	No.			
ABFbus	0-254	(bit)	R	0
	.ABFbus.0	- Location 0x64	0	
	.ABFbus.1	- Location 0x64	1	
	.ABFbus.2	- Location 0x64	2	

EN1-EN4, ENCODER1-4

Group	Group No.	Description
EN1	64	These groups are "place holders" or connection points
EN2	65	for the different encoders that are available to the
EN3 EN4	66	system
1111 1	67	

GENERAL

In earlier versions of the DMC² firmware, there have only been two position sensors available, RD1 and RD2. RD1 has been hard connected to the regulator and the commutation of the motor. RD2 has been connected to the Gear box/CAM input.

With the introduction of ENDAT encoders and incremental encoders in the DMC² firmware it became necessary to be able to select which encoder to use for respective function. This selection is controlled via the EN1..EN4 groups.

The output from the ENx groups are connected to the other system functions as follows:

EN No	FUNCTION
EN1	Goes to the pos/speed regulator.
EN2	Goes to the gear box/cam input.
EN3	Free for general use by PL program.
EN4	Free for general use by PL program.

For commutation selection see the Motor.Comm member.

BACKWARD COMPATIBILITY NOTE

Previous versions of the DMC firmware had both Pg.PosOffs and RD1.PosOffs members pointing at the same variable. Thus executing a REFPOS statement changed both Pg.PosOffs and RD1.PosOffs. This behavior is preserved if the EN1.Source has the value 16. It is currently not possible to set the EN1.Source (if changed) to 16 by other means that resetting the system.

To update an application to be compatible with the new firmware NOT using the backward compatibility mode you only need to change all references from RD1.PosOffs to Pg.PosOffs.

FUNCTION

The Enx functions act as a selector switch for redirection of various signals, mainly for feedback purposes. The default settings are set so that backward compatibility with DMC1 is achieved.

RELATED ITEMS

Gear group lenc group ModEn3-4

EXAMPLE USAGE

GROUP MEMBERS (GROUP 64-67)

Group.Member	Member	Range	Ability	y	Default
	No.				
ENx.Source	6x:0	07	RW		See below
	Default valu	e:			
	EN1: 16 ¹⁾	Goes to the	pos/speed	d regu	ulator.
	¹⁾ See Backv	ward compatibilit	y note.		
	EN2: 1	Goes to the	gear box/o	cam i	nput.
	EN3: 2	Free for ger	neral use b	y PL	program.
	EN4: 3	Free for ger	neral use b	y PL	program.
	Value descr	iption:			
	Source	Value			
	RD1	0			
	RD2	1			
	ENDAT	2			
	IENC	3			
	Pg	4			
	Reserved.	5			
	Reserved.	6			
	Reserved.	7			
ENx.Pos	6x:1	±31 bit			n from d source.
	This is the p	osition from the	connected	d sens	sor.
Enx.Speed	6x:2	±31 bit			n from d source.
	This is the s	peed from the c	onnected s	senso	or.

IENC

Group	Group No.	Description
IENC		Simple incremental encoder interface. This is a simple interface to an incremental encoder.

GENERAL

The DMC² can handle a three channel Incremental Encoder (A, B and Z), with 5 Volt differential outputs. The connector also contains supply voltage for the device.

The incremental feedback can be used for commutating the motor (primary feedback) or as a master signal to the Gearbox (secondary feedback).

FUNCTION

The interface always counts every edge (quadrature counting), which means that an Encoder with 4096 pulses per turn gives 16384 counts per turn.

The Zero pulse (once per turn) triggers the counter to freeze the value on rising edge of the marker pulse. This Zero pulse can also be used to trigger the Capture mechanism, (see page 118 Capture group for details)

RELATED ITEMS

Capture function

EN1 – EN4

EXAMPLE USAGE

Use the Incremental encoder as master to Gearbox functions.

En2.Source,3 ;encoder as source to gearbox Ienc.Mode,1 ;activate

GROUP MEMBERS (GROUP 69)

Group.Member	Member	Range	Ability	Default
	No.			
IENC.Mode	0	01	RW	0
	Turns on or	off the incremer	tal encoder inte	erface.
	1 = interface	e is active. See t	he XENDAT gr	oup.
IENC.Pos	1	±31 bit	R	0
	counter cour encoder with	ncremental posit nts every edge o n 5000 pulses/re lution since ever	on the input signeric the input signeric term of the second second second second second second second second se	re give 20.000

IENC.Speed	2	-3276700032	767000	R	0
	This is the number of counts/second from the incremental encoder.				
IENC.RPos	3	±31 bit	R		0
	IENC.RPo	s = IENC.Pos	– IENC	.PosO	offs
IENC.PosOffs	4	±31 bit	RW		0
	Position offs	et between IEN	IC.Pos	and IE	NC.RPos
IENC.IdxPos	5	16 bit	RW		0
	active. The is shares the c CAPTURE gr detect updat that the puls signal for CA	the index signal index signal from connector pin with roup. In order to tes of IENC.Id: width is within APTURE and the re specifications	n the inc th the tri use the xPos a the specific IENC.I	cremen g signa CAPTU user m cations	tal sensor al for the JRE function to ust make sure of both the trig
IENC.IncErrors	6	±31 bit	RW		0
	counter. Thi and B signa is a situatior same time, t determine if	er for detected e s quadrature co- ls from the incre n where both inp the discriminator this should be a rors counter is i	unter is mental e out signa r in the e an UP or	used to encode Is char encode DOWI	o count the A er. When there nge state at the r cannot
i		ame hardware oup, this error s.			

ModEn3-ModEn4

Group	Group No.	Description
ModEn3-4	72-73	Modula calculation on EN3 and EN4

GENERAL

In order to make periodical systems the ModEnx can be set up map an external position signal (or the Profile generator output) to a machine period. This can be used for synchronizing purposes.

FUNCTION

Calculates a periodic position from the output of En3 and En4

It is possible to reset the counters at any time. A capture function is provided to take snapshots of the counter values based on a software trig or the hardware capture function (See the Capture group, page 118). The r

RELATED ITEMS

En3, En4

EXAMPLE USAGE

Set up matching periods from Resolver 1 and Resolver 2(Master/Slave scenario) where the machine has a period of 250 000 pulses on the slave axis and 600 000 pulses on the master axis.

Gear.In,250 Gear.Out,600 Gear.Mode,1 Pos Mod On Clr	<pre>;this will map ;one period of the ;master to one period ;of the slave.</pre>
En3.Source,0 En4.Source,1	;Rd1 as source ;Rd2 as source
ModEn3.Module,250000 ModEn4.Module,600000 ModEn3.mode,1 ModEn4.mode,17	<pre>;set period on Rd1 ;set period on Rd" ;activate ;activate with ganged reset</pre>

GROUP MEMBERS (GROUP 72-73)

Group.Member	Member No.	Range	Ability	Default
ModEN3.Mode	0	0255	RW	0

	Controls various aspects of this group.				
	Bit0 (1) - Enable.				
	Bit1 (2) - Enable hardware capture into CapCount and CapPos.				
	On hardware capture, see Capture group, the CapPos and CapCount will be updated.				
	Bit2 (4) - Reserved.				
	Bit3 (8) - Reserved.				
	Bit4 (16) - Ganged reset of ModEN3 and ModEN4 simultaneously.				
	Bit5 (32) - Ganged capture as b6 but done for all ModEN groups simultaneously.				
	Bit6 (64) - Manual capture of ModEN3.Pos and ModEN3.Count into ModEN3.CapPos and ModEN3.CapCount.				
	Bit7 (128) - Reset ModEN3.Pos and ModEN3.Count to zero.				
	When writing to the Mode member the bits are evaluated in this order:				
	Bit6 Manual capture				
	Bit5 Ganged capture				
	Bit7 Reset				
	Bit4 Ganged reset				
	This allowes for setting many bits at the same time.				
	Note. Only bit b0 and b1 are present when read.				
ModEN3.Module	1 32 bit RW 0				
	The position range of ModEN3.Pos. This value is always positive. (The period for this counter)				
ModEN3.Count	2 ±31 bit RW 0				
	Number of period since last reset.				
ModEN3.Pos	3 32 bit RW 0				
	The current position within tModEn3. Module. Thi sposition is always positive. A user can write a new position and the value will automatically be fitted within the period. ModeEn3.Pos and ModEn3.count will be updated. Example: If ModEn3.Module = 10000 and ModEn3.Mode = 1 an attempt to write the value 123456 to ModEn3.pos will read back as				
	ModEn3.Pos = 3456				
	ModEn3.Count = 12				

	Captured value of ModEn3.Pos					
ModEN3.CapPos	5 32 bit RW 0					
	Captured value of ModEn3.Count					
ModEN3.CapCount	4	±31 bit	RW	0		

Communication protocol

INTRODUCTION

THE BASIC DMC² communication protocol follows the Intel HEX-protocol with some extensions. The register number field may also contain X-REGISTERS for the read and write register routines.

The ACK/NAK characters are moved to some characters that are not part of the data character set.

The RECORD-TYPE byte high nibble values 8 -- F may be used to force unit addressing to eliminate response from a miss-selected unit.

PROTOCOL FORMAT

The general format for the protocol

: <Len><Addr><Type><Data #0> ... <Data #Len-1><Csum><CR>

DESCRIPTION

<len>A two-digit hexadecimal number, indicating the length of the data field (in bytes) in the record. The maximum supported value of <len> is 6F hex.<addr>A four-digit address, Register are addresses with their number (0- 255). Extended registers are addresses with [32768+256 x group+member].<type>Type of record and node address, if command or data record, and type of command/data. The first Hex-Digit is the node address (in daisy chain operation) and the second digit is the record type identifier.<data>Is the data field.<csum>Is the 2's complement of the modulo 256 sum of all bytes in the record (except <csum>). (So that the modulo 256 sum off all bytes, including <csum> is Zero.)<cr>Carriage return used to help identify the end of the record.</cr></csum></csum></csum></data></type></addr></len></len>	:	The start of record character.
 <type> Type of record and node address, if command or data record, and type of command/data. The first Hex-Digit is the node address (in daisy chain operation) and the second digit is the record type identifier.</type> <data> Is the data field.</data> <csum> Is the 2's complement of the modulo 256 sum of all bytes in the record (except <csum>). (So that the modulo 256 sum off all bytes, including <csum> is Zero.)</csum></csum></csum> 	<len></len>	field (in bytes) in the record. The maximum supported value of
 and type of command/data. The first Hex-Digit is the node address (in daisy chain operation) and the second digit is the record type identifier. <data> Is the data field.</data> <csum> Is the 2's complement of the modulo 256 sum of all bytes in the record (except <csum>). (So that the modulo 256 sum off all bytes, including <csum> is Zero.)</csum></csum></csum> 	<addr></addr>	255). Extended registers are addresses with
Csum> Is the data field. Csum> Is the 2's complement of the modulo 256 sum of all bytes in the record (except <csum>). (So that the modulo 256 sum off all bytes, including <csum> is Zero.)</csum></csum>	<type></type>	and type of command/data. The first Hex-Digit is the node address (in daisy chain operation) and the second digit is the
record (except <csum>). (So that the modulo 256 sum off all bytes, including <csum> is Zero.)</csum></csum>	<data></data>	Is the data field.
<cr> Carriage return used to help identify the end of the record.</cr>	<csum></csum>	record (except <csum>). (So that the modulo 256 sum off all</csum>
	<cr></cr>	Carriage return used to help identify the end of the record.

A record with correct checksum is acknowledged with an "Y" followed by a <CR>; a record with incorrect checksum is acknowledged with an "N" followed by a <CR>. These rules apply to both the host computer and the DMC^2 unit.

COMPUTER MODE

Record type	Description	Example
0	Ordinary data record Used to download/upload the internal program. <addr> is the byte-address in the internal program area. For the DMC² to accept this record type, a record of type 2 must have been sent to enable program downloading.</addr>	

Record type	Description	Example
1	End of data record. Is sent after a program has been completely up/- downloaded and disables download of program code.	:00000001FF <cr></cr>
2	Prepare for download. Stops Execution initializes the program area and enables download of program code.	:00000002FE <cr></cr>
3	Stop program execution.	:00000003FD <cr></cr>
4	Start execution at first line of program.	:00000004FC <cr></cr>
5	Set Terminal Mode. The same as the statement [LET] Comm.Mode = 0. Used to exit the Computer Mode.	:00000005FB <cr></cr>
6	Upload all programs Memory. The contents of the program memory are sent as type 0 records, ending with a type 1 record. Only Non-empty records are sent;.	:00000006FA <cr></cr>
7	 Read system tables. This record type can be used by the PL compiler or similar program to determine what commands are supported by the current version of the DMC²firmware. Current Format (Addr Contents): DMC Version number (0 for all Ver 0.XX) TBLROOT Pointer to pointer to Com mand name definition tables. XGWPTR Pointer to write pointer in X-group table XGROUP Pointer to base of X-group table XGDISTAB - Pointer to Xgroup R/W dispatch table 1F To be defined later If the <len> field is >= 1, then the <addr> field is a 16-bit address in the firmware memory. The first data byte indicates the number of bytes of firmware memory to return starting at <addr>. It is not possible to read addresses 01F.</addr></addr></len> 	
8	Get a register value. <addr> Specifies the number of the register to get. Valid numbers are from 0 to 255 or an Xregister descriptor. The value of the register is returned in a record of type 8, with a <len> field equal to 4.</len></addr>	:00 <addr>08<csum><cr ></cr </csum></addr>
9	Set one or more registers. <addr> Specifies the first register to set. <len> Len * 4 specifies the number of registers to load with the following data. Four bytes of data are required for each register. If the PL program is executing time-critical code,</len></addr>	

Inmotion Technologies AB

Record type	Description Example				
do not load more than a few registers in each record. A longer record implies that the PL program is halted a longer time while the registers are loaded from the internal communication buffers to the register area. This is particularly critical when loading Xregisters.					
	Ex: Read M	lember 2 in Group 15 at nod	e 13		
<pre><ctrl z=""> D ; select node 13 ; Addr = 32768+15 x 256+2 (8F02) ; Type = D for node and 8 for record type ;Csum = 97 (0 -(8F+02+D8))</ctrl></pre>			r record type		
	Ex: Write 2	23 (dec) to register 11 at noc	le 7		
<ctrl 2<br="">:040000</ctrl>	z> 7 3790000001761	; select node 7 ; Len = 4 ; Addr = 11 (dec) (B) ; Type = 7 for node and 9 fo ; Data = 17 (hex) ;Csum = 61 (0-(04+0B+79-			
		0.00000000000000000000000000000000000	F (/))		

PL2 On line commands

PL2 ON LINE COMMANDS

LIST	[Line1 [,Line2]]	If no argument, lists all lines in the program. If Line1 is given as a single argument, then list Line1. If both Line1 and Line2 are given as arguments then list all lines from Line1 to Line2.
HLIST	[Line1 [,Line2]]	Same as LIST; also, list the instruction code in HEX before the line.
TLIST	[Lines]	Lists the trace buffer on to the serial communication port. If an argument line is given, the listing will include only the last line number of lines in the buffer. Se TRACE ON/OFF/CONT. The first displayed line's time field is taken as reference for all subsequent lines in the buffer. The time field will indicate time passed since the first displayed PL line was executed. The time is in milliseconds.
DEL	Line1 [,Line2]	Delete Line1. If both Line1 and Line2 are given as an argument, then delete all lines from Line1 to Line2.
RUN	[Line]	Start the execution of instructions at line Line.
NEW		Erase all program memory.
CONT	[Line]	Continue execution after a STOP program statement or a Control-C break.
GDISP	XReg	Display all elements in the group XReg resides in.Xreg may be abbreviated to GROUP. name instead of the complete GROUP.MEMBER notation. Example: To display all elements in the group that Pg.Rdy resides in:
		GDISP Pg.Rdy
		To display the setting of the regulator (Note the dot after the group name):
		GDISP REG.
HELP		Show the firmware revision and lists all currently available ON LINE COMMANDS, PROGRAM STATEMENTS and X-REGISTER groups.
FLoad		When you download PL code to the drive, the code is not automatically stored to nonvolatile memory.
FStore		Must be issued manually after a download to store the code in nonvolatile memory. Note: The motor must be turned off before
Boot		Forces the drive into boot mode. Boot mode enables a user to download new firmware.
Status		Displays the active connections made with the connect statement
Control+C		Control key + the "C" character. Will stop the execution of instructions in the controller. Note. It will not stop any motion is taking place. Using

Inmotion Technologies AB

203

	Vector.CtrlC can stop motion. Example:		
	<pre>10 Vector.CtrlC, 300 20 Int.SysMask = Int.SysMask or 4xx Other code 300 Pos Abort ; Abort any motion profile. 301 PG.Speed 0 ; Stop any motion. 302 End</pre>		
Control+Z Unit-Address	Control key + the "Z" character. Select the unit to communicate with. The Unit-Address is the characters "1"-"9" and "A"-"F".		
Control+T	Control key + the "T" character. Display a snap shot of the controller status.		

COMMAND LINE EDITOR (CLE)

User interaction in terminal mode has been improved with a full online editor. Also a circular buffer that stores the last used command line has been added. This enables a user to pick any command that already has been entered, from a list, to edit or execute. This will speed up interactive user sessions. The keys needed to navigate the circular buffer can be mapped so that the PC arrow keys can be used.

To manipulate the command line from the keyboard, commands are given to the CLE as single ASCII characters. Holding the CONTROL key down before the key is pressed can generate all these commands, this will generate a single ASCII character in the range 0 to 31. The mapping of commands to special keys are made in the Promoton.ini file in the ECT directory.

Command name	ECT mapping	Value	Control key	Description
		0	+@	
bol	KEY_HOME	1	+A	Goto beginning of the line.
bck	KEY_LEFT	2	+B	Backup one character.
stp		3	+C	Stop execution of PL code.
delf		4	+D	Delete one character forward.
eol	KEY_END	5	+E	Goto end of the line.
fwd	KEY_RIGHT	6	+F	Go one char forward.
		7	+G	
delb	BS	8	+H	Delete one char backward.
tab	KEY_INSERT	9	+1	Insert one space.
nop		10	+J	No action at all.
kill		11	+K	Delete rest of line.
		12	+L	
done	RETURN	13	+M	Line completed!
next	KEY_DOWN	14	+N	Display next line.
		15	+0	

Inmotion Technologies AB

Command name	ECT mapping	Value	Control key	Description
prev	KEY_UP	16	+P	Display previous line.
		17	+Q	Reserved, Xon/Xoff protocol.
		18	+R	
		19	+S	
ctlt		20	+T	
junk	KEY_ESCAPE	21	+U	
		22	+V	
delwb	KEY_DELETE	23	+W	Delete word backward.
		24	+X	
yank		25	+Y	Yank killed data back.
		26	+Z	
		27	+Esc	
		28	+\	
		29	+]	
		30	++	
		31	+ -	

ECT

INTRODUCTION

The ECT is a Windows-based application used for EDITING, COMPILING AND TESTING of user-created source code to control the DMC² Motion Controller. Each of these functions is available through the ECT application Main Menu window.

- The EDITOR is full-featured ASCII text editor that allows the user to create and edit source code. This source code can then be compiled using the ECT Compiler, and tested using ECT's Test application.
- The COMPILER is a tool that translates the source code into native DMC² executable code; also referred to as hex code. When selected, source code in the active Edit window is automatically compiled.
- TEST is a tool for debugging user-written/edited DMC² source code.

DEFINITIONS

Source code	A collection of organized DMC ² instructions that is recognized by the compiler, together with compiler directives and any library functions subsequently added and made available to the user.
Library functions and macros	Inmotion Technologies AB written or user-written code segments that perform encapsulated functions. Macros may be saved as independent text files, and 'included' through the Editor for compilation.

RUNNING ECT

When ECT starts, the user is presented with a complete environment for editing, compiling, and testing PL2 source code.

To start ECT, select the ECT icon from the Windows Program Manager screen. Once loaded, ECT displays the ECT desktop.

THE ECT DESKTOP

The following lists the major components of the ECT desktop:

Application Caption Bar:	Displays "ECT" and the name of the active Application.
Menu Bar:	Contain a list of user-selectable menus that include commands to instruct ECT to perform actions.
Speed Bar:	When used with a mouse, provide instant access to frequently used ECT commands.
Status Bar:	Displays information at the bottom of the ECT desktop about the selected menu bar command.
Edit Window:	Used for creating and/or editing source code files.
Compile Window:	A text window that reports compiler errors and/or warnings.
Test Window:	A text window that reports motion controller response.

THE ECT MAIN MENU

When ECT is loaded, the main menu appears as shown in Figure 9 below.

			Edit C	Compile Test 🗖 🗖 🗖
Eile	Project	<u>Options</u>	₩indow	Help
2				
g				
Б п				

Figure 9. The ECT main menu.

The ECT Main Menu offers the following items:

FILE PROJECT OPTIONS WINDOW HELP

The following lists the selections available within each Main Menu item.

FILE

File allows the user to work with (edit and create) PL2 source files. Menu selections include:

	NEW	OPEN	SAVE	SAVE AS	PRINT	PRINTER SETUP	EXIT
--	-----	------	------	---------	-------	---------------	------

PROJECT

The Project function allows the user to store and/or retrieve a collection of related files and settings into a Project file. Selections within this item include:

NEW	OPEN	CLOSE	SAVE	SAVE AS	DEL ITEM	ADD ITEM	OPEN
							ITEM

OPTIONS

The Options item allows the user to configure/setup various components of ECT for their particular application. Menu selections include:

FONT PREFERENCES TEST SETUP COMPILER SETUP	
--	--

WINDOW

Window contains selections that allow the user to control the ECT desktop. It also includes selections for various ECT components. When selected, this item displays the following choices:

TILE	CASCADE	ARRANGE ICONS	NEW EDITOR	PROJECT	TERMINAL	MESSAGE
------	---------	------------------	---------------	---------	----------	---------

Help

ECT Help is available through this item. Setup in the Windows-typical Help format, it offers the following selections:

INDEX SYNTAX USING HELP ABOUT

USING THE TEXT EDITOR

ECT

The following is a list of the functions and their descriptions available when editing text within the various ECT components.

Key (+ Key)	Function
Up Arrow	Moves up one line.
Down Arrow	Moves down one line.
Right Arrow	Moves right one character.
Left Arrow	Moves left one character.
Ctrl+Right Arrow	Moves right one word.
Ctrl+Left Arrow	Moves left one word.
Home	Moves to the beginning of the line.
End	Moves to the end of the line.
PgUp	Moves up one window.
PgDn	Moves down one window.
Ctrl+Home	Moves to the beginning of the document.
Ctrl+End	Moves to the end of the document.

Mowing within the window

SELECTING TEXT

Key (+ Key)	Function
Shift+Left or Right Arrow	Selects text one character at a time to the left or right. If the character is already selected cancels the selection.
Shift+Down or Up	Selects one line of text up or down. Or, if the line is already selected cancels the selection.
Shift+PgUp	Selects text up one window. Or, if the previous window is already selected cancels the selection.
Shift+PgDn	Selects text down one window. Or, if the next window is already selected cancels the selection.
Shift+Home	Selects text to the beginning of the line.
Shift+End	Selects text to the end of the line.
Ctrl+Shift+Left Arrow	Selects the previous word.
Ctrl+Shift+Right Arrow	Selects the next word.
Ctrl+Shift+Home	Selects text to the beginning of the document.
Ctrl+Shift+End	Selects text to the end of the document.

EDIT

Edit is the application that allows source code to be created and/or edited, then saved and compiled. It utilizes a fully functional ASCII text editor to assist the user

in generating this code. For a description of the text editing functions, refer to "Using the Text Editor".

ACCESSING THE EDIT APPLICATION

There are several ways in which to access the Edit application when creating new source code:

- 1. From the ECT Main Menu select:
- File
- New

The ECT Main Menu Window will now display an "edit" window as shown in Figure 10 below.

Note that the Menu Bar change

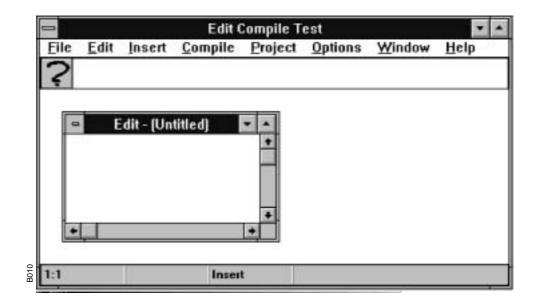


Figure 10. The ECT main menu window displays an "edit" window.

- 2. At the ECT Main Menu window, select
- Window
- New Editor

This creates a new "edit" window and changes the Menu Bar as described in No. 1 and shown in Figure 10. Using this method to create a new source file requires that the File/Save As. menu selections be used to save the file.

WHEN EDITING EXISTING FILES

Accessing the Edit application to work with an existing source file is accomplished from the ECT Main Menu window by selecting:

- File
- Open

A box as shown in Figure 11. is displayed. Enter or select from the list, the file to be edited. Note that the content of the file can be viewed before an edit window is created.

	Open Editor file	
File <u>N</u> ame:	Directories:	DK
moveex1.pl2	c:\promoton\pl2	Cancel
noveci pl2 *	ලා c:\ ලා peanolon මා µ2	9 Nätveik.
List Files of Lype:	Driges:	
DMC source Files (* pl2) 🔹	🗃 c:	*
ile Content	20.	10 C.S.
File: MoveEx1.pl2 Date: Aug 4 1993 Sample program. Simply move back ar	nd forth with a dwel	1_

Figure 11. Open an Editor file.

Once the file is loaded, the ECT desktop will appear as shown in Figure 12.

-				Edit Comp	oile Test			▼ ▲
<u>F</u> ile	<u>E</u> dit	<u>I</u> nsert	<u>C</u> ompile	<u>P</u> roject	<u>O</u> ptions	<u>W</u> indow	<u>H</u> elp	
2								
	Edit - C	-	DTON/PL2	MOVEEX	PI 2 🔻			
		veEx1.j				+		
; Da	te: Au	ıg 4 19	93					
		orogram	ok and fo	orth with	h a dwell			
	apry a					-		
L+L					+			
1:1			Inser	t				

Figure 12. The ECT desktop with file to be edited.

CREATING/EDITING SOURCE CODE

While some functions within the ECT generate source code automatically for "inclusion" into a source file, user-written DMC² source code is governed by the rules, syntax, commands and statements of the PL language as described in the DMC² Language Description Manual.

EXITING EDIT

To exit Edit and return to the ECT Main Menu window, Save and Close all open editor windows.

COMPILE

INTRODUCTION

The ECT Compile application compiles the source code in the active edit window. The result of a "clean" compile is executable code for the motion controller. The compiler also generates a list file with cross-references and a list of variables and constants used in the program.

The ECT compiler performs a number of functions

- Preprocessing. Involves include files, macro definition and expansion, and conditional compilation.
- Lexical analysis.
 Recognizes different categories of word-like units, referred to as tokens.
- Phrase structure grammar. Details the rules by which tokens can be grouped together to form expressions, statements, and other significant units.

ACCESSING COMPILE

Compile is accessed through the Edit application. When Compile is selected from the Edit application speed bar, the text in the active edit window is automatically compiled. However, prior to compiling source code, verify the compiler settings are correct. Accessing the compiler setup window is described in the following section.

SETTING UP THE COMPILER

Prior to editing and compiling source code, verify the compiler settings are correct. At the ECT Main Menu window, access the compiler setup window by selecting:

- Options.
- Compiler Setup.

The window as shown in Figure 13. is displayed.

X

Cancel

v5.01.00	
Copyright (c) 2000, Inm Copyright (c) 1999, Atla	5
Compiler <u>F</u> ilename:	C:\INMOTION\ECT\C0501E00.DLL
Optional Parameters:	
optional / aramotore.	

Figure 13. The Compiler setup window.

Case Sensitive Compile

COMPILING SOURCE CODE

While in the active edit window, access the compiler as described above. While the source code is being compiled, a window such as that had shown in Figure 14. is displayed. This window identifies the file being compiled and the error/warning status of the source code as it is being compiled.

Main File:	c:\inmotion\ect\training\example1.pl2
Compiling:	Build list file line: 225
Соприлд. Туре:	DMC v5.01.00

Figure 14. The compiled file.

When the compiling is complete, click on the OK button to display the output

COMPILER OUTPUT

Output, in the form of errors and/or warnings are displayed in the Compiler "Messages" window (Figure 15.). Errors and warnings are reported back to the active Edit window, which then sequentially highlights the first faulty source code

A221

line, assisting the user to identify and correct syntax errors. Double-click on a message line and you will be taken to that line in the source code.

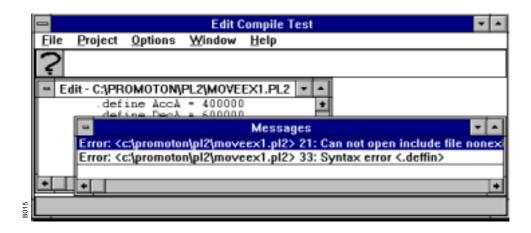


Figure 15. Compiler "message" window.

The message example shown in Fig.7. is described as follows:

```
Error: <C:\promoton\pl2\moveex1.pl2> 33: Syntax error
Error: Category: Error or Warning
C:\promoton\pl2\moveex.pl2>
33: Syntax error Category: Error or Warning
Drive, path and filename of compiled file.
Line number of offending statement in the edit file
Error type (description)
Offending statement
```

TEST

INTRODUCTION

The Test program provides the user with a complete environment for testing PL2 source code.

TEST SETUP

Prior to testing source code, set up the test environment from the ECT main menu by selecting:

- Options
- Test Setup

Windows like that shown in Figure 16. is displayed. This window includes the following setup options:

- Communication Method
- Test Device
- Function Key Setup
- Monitor Setup

_	\sim	-
-		
_		

- Test Setup	
Communication Method RS232 ± Setup	Controller DMC ±
	ntrol characters like "Enter" dded. Ex. disp r11\M
Definition file:	Load Save As
Terminal screen Rows: 24 Columns: 80	Cancel OK

Figure 16. Test Setup window.

Clicking the Setup button in this window displays the window illustrated in Figure 17 This window is used to establish communications parameters such as baud rate, port etc.

	RS232 Setup	
Baud Rate ● 9600 ○ 4800 ○ 2400 ○ 1200 ○ 300 ○ 110	Port © Com1 ○ Com2 Ack/Nack Chars Ack : Y Nack: N	Cancel OK

Figure 17. The communication parameters.

TEST FUNCTION

The user can connect to the DMC² controller using different hardware and communication devices:

- Serial Port.
- CAN network (future).

The communication device is selected using the method described in the previous section, Test Setup. Once the link is selected, it is active until the test session terminates. It cannot be changed from within the TEST environment. The selected communication device is responsible for managing the communications protocol,

including the upload and download of information to and from the target controller. Users can:

- Change values of registers.
- Enter and patch code in the DMC² without having to recompile and download to the controller.

ACCESSING THE TEST SYSTEM

The Test system is accessed from the ECT main menu by selecting:

- Window
- Terminal

This displays a new menu bar as well as a terminal window like that shown in Figure 18.

Edit Compile Test	-	*
<u>File Controller Project Options Window H</u> elp		
?		
Edit - C:\PROMOTON\PL2\MOVEEX1.PL2	▼ ▲	
; File: MoveEx1.pl2 ; Date: Aug 4 1993	+	
Terminal	▼ ▲	
COM2 9600 ANSI		

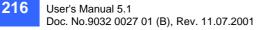
Figure 18. Terminal window.

The Test Window automatically attempts to connect with the DMC² controller through the selected communication device. If this fails, a dialog box indicating this is displayed. The file in the active Edit Window internally informs the Test Window of the current source file. If there is no active Edit Window, a file must be opened.

TEST MENU

The Test menu appears when there is an active Terminal window on the desktop. This menu includes the following selections:

The following menu selection descriptions are those that directly relate to the Test environment.

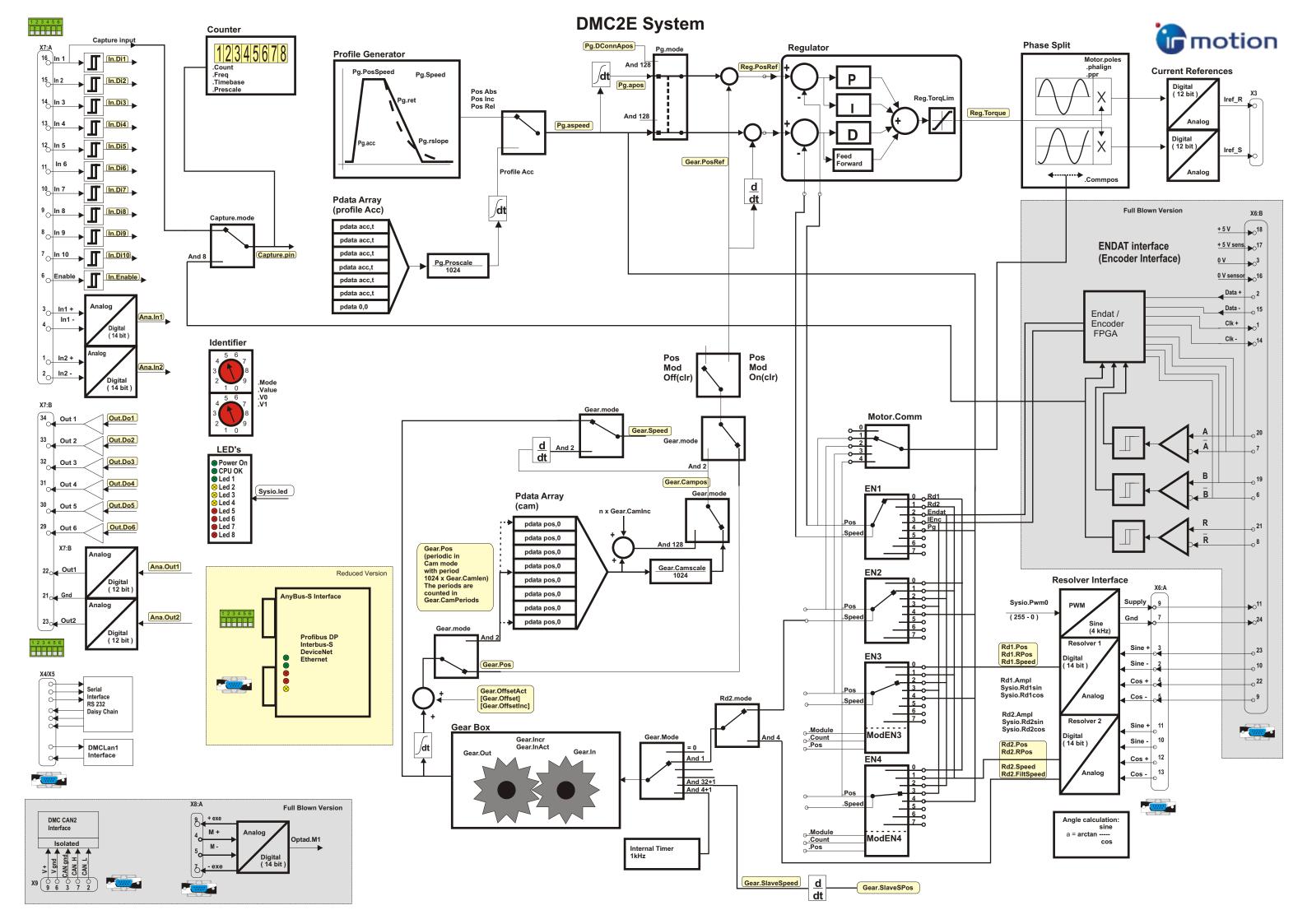

FILE

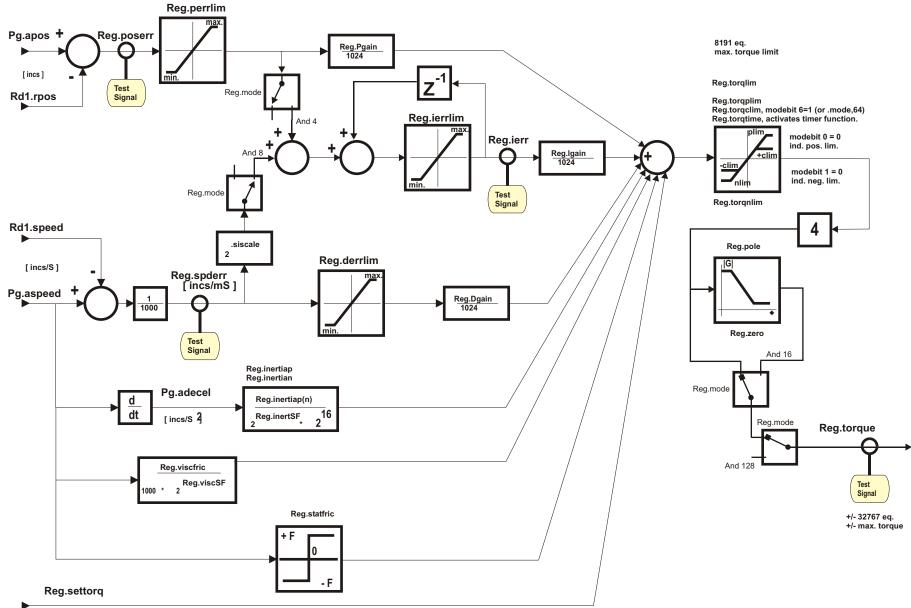
Create or open an editor window. See Edit

CONTROLLER

The Controller selection controls the DMC² controller. Selections within this menu item allow the user to download a program, start and stop the controller.

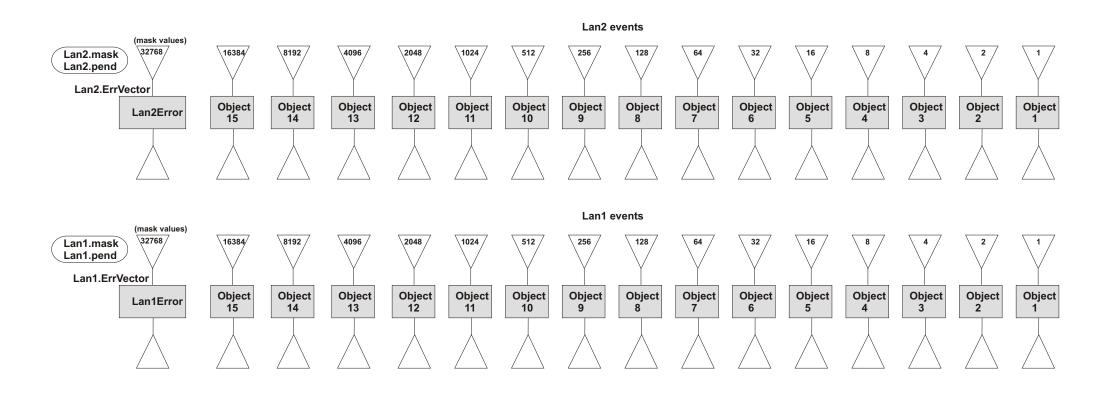
Start Starts execution of the application program that is id t i th DMC² t II

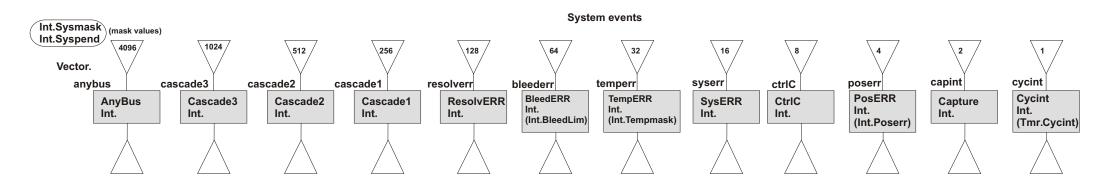


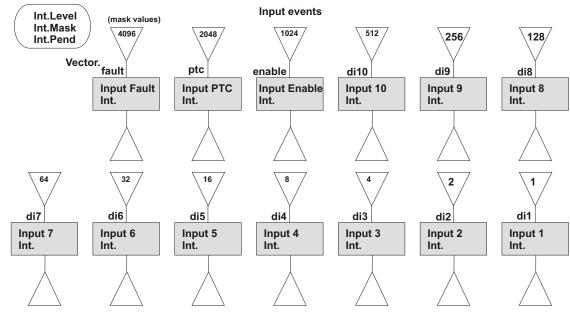

	resident in the DMC ² controller.
Stop	Halts execution of the application program that is resident in the DMC ² controller. CAUTION: STOP does not halt any on-going motion; only the execution of PL2 code is halted.
Download	Use to download a previously compiled HEX file to the connected DMC ² controller. Program name, version and compiled date are also loaded. The file loaded will be either the compiled version of the file in the active Edit Window, or that which was opened by the user. Note: Any application program in the DMC ² controller prior to downloading will be overwritten.
Force Terminal Mode	Force controller into terminal mode, in case the controller was left in computer mode.
Snap Shot	Display a snap shot of the current execution state within the controller.
Unit Select	Select the controller (unit address) that will be connected to the terminal for communication. Up to 15 units can use the same physical wires, but only one unit can be connected to the terminal at a time. Note: All connected units must have unique unit addresses.
Send File	For transmitting text files to a controller or an EPROM programmer.
Capture	Records received and transmitted characters in a text file. The capture file is closed when the terminal window is closed or when this menu item is activated again. The status bar indicates the capture file name when the capture function is active.

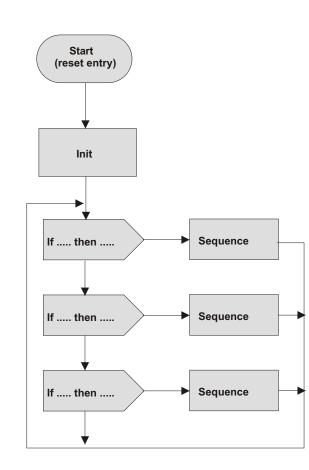
EXITING THE TEST ENVIROMENT

To exit the Test environment, close all active windows, saving them as necessary.






DMC Position Controller



DMC PL2 SW Flow

