
BJx
User's Manual

Manual M96105
December 1997

Revision 3

BJx
User's Manual

Manual M96105
Kollmorgen Motion Technologies Group

201 Rock Road
Radford, VA 24141

December 1997

(c) Copyright 1996, Kollmorgen Corporation. All rights reserved.

Printed in the United States of America.

NOTICE:

Not for use or disclosure outside of Kollmorgen Corporation.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying, recording, or otherwise without written permission from
the publisher. While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the
use of the information contained herein.

This document is proprietary information of Kollmorgen Corporation and furnished for customer use
ONLY. No other uses are authorized without written permission of Kollmorgen Corporation.

Information in this document is subject to change without notice and does not represent a commitment on
the part of Kollmorgen Corporation. Therefore, information contained in this manual may be updated from
time-to-time due to product improvements, etc. and may not conform in every respect to issues.

NEC is a trademark of the National Electric Code.

KOLLMORGEN SILVERLINE, BJR, BJP, BJRL, SO, SPS(R), RBE, RO, and ROL Amplifier are
trademarks of the Kollmorgen Corporation.

Dangerous voltages, currents, temperatures, and energy levels exist in this
product and in the associated servo motor(s). Extreme caution should be
exercised in the application of this equipment. Only qualified individuals
should attempt to install, set-up, and operate this equipment. Ensure that the
motor, amplifier, and the end-user assembly are all properly grounded and
current limited per NEC requirements.WARNING

European Community (EC) Declaration of Conformity

We, Kollmorgen Corporation Industrial Drives Division,
201 Rock Road, Radford, Virginia USA; declare under sole
responsibility that this equipment is exclusively designed
for incorporation in another machine. The operation of this
equipment is submitted to the conformity of the machine in
which it is incorporated, following the provisions of the EC
Electro-Magnetic Compatibility (EMC) directive
89/392/EEC.

BJX USER'S MANUAL CHAPTER 1 - SYSTEM DESCRIPTION

1

CHAPTER 1
SYSTEM DESCRIPTION

INTRODUCTION
This chapter presents an overview of the BJx: its
functions, features, and options.

PRODUCT DESCRIPTION
The BJx is a family of positioners, positioner/
amplifiers, and smart amplifiers. Together, these
products represent some of the smallest, most cost-
effective intelligent motion controllers available. The
BJx line includes three products:

BJR The BJR is a programmable positioner/
amplifier for brush and brushless motors
which operates from 40 VDC and below.

BJRL The BJRL is a programmable positioner/
amplifier for brush and brushless motors
which operates from 115 AC.

BJP The BJP is a positioner that can be used with
any servo amplifier, such as the KXA from
Kollmorgen PMI.

All members of the BJx line execute the BJx language,
which has set standards for motion control with its
simple, BASIC-like command structure and
sophisticated, decision-making capability. The BJx

provides the servo performance you have come to
expect from Kollmorgen. By incorporating a high-
performance microprocessor, Kollmorgen has
designed the BJx without compromising on either
positioner software or servo performance. This single
microprocessor closes all servo loops, resulting in a
truly integrated positioning system. The BJx has the
features and performance you need in your next
positioning application.

FEATURES
The BJx offers a wide feature set to accommodate real
world positioning requirements:

•••• LOW COST
The BJx is affordable, even with its wide variety of
advanced features.

•••• INTEGRATED PACKAGE
The BJR and BJRL are easy to install because the
servo amplifier and the positioner are integrated into
one package.

CHAPTER 1 - SYSTEM DESCRIPTION BJX USER'S MANUAL

2

•••• SIMPLE PROGRAMMING LANGUAGE
The BJx uses simple, BASIC-like commands such as
RUN, GOTO (for branching), and GOSUB/RETURN
(for subroutines). Advanced IF/ELIF/ELSE/END IF
statements result in programs that are easier to read.
In addition, you can comment every line in your
program.

•••• ADVANCED MOTION CONTROL MOVES
The simple language does not prevent you from
solving complex problems. The BJx has separate
acceleration and deceleration rates, as well as multiple
S-curve acceleration profiles. Profiles can be changed
in response to real-time events.

•••• MASTER/SLAVE - ELECTRONIC GEARBOX
The electronic gearbox is used to link two motors
together so that the velocity of the slave is
proportional to the velocity of the master. The ratio
can be from 32,767:1 to 1:32,767. Also, the "index-
on-gearing" feature permits real-time phase
adjustments.

•••• MASTER/ SLAVE - PROFILE REGULATION
With profile regulation you can control the slave's
motion profile according to an external master motor
or frequency. Profile regulation modifies the velocity
and acceleration of the slave axis without affecting the
final position of the move. You can use profile
regulation to implement "feed rate override."

•••• MOTION GATING
The BJx can precalculate moves to begin after a
transition on the GATE input. This provides rapid and
repeatable motion initiation.

•••• REGISTRATION
The BJx has the ability to capture the current position
within 25 microseconds after a real-time event,
resulting in accurate registration sequences.

•••• MATHEMATICS

Algebraic math is provided for commands such as:

X X X1 2 2 3= × +()

The BJx has 100 program labels, 750 user-definable
variables, and 50 user-definable switches. It also has
15 mathematical/logical operations and over 100
system variables.

•••• USER UNITS
Quantities such as position, velocity, and acceleration
are automatically scaled into user-defined units. This
allows you to program the BJx in convenient units,
such as feet, inches, RPM, or degrees.

•••• SUPERIOR SERVO LOOP CONTROL
The BJx offers smooth, high-resolution motion control
and a 32-bit position word. Long-term speed stability
is 0.01%.

•••• SELF-TUNING
The BJx can tune itself. You do not need to be a servo
expert to set up a system quickly. Just specify the
desired bandwidth and let the BJx do the rest.

•••• DIGITAL SERVO LOOPS
Both the position and velocity loops are totally digital.
The digital loops give the BJx features not available in
standard velocity drives, such as self-tuning, zero
velocity offset, and digitally-adjustable servo tuning
parameters.

•••• FEED-FORWARD GAIN
Digital feed-forward gain reduces following error for
more reliable position control at speed.

•••• DIAGNOSTICS
The BJx offers a complete set of error diagnostics,
including English error messages. It remembers 20
errors even through power loss. In addition, the BJx
lets you write your own error handler, so you can shut
down your process smoothly. The BJx offers trace
and single-step modes for debugging. Also included is
complete fault monitoring, including travel limit
switches and software position limits, as well as
hardware safety circuits and checksums for safer and
more reliable operation.

•••• DIGITAL I/O
The BJx has up to 20 optically isolated I/O sections.
These I/O sections operate on 5 VDC, 12 VDC, or 24
VDC. Inputs and outputs can be connected as
sourcing or sinking.

•••• ANALOG I/O
The BJx provides three 10-bit, single-ended, 0-5 VDC
analog inputs. Analog power is provided to simplify
connection to potentiometers. Also provided is one 8-
bit, ±10 VDC analog output for meters.

BJX USER'S MANUAL CHAPTER 1 - SYSTEM DESCRIPTION

3

•••• SERIAL COMMUNICATIONS
BJx serial communications provide a powerful link to
other popular factory automation devices, such as
PLCs, process control computers, and smart terminals.
All BJx units support both RS-232 for terminals and
PCs and RS-422/RS-485 for multidrop
communications. With multidrop you can put up to 32
axes on one serial line. The BJx can autobaud from
300 baud to 19.2k baud, simplifying installation.

•••• MOTION LINK
Kollmorgen also offers MOTION LINK, a powerful,
menu-driven communications package for
your IBM-PC (c) compatible computer. With this
package, the BJx programs and variables can be
retrieved from or saved to a disk drive. Also, on-

screen help and a full screen editor are built into
MOTION LINK.

•••• MENU-DRIVEN SOFTWARE
The BJx programming language allows you to write
operator-friendly, menu-driven software. By
incorporating a Kollmorgen Hand Held Terminal
(HHT-02) or other serial communications device, the
operator can be prompted for specific process data.

•••• MONITOR MODE
The BJx provides interactive communications and
permits all system variables and parameters to be
examined and modified at any time--even during
program execution or while the motor is running.

CHAPTER 1 - SYSTEM DESCRIPTION BJX USER'S MANUAL

4

BJX USER'S MANUAL CHAPTER 2 - GETTING STARTED

5

CHAPTER 2
GETTING STARTED

INTRODUCTION

This chapter presents Motion Link, an IBM-PC
based communications package for the BJx. Basic
modes of operation and their effect on
communication are also discussed.

Motion Link is Kollmorgen's complete IBM-PC-
based communications package for the BJx.
Motion Link allows you to communicate directly
with your BJx, edit and transmit programs to and
from your IBM-PC, initialize variables, and record
and display real-time variables in PC-Scope.

MOTION LINK INSTALLATION

Computer Requirements

Motion Link requires an IBM-PC or compatible
computer with the following features:

• IBM-PC, XT, AT, PS/2, or compatible
workstation.

• 512 K RAM.

• PC-DOS or MS-DOS Version 2.5 or later.

• Standard Video Adapter (CGA, MDA, EGA,
MCGA, or VGA).

• Serial Port (for communication link with BJx).
The serial communications port may be COM1
or COM2. These are the normal
configurations:

 COM1: (PC Address 3F8h, IRQ #4)
 COM2: (PC Address 2F8h, IRQ #3)

Software Installation

This section explains backing up and copying files
from the Motion Link disk to your computer's hard
disk.

Backing Up the Disk
The Motion Link disk is located in the disk holder
in the back of this manual. Make a back-up copy
and store the master disk in a safe place.

To make a back-up disk, type:

DISKCOPY A: A:

1. Press enter and follow the DOS prompts on
screen concerning source (Motion Link) and
destination (blank disk) disks.

Software Installation
Follow these steps to install Motion Link on a hard
disk:

CHAPTER 1 - SYSTEM DESCRIPTION BJX USER'S MANUAL

6

1. Enter the root directory.
2. Make a subdirectory named ML5 on your hard

disk.
3. Change to subdirectory ML5.
4. Insert the Motion Link disk into the A-drive.
5. Copy all files from the Motion Link disk onto

the hard disk.

C:
MD\ML5
CD\ML5
COPY A:*.*

Establishing Communications

WARNING

!
Do not proceed unless you
have completed the check-
out procedure from the BJx
Installation manual.

To begin using Motion Link,

1. Apply power to your BJx as described in the
Installation manual. Connect the serial cable
from your computer to J15.

2. Type:

CD\ML5
ML

3. When Motion Link responds, the BJx should
respond on your PC monitor with an
introductory screen similar to that shown in
Figure 2.1.

This screen displays the current BJx configuration.
The small box near the bottom of the screen
provides five choices for the operator: Autobaud
BDS5, Autobaud Per ML.CNF, BDS5 Offline,
Intro. Help, and Quit. Normally, you will choose
Autobaud BDS5 (B).

Motion Link will Autobaud
only on the COM1 port of
your IBM-PC

Choosing to autobaud with the BJx allows direct
interactive communication with the BJx. The BJx
should respond with a sign-on message and the
interactive prompt, "-->." This means the BJx is
ready and waiting for a command. When you type,

MOUSE INSTALLED
VGA w/ COLOR MONITOR

ML.CNF CONFIGURATION FILE FOUND

CONFIGURATION FILE (ML.CNF) FOUND

BDS5 PASSWORD======> <NONE>
BAUD RATE==========> 9600 BAUD
COM PORT===========> COM1:

 SCREEN COLORS
NORMAL FOREGROUND=>9
NORMAL BACKGROUND=>1
REVERSE FOREGROUND=>2
REVERSE BACKGROUND=>5

AUTOBAUD BDS5
AUTOBAUD PER ML.CNF

BDS5 OFFLINE
INTRO HELP

QUIT

B
A
O
H
X

SELECT THIS TO AUTOBAUD THE BDS5 AT 9600 BAUD

Figure 2.1 BJx Introduction Screen

NOTE

BJX USER'S MANUAL CHAPTER 2 - GETTING STARTED

7

you are communicating with the BJx just as you
would with a terminal. For example, type:

P "HELLO, WORLD"

and the BJx should respond by printing:

HELLO, WORLD

You can enter any BJx command from Motion Link
just as if your IBM-PC compatible computer were a
terminal.

MOTION LINK OVERVIEW

Menus and Windows

Motion Link's special features are accessed through
a menu bar printed at the top of your PC screen.
When you select an entry from the menu bar, a pull-
down window appears, allowing you to select an
item. Press the F10 key, the right arrow key, or the
left arrow key to display the menu bar. You can
leave a window or the menu bar by pressing the
escape key. The menu bar offers six choices:

PROGRAM Modify BJx programs
VARIABLE Modify BJx variable set
CAPTURE Record communications
SCOPE Display PC-Scope
OPTIONS Set up Motion Link
HELP On-screen help
UTILITIES General function

Program
The PROGRAM pull-down window allows you to
retrieve, edit, transmit, and save BJx programs.
Normally, you will use the Motion Link Editor to
write programs for the BJx. Motion Link will save
the programs to a file with a .BDS extension. These
are referred to as BDS5 files, although the format is
compatible with the BJx. Note, however, that there
are minor differences between the BDS5 and BJx
command languages, so that programs written for
one unit may not be executed properly by the other.

• EDIT - Calls the Motion Link Editor and
assumes that you want to re-edit the last
program. Note that if you have selected an
item from either the VARIABLES or
CAPTURE menu since you last edited a
program, this selection is invalid.

• FROM DISK - Retrieves a program from your
computer.

• FROM BJx - Retrieves the program currently
stored in the BJx.

• NEW PROGRAM - Calls the Motion Link
Editor, allowing you to enter a new program.

Upon exiting the Motion Link Editor, you can store
the program to your computer disk and/or transmit
it to the BJx.

Variables
The VARIABLES pull-down window allows you to
retrieve, edit, transmit, and save BJx variable files.
A BJx variable file contains a list of some or all of
the BJx variables with initial values. This includes
user variables and control variables. Together,
these variables configure a BJx for an application.

Note that there are minor differences between the
variables in the BDS5 and the BJx. For example,
variables taken from the BDS5 should not be
transmitted to the BJx. However, Motion Link
gives variable files from either unit the file
extension .VAR.

• EDIT - Calls the Motion Link Editor and
assumes that you want to edit the last variable
file edited. Note that if you have selected an
item from either the PROGRAM or CAPTURE
menu since you last edited a variable file, this
selection is invalid.

• FROM DISK - Retrieves a variable file from
your computer.

• FROM BJx - Retrieves all of the variables
currently stored in the BJx.

• NEW VARIABLES - Calls the Motion Link
Editor, allowing you to enter a new set of
variables.

Capture

This is a communications
capture and is unrelated to
the BJx variables CAP and
CAPDIR, which are for
position capture.

• EDIT - Allows you to examine the
communications that have been captured. Note
that if you selected an item from either the
PROGRAM or VARIABLES menu since you

NOTE

CHAPTER 1 - SYSTEM DESCRIPTION BJX USER'S MANUAL

8

last captured communications or loaded a
communications capture file, this selection is
invalid.

• FROM DISK - Allows you to retrieve a capture
file from disk and examine it with the Motion
Link Editor.

• START CAPTURE - Starts (or re-starts)
capturing communications from the BJx. This
selection always clears the capture storage area
before beginning to capture new
communications.

• STOP CAPTURE - Terminates the
communications capture. If you want to
examine the communications that were
captured, select "EDIT" in this menu.

Scope
• VIEW AGAIN - Lets you view playback data

that was previously retrieved from the BJx.

• FROM DISK - Retrieves recorded data from
your computer disk. Motion Link will display
all of the playback files currently on your disk
and allow you to choose the file you want.
Playback files have the file type .CSV for
"comma separated variables." This format is
compatible with most spreadsheets.

• FROM BJX - Retrieves playback data stored in
the BJx. After the playback data is retrieved, it
is plotted and stored on disk.

• VIEW DATA - View the data in numerical
(rather than graphical) format.

• PRINT PLOT - Print the plot on a line printer.

Options
• SELECT AXIS - Allows you to select options

that are available to systems using RS-485
communications.

• BDS5 PASSWORD - Allows you to enter the
password that you set with the BJx command
"PASSWORD." If you set such a password in
the BJx, Motion Link needs the password to
transmit new programs to the BJx. If you use
this selection to change the password, then you
should use the UPDATE CONFIGURATION
function described below to write a new
configuration file.

To set the password on the BJx, from the
interactive mode (-->) enter

PASSWORD

and follow the instructions printed by the BJx.

• COMMUNICATIONS - Allows you to set up
your communications port. After you have set
up this port, Motion Link will initiate an
autobaud sequence to re-establish
communications. Remember to power-down
the BJx so that it will autobaud. Autobauding
is initiated when the BJx is powered up with
the front panel switch SW1-2 turned on (See
Chapter 3 of the Installation Manual). If you
want Motion Link to use the new
communications setup in the future, you must
use the UPDATE CONFIGURATION function
described below to write a new configuration
file on your computer disk.

• SCREEN COLORS - Allows you to change the
colors displayed on your computer monitor. If
you want Motion Link to use the new colors in
the future, you must use the UPDATE
CONFIGURATION function described below
to write a new configuration file.

• CABLE DISCONNECT - Recommended
method of disconnecting the communication
cable from a powered-up BJx. After you have
reconnected the cable, press the space bar and
Motion Link will restart communications. This
procedure prevents generation of characters
when reconnecting serial cables.

• UPDATE CONFIGURATION - Allows you to
examine and write the Motion Link
configuration file. This file contains
information about your computer, such as the
communications port you are using, the baud
rate at which your computer is transmitting, and
your screen colors.

After you make these changes, you should
update the configuration file (ML.CNF) with
this selection.

• TL FROM DISK - This is an internal function.

• TL FROM BJX- This is an internal function.

Help
• BDS5 HELP <F1> - Displays several help

screens for the BDS5. It lists BDS5 commands
and variables with brief descriptions. These
commands are generally compatible with the
BJx.

BJX USER'S MANUAL CHAPTER 2 - GETTING STARTED

9

• INTRO HELP - Displays introductory information
about Motion Link.

• THIS HELP SCREEN <F10> - Displays a help
screen.

• LAST COMMAND <F3> - Recalls your last
command. You can also press F3.

• VARIABLE INPUT ^V - If you have included a
variable input routine in your BJx program
(VARIABLE$) and your program is running, this
selection will initiate that routine. You can also
press ^V (hold down the control key and press V).

• STOP MOTION ^X - Breaks your BJx program
and stops motion. You can also press ^X.

Utilities
• RUN DEP01 SIMULATOR - Allows the computer

to simulate Kollmorgen's DEP (Data Entry Panel).

• RUN BDS5 SETUP PROGRAM - Provides
utilities to test I/O, drive feedback,
communication, and dedicated switches.

• EXIT TO DOS Alt-X - Terminates Motion Link
and returns to DOS. You can also press Alt-X
(hold down the alternate key and press X) for this
function.

• SHELL TO DOS - Allows you to temporarily exit
(or "shell") to DOS so that you can execute a DOS
command. Type "EXIT" to return to Motion Link.

Editor

The Motion Link Editor is a full-featured screen editor.
Use this editor to examine or edit programs and
variable files, or to capture data. All of the editor
commands can be accessed from a menu bar and pull-
down windows. Press the F10 key to display the menu
bar, then use the left and right arrow keys to select a
pull-down window. Each editor command can be
accessed with a "control key" or "hot-key" sequence.
You can use the control key as a shortcut in place of
selecting from the window. The control-key sequence
is listed beside each command here and in Motion
Link. For example, the FILE-PRINT selection can be
accessed with ^P (hold down the control key and press
P). Many selections require two control keys, such as
FILE-FILE MERGE ^K^R. In this case, hold down the
control key, press and release K, then press R. The rest
of this section will discuss each of the editor pull-down
windows.

File
• SAVE FILE ^K^S - Copy a file in the editor to the

disk.

• MERGE FILE ^K^R - Copy a file into the editor
starting at the cursor.

• PRINT... ^P - Print the contents of the editor.

• EXIT <Esc> - Exit the Motion Link Editor. You
can also use the escape key for this function.

Edit
• MARK START OF BLOCK ^K^B - Marks the

beginning of a block. If you want to move or
eliminate a block of text, use this command to
mark the top and the bottom of the block you want
to manipulate.

• COPY MARKED BLOCK ^K^C - After you have
marked a block, use this command to copy the
marked block into the Motion Link cut/paste
memory.

• CUT MARKED BLOCK ^K^V - After you have
marked a block, this command copies the marked
block into the Motion Link cut/paste memory and
deletes it from the editor.

• PASTE CUT/COPIED BLOCK ^K^P - After you
have either copied or cut a block to the cut/paste
memory, this command copies the cut/paste
memory into the editor, starting at the cursor.

• SAVE MARKED BLOCK ^K^W - After you
have marked a block, this command saves the
marked block to a file on your disk.

GOTO
• FIND A STRING ^Q^F - Finds a string in the

editor. Motion Link will prompt you to enter the
string.

• REPEAT LAST FIND ^L - Repeats the last FIND
A STRING.

• GOTO A LINE NUMBER ^Q^I - Moves the
cursor to the specified line. Note that you can
transmit your program to the BJx without
comments. Since comment lines can be ignored by
Motion Link when your program is transmitted, the
line numbers in the editor may not agree with your
program line numbers in the BJx. Because of this,
Motion Link will ask you if you want to count
comments. If you are trying to find a line number
from a BJx error message and you transmitted your

CHAPTER 1 - SYSTEM DESCRIPTION BJX USER'S MANUAL

10

program without comments, specify that you DO
NOT want Motion Link to count comment lines.

• SHOW SIZE OF EDITOR ^Q^O - Displays space
remaining in the Motion Link Editor. Use this
selection if you are concerned that your program is
filling up the editor. The Motion Link Editor can
hold up to 2000 lines and up to about 24,000 bytes.

• SHOW FREE MEMORY ^K^F - Displays space
remaining for your BJx program. Use this
command when you are concerned that your
program will fill up the BJx program memory.

Insert/Delete
• DELETE A WORD ^T - Deletes the next word

after the cursor.

• DELETE TO END OF LINE ^Q^Y - Deletes
from the cursor to the end of the line.

• DELETE A LINE ^Y - Deletes the entire line that
the cursor is on.

• UNDELETE A LINE ^U - Inserts the last deleted
line in the editor, starting at the cursor.

• INSERT A NEW LINE ^N - Inserts a blank line
in the editor.

• DELETE ENTIRE EDITOR ^K^Y - Clears the
entire Motion Link Editor.

Cursor
Table 2.1 shows the cursor control keys. Special keys
are shown between less than and greater than symbols;
for example, the Home key is shown as <Home>.

Table 2.1 Cursor Control Keys

TOP OF EDITOR ^<PageUp>

END OF EDITOR ^<PageDn>

BEGINNING OF LINE <Home>

END OF LINE <End>

LEFT ONE WORD ^<Left> or ^A

RIGHT ONE WORD ^<Right> or ^F

Types Of Data Files

Motion Link stores, retrieves, displays, and edits three
types of data files. Each type has a different file
extension or file type. File extension refers to the
characters in the file name that follow the period. For
example, the file TEST.BDS has the file extension
"BDS." The three types of files are:

BDS User Programs for the BJx.

VAR Variable sets for the BJx. Variable files may
include some or all of the BJx variables. For
example, your Motion Link disk has the file
"STANDARD.VAR." This variable file
includes all of the standard variable settings.
Variable files are normally transmitted to the
BJx to initialize variables before programs are
run.

CAP Capture files contain captured communications
from the BJx. The capture features of the BJx
allow you to collect and store up to 16,000
bytes of transmissions from the BJx.

Motion Link normally determines the proper file
extension.

MOTION LINK SETUP PROGRAM

Access the Motion Link Setup Program through the
Utilities Menu. Setup provides the following test
capabilities:

• Communicate with the BJx
• Tune Drive
• Drive Test
• Drive Feedback
• Input Test
• Output Test
• Machine Setup - Units
• Machine Setup - Limits
• Motor Setup
• BJx Modes
• Communications
• Other
• Send Variables
• Reset Variables

This test program provides the operator with user-
friendly methods for testing most BJx functions.

BJX USER'S MANUAL CHAPTER 2 - GETTING STARTED

11

PROCESSOR MODES

Prompts

The BJx provides several modes of operation. Each
mode is distinguished by a unique prompt, the short
series of characters that the BJx writes to the screen
requesting input. For example, the interactive prompt
is "-->."

The BJx is designed to receive commands from a
terminal or a computer through a serial port. In order
to support computer communications, the BJx observes
the following conventions.

Table 2.2 BJx Rules For Prompts

1. Prompts are 3 or 4 characters long.

2. Prompts end with a greater than symbol (>).

3. Each mode has a unique prompt.

4. Once the BJx displays a prompt, it stops
transmitting until a new instruction and/or a
carriage return are received.

The last rule ensures that there is never a question
about which device is transmitting. If a ">" has been
issued from the BJx, then the BJx will not transmit
anything until a command has been entered. The only
exception is if you program the BJx to print a ">" from
a PRINT or INPUT command. The BJx will allow ">"
in print statements, though this is considered a poor
practice if you are using a computer to communicate
with the BJx.

Similarly, the BJx will not accept input unless a ">" has
been issued. The INPUT command is the only
exception to this rule. This rule can be awkward if you
are using the BJx from a terminal; if an error occurs
during the interactive or monitor modes after the ">"
has been displayed, the BJx will not print the error
message until a carriage return or escape has been
entered.

The prompt for each mode is listed below. The only
exception is the Run mode. This mode does not have a
prompt since input is not normally accepted from the
serial port. Notice that the trace prompt does not end
with ">." This is because the trace prompt does not
indicate that the BJx is waiting for input. If the BJx is
communicating within a multidrop communication line,
then the prompt is modified to include a prefix that
indicates the axis address. Table 2.3 shows the
prompts in both the single and multidrop

configurations. Note that the multidrop address is
assumed 65 (ASCII “A”) for this table.

Table 2.3 BJx Prompts

Mode Non-multidrop
(ADDR = 0)

Multidrop
(ADDR = 65)

Interactive --> A->

Monitor ==> A=>

Single-step s--> As->

Trace t... At..

Load 1-> Al>

Mode Descriptions

The following section describes each of the modes of
operation. Figure 2.2 is a diagram of each mode and
how it interacts with the other modes.

Interactive Mode
The BJx normally powers-up in the Interactive mode.
This mode allows you to start programs, display and
change variables, and enter motion commands for
immediate execution. The prompt (-->) is written to
the screen, and the BJx awaits a new command.

Refer to Figure 2.2. There are many ways to enter the
Interactive mode. First, if the power-up label
(POWER-UP$) is not present, the BJx will power-up in
the Interactive mode. The BREAK (B) command and
errors that break program execution cause the BJx to
exit the Run mode and enter the Interactive mode.

Run Mode
The BJx is normally in the Run mode when a program
is executing. There is no prompt because input is not
accepted from the terminal. The program can display
errors and print to the terminal.

Refer to Figure 2.2. After autobauding, the Run mode
is normally entered from either the Interactive mode,
the RUN command, or from multi-tasking. If the
power-up label (POWER-UP$) is present, the BJx will
start running your program at that label on power-up.

Errors can also cause the BJx to change modes. Some
errors are serious enough to cause the BJx to break
program execution. Usually, this has the identical
effect of issuing a BREAK (B) command.

CHAPTER 1 - SYSTEM DESCRIPTION BJX USER'S MANUAL

12

As an option, you can write an error handling routine
beginning at label ERROR$. This routine should be
short and should end with a BREAK (B) command.
The error handler is intended for graceful error
recovery. For example, you can set outputs or print a
message. However, the program may issue a RUN
command after handling the error condition.

Monitor Mode
The BJx Monitor mode is a unique mode for
positioners. In this mode, the user program is running,
but commands are accepted from the terminal for
immediate execution. The Monitor mode allows you to
display and change variables during program execution,
including tuning variables.
You can print and modify any variables. The
commands that are allowed from the Monitor mode are
a subset of the commands allowed from the Interactive
mode as shown in Table 2.4.

Table 2.4 Monitor Mode Commands

? ; B DIS EN

ERR K P PS R

RS S ZPE

In the Monitor mode, all print commands from the user
program are suppressed, and the monitor prompt (==>)
is displayed. Print commands typed in from the
Monitor mode are executed immediately.

To enter the Monitor mode, press the escape key while
a program is running. Pressing the escape key again
will change back to the Run mode. STOP, BREAK,
and KILL all return the BJx to the Interactive mode.

Single-Step Mode
The Single-Step mode is provided for debugging, and it
allows you to execute a program one step at a time.
The single-step prompt (s->) prints out, followed by the
line that is about to be executed (the next command).
Any command allowed from the terminal in the

Monitor mode is also allowed from the terminal in the
Single-Step mode. These commands allow you to
probe the BJx variables while debugging your program.
If you press the enter key without a command entered,
then the next command in the user program is executed.
To stop the program, enter the S, B, or K command. To
turn off the Single-Step mode and allow the program to
execute normally, press the escape key twice (once to
get into the Monitor mode and again to get into the Run
mode), or type SS OFF.

Single-Step mode is enabled by turning SS on, either
from the program, from the Interactive mode before
running the program, or from the Monitor mode. After
SS is on, the BJx will enter the Single-Step mode when
the user program is executed. SS can also be turned on
and off from the program. This is useful if you want to
single step through certain sections. Turning SS off
from the program returns the BJx to the Run mode.

Trace Mode
The Trace mode is provided for debugging user
programs. When in trace, the BJx prints statements
before they are executed. The trace prompt (t...) is
printed out, followed by the line that is about to be
executed, and the line is then executed. This process is
repeated for each command.

Trace is enabled by turning TRC on. When TRC is on,
the BJx will enter the Trace mode when the user
program is executed. TRC can be turned on and off
from the Interactive mode before executing the
program or from the program itself. It can be turned on
from the Monitor mode. Pressing the escape key from
the Trace mode will cause the BJx to exit to the
Monitor mode and turn TRC off. If both TRC and SS
are on, then the BJx will be in Single-Step mode.

Other Modes
Other modes shown in Figure 2.2 include the
communication modes (Program Load, Program Dump,
and System Dump). These modes are covered in later
chapters.

BJX USER'S MANUAL CHAPTER 2 - GETTING STARTED

13

LOAD

PROGRAM
DUMP

SYSTEM
DUMP

INTERACTIVE

">BDS"

PROGRAMMING
MODES

"<BDS"

<Esc>

<Esc>

<Esc>

<Esc>

RUNNING
MODES

"DUMP"

l->

-->

INTERACTIVE

-->

POWER
UP

SINGLE STEP

S-->

RUN
PROGRAM

MONITOR

==>

TRACE

t . . .

STEP

POWER - UP
NOT PRESENT

POWER - UP
PRESENT

"B", "K", "S", or "^X"

"B", "K", "S", or "^X"

<CR>

"B" or "^X"

"RUN" or
"RUN" <label>

<Esc> or

"SS OFF"
"SS ON" "SS ON"

<Esc>

<Esc>

"TRC ON"

"TRC OFF"

"TRC ON"

ERROR

ERROR$
PRESENT

<Esc>
(TRC = OFF)

BJx
TASK

LEVELS

MAIN
PROGRAM

ALARM A

ALARM B

ALARM C

VARIABLE

POWERUP

AUTO

MANUAL

GENERAL

ERROR

BACKGROUND

text = Operator Entered
 italic = Program Executed
 (text) = Equivalent Command

Figure 2.2 BJx State Table

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

14

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

15

CHAPTER 3
COMMAND LANGUAGE

INTRODUCTION

This chapter discusses the basics of the BJx
programming language. Your BJx system should be
mounted and wired as described in the Installation
manual.

INSTRUCTIONS

The BJx can respond to instructions entered from the
terminal. The format of the instructions is usually a
command followed by one or more parameters. For
example, the jog instruction (J) followed by one
parameter, the desired speed, would cause the motor
to jog at that speed. The command and parameter
must be separated by at least one space.

J 10

Comments

Instructions can be commented. A semicolon marks
the beginning of a comment, and the BJx ignores
everything on the line after the semicolon. For
example,

J 10 ;THIS IS A GOOD COMMENT

is valid. Note that a space must separate the last
parameter from the semicolon:

J 10;BAD COMMENT-";" MUST BE
;PRECEDED BY A SPACE

;GOOD LINE. SPACE NOT REQUIRED-
;WHOLE LINE IS A COMMENT

VARIABLES

The BJx uses a wide range of variables to monitor
and control its processes. Many of these variables
have units--for example, all variables related to
velocity have velocity units.

Introduction to Units

Many BJx variables are set and printed in variable
units. These include variables that control or display

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

16

• Current
• Position
• Velocity
• Acceleration

Later in this chapter, we will discuss units in detail.
For now, set units as follows:

Current Units:
Use percent-of-full current. Set INUM = 4095
and IDEN = 100.

Position Units:
Use counts. Set PNUM = 1 and PDEN = 1.

Velocity Units:
Use RPM. Set VDEN = 10. Set VNUM =
feedback-encoder lines ∗ 43.691. For example,
for a 1000-line encoder, set VNUM to 43,691. If
the encoder is connected indirectly to the motor
(e.g. through a belt or gear), use the number of
counts per motor revolution.

Acceleration Units:
Use RPM/second. Set ANUM = VNUM and
ADEN = 10,000.

Three Types of Variables

The BJx has many variables, all of which are listed in
Appendix E. These variables can be divided into
three groups: monitor, control, and user.

• MONITOR VARIABLES
Monitor variables are read-only. They can be
displayed and used in calculations but cannot be
changed directly. The BJx updates these
variables to reflect status. Position feedback,
PFB, is an example of a monitor variable.

• CONTROL VARIABLES
Control variables allow you to change or limit
some process in the BJx. An example of a
control variable is current limit, ILIM. ILIM
limits the current command.

• USER VARIABLES
User variables allow you to store information for
later use or hold intermediate results of
calculations.

Variable Limits

All variables have limits. Attempting to set a variable
to a value outside its limits generates an error. For

example, ILIM must be between 0 and 100. The
limits of each variable are listed in Appendix E.

Switches

Switches are variables that can be set to either 0 or 1.

Printing Variables

All variables can be displayed using the Print (P)
command. For example, type:

P ILIM

Since the standard setting of ILIM on most systems is
100, the terminal should display:

100

Suppose you want to display PFB, the position
feedback. Type:

P PFB

The position feedback should now be displayed. By
hand, rotate the motor shaft about half a revolution.
Print PFB again. Notice that it has changed to reflect
the new position.

Changing a Variable

The following example
changes ILIM. Reset ILIM
to its original value.

Variables are changed with assignment instructions.
An assignment begins with the name of the variable,
followed by "=" and ending with the new value. This
example assigns ILIM a new value of 10:

P ILIM
ILIM=10
P ILIM

Restore ILIM to its original value:

ILIM=100 ;USE ORIGINAL ILIM VALUE

NOTE

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

17

Changing Variables

Most variables can be changed but often under
limited conditions. For example, the maximum
acceleration level, AMAX, can be changed only when
the BJx is disabled. Attempting to change AMAX
with the BJx enabled will generate an error.
The conditions under which a variable can be
changed are called programming conditions. The
programming conditions of all variables are listed in
Appendix E.

Limits and programming
conditions for all variables
are shown in Appendix E.

User Variables

User variables are like memory on a hand-held
calculator. They can be used as application-specific
variables or for storing intermediate results of
complex calculations. There are 250 user variables:
X1, X2, . . . X250. (On some models, user variables
can be extended to 750 by setting EXTDX=1). They
can be displayed and assigned new values in the same
way as other variables. They can store numbers that
range from -231 (-2,147,473,648) to 231 -1
(2,147,473,647)negatives in right place?}. For
example, if you want to store PFB, the position
feedback, at a particular time and use it later in a
calculation, you can assign PFB to a user variable.
Type the following line on the terminal:

X1=PFB

X1 will store the current value of PFB indefinitely.

Indirect User Variables
An advanced method of accessing the values stored in
user variables is called indirect. With indirect user
variables, the specified user variable "points" at
another user variable. Indirect references to variables
have the format: X(Xn) where n is between 1 and
250. The value stored in the variable Xn specifies the
variable that X(Xn) refers to. For example, suppose
you want to look at either X1 or X2 when X10 is
either 1 or 2. Type the following example:

X1=100
X2=1000
X10=1 ;USE X10 TO POINT TO X1
P X(X10) ;PRINT WHAT X10 POINTS

;AT

The BJx responds:

100

since X(X10) = X1 = 100.

Now type:

X10=2 ;USE X10 TO POINT TO X2
P X(X10) ;PRINT WHAT X10 POINTS

;AT

The BJx responds with the value of X2:

1000

Indirect user variables are often used to look up data
in tables. For example, they are often used in
programs that remember a large number of positions
taught by the operator. In this case, many user
variables are used to remember positions, and one
variable is used to point at the group. Use indirect
references with caution since it is easy to make
programming errors with them.

User Switches

User switches are similar to user variables, except
that they can only take on values of 0 or 1. A user
switch can be used in place of a user variable if you
only need to store 0 or 1. An example of a good
place for a user switch would be to store information
for go/no-go decisions. This saves user variables for
other places. There are 50 user switches: XS1-XS50.
For example, type:

XS33=1
P XS33

and the BJx prints 1.

NOTE

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

18

Power-up and Variables

All control variables, except switches, are stored
through power down. All user variables (X1-X250)
are set to zero on power-up. If extended user
variables are enabled (EXTDX ON), then they
(X251-X750) are also cleared.

All user variables are set
to zero on Power-up.

Most switches are reset on power-up. The only
exceptions are switches which, if not remembered,
are likely to destabilize the system. Table 3.1 shows
the condition of all BJx programmable switches on
power-up.

Special Constants

The examples above have used decimal numbers in
most of the assignments. There are four special
constants that make the BJx easier to use: ON, OFF,
Y, and N. ON is the same as 1 and OFF is the same
as 0. Similarly, Y is 1 and N is 0. These constants
are normally used for switches. Compare the two
statements:

O1=1
O1 ON

These statements are equivalent, although the effect
of the second is more intuitive. When you write
programs, the use of ON and OFF and Y and N can
make the program easier to understand. Note,
however, that the P command normally prints
numbers, not ON, OFF, Y, or N. For example:

O1=ON
P OUT

will result in "1" being printed, not "ON." Another
point to recognize is that the equal sign (=) is
optional. The following two statements produce
identical results.

O1=ON
O1 ON

Table 3.1 Power-Up State of Programmable
Switches

OFF ON

REMEMBER
FROM LAST
POWER-UP

CAM CAPDIR ENCDIR

CAP DIR LPF

CLAMP ECHO MENCDIR

DEP MSG

EXTDX MULTI

FAULT PL

GATEMODE PLIM

GEAR PROMPT

O1 - O5 STATSEN

PROP

RAMP

REG

ROTARY

SS

TQ

TRC

TRIP

WATCH

XS1-XS50

MATH

Hexadecimal

The BJx allows constants to be entered in
hexadecimal, or hex. Hex, or base 16 representation,
is often used when programming computers. BJx hex
constants begin with a number followed by an "h."
For example: 16h, 0Fh and 0FFh are all hex
numbers. Appendix B shows the hex conversion of 0
through 255. From the appendix, you can see that 25
hex is equal to 37 decimal so that the two following
instructions are equivalent.

X9=37
X9=25H

NOTE

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

19

Sometimes, the first digit of a hex number can be a
letter. In this case, the number must be preceded with
a zero. For example:

X9=FFH ;ERROR-HEX NUMBER
;MUST BEGIN WITH A
;NUMBER.

X9=0FFH ;VALID STATEMENT

Hex is useful when trying to use general purpose
inputs to control the user program. For more
information about applying these inputs, see the
"General Purpose Input/Output" section later in this
chapter.

Algebraic Functions

The BJx provides four standard algebraic functions:
multiplication, division, addition, and subtraction.
The usual algebraic operators (*, /, +, -) are used.
Standard algebraic hierarchy is observed: all
multiplications and divisions are done before any
additions or subtractions. Parentheses are provided to
override this precedence. Type in the following
examples:

P 1+2*3 ;THIS PRINTS 7, NOT 9--* IS
;DONE BEFORE +

P (1+2)*3 ;THIS PRINTS 9

Math expressions must obey the rules listed below in
Table 3.2.

Table 3.2 Rules for Math Expressions

1. No spaces are allowed.

2. Any valid variables can be used.

3. Any valid constants can be used.

4. Indirect user variables can be used.

5. Any math operator can be used.

6. Parentheses can be nested to 2 levels.

7. Integer math is used for all operations.

8. Expressions are evaluated left to right.

Valid math expressions can be substituted for
numbers in most instructions. A few examples of
math expressions in assignment instructions follow.

X1=500
X1=5*100
X1=5000/10
X1=(7+3)*(28+22)

All set X1 to 500. Furthermore, variables can be
used in the expression:

X1=20
X2=30
X3=X1*X2 ;FILL X3 WITH 600

Fractional results from division are rounded to the
nearest integer. Also, expressions are evaluated from
left to right. These two conditions can cause
unexpected results. Consider the following
expressions:

P 53/100*280 ;THIS PRINTS 280
P 280/100*53 ;THIS PRINTS 159
P 280*53/100 ;THIS PRINTS 148

In exact math, these three expressions are equivalent;
they calculate 53% of 280, which is exactly 148.4.
However, with integer math, the first expression is
evaluated as 280. This is because 53/100 is evaluated
first. The result, 0.53, is rounded to the nearest
integer, 1, which is multiplied by 280. Likewise, in
the second expression, the 280/100 is evaluated as 3,
which is multiplied by 53 to get the result 159. Only
the third expression gives the expected result, 148. In
this example, round-off error is minimized by
performing the multiplication first.

Logical Functions: AND, OR

Two logical math functions, AND and OR, can also
be used in math expressions. ANDing is indicated by
"&" operator and ORing is indicated by "!" operator.
When evaluating an expression, AND has the same
level of precedence as multiplication, and OR has the
same level as addition.

Like hex, logical math is often used when
programming computers. With logical functions, two
numbers are converted to binary representation and
compared bit by bit. When the numbers are ORed, if
either bit is set, the resulting bit is set. With ANDing,
both bits must be set for the result to be set. Type in
the following examples:

P 1!2 ;THIS IS 3

The BJx responds with 3 since
00000001 (Binary 1)

 OR 00000010 (Binary 2)
00000011 (Binary 3)

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

20

P 1&2 ;THIS IS 0

The BJx responds with 0 since
00000001 (Binary 1)

AND 00000010 (Binary 2)

00000000 (Binary 0)
Logical math is generally used with hex constants.

Logical math is also useful when trying to use general
purpose inputs to control the user program.

GENERAL PURPOSE INPUT/ OUTPUT

Digital I/O

The BJx provides 8 general purpose inputs and 5
general purpose outputs. Inputs can be referred to
individually as I1, I2, . . . I8 or collectively as IN.
Similary, outputs can be referred to as O1, O2, . . .
O5 or as OUT. On power-up, all outputs are turned
off.

As examples, you can turn the third output on and the
fifth off by typing:

O3 ON ;TURN ON THE THIRD
;OUTPUT BIT

O5 OFF ;TURN OFF THE FIFTH
;OUTPUT BIT

You can display the fifth input by typing:

P I5

and either 1 or 0 will be displayed.

Whole Word I/O
Inputs and outputs can also be referred to
collectively. In order to do this, the individual inputs
or outputs are referenced as the bits of a digital word.
Whole Word references are especially useful when
you are trying to set or clear many output bits at once.
If you are unfamiliar with logical/binary math or you
plan to use I/O one bit at a time, you may not be
interested in Whole Word I/O. However, it can save
space and execution time when properly used.

Whole Word I/O is done using the variables OUT
and IN. OUT is a 5-bit digital word representing all
of the outputs, with O1 as the least significant bit

(LSB). IN is an 8-bit digital word representing all of
the inputs, with I1 as the LSB. Each bit has a value
which depends on its position within the word. The
value in OUT or IN is the sum of the values for each
bit that is turned on. The value for each bit is listed
in Table 3.3.

Table 3.3 Output 1-5 DecimalValues

Out Bits O5 O4 O3 O2 O1

Value 16 8 4 2 1

For example, if O5 and O4 are on and all other
outputs are off, then:

OUT = 16 (value of O5) + 8 (value of O4)
= 24.

Many bits can be set or cleared with one instruction.
For example,

OUT=7

turns on O1, O2, and O3 while turning all other
outputs off. One logical math statement can be used
to set some bits without affecting others. For
example:

O1 ON
O2 ON
O3 ON

can be replaced with:

OUT=OUT!7 ;SET 3 BITS WITH
 ;LOGICAL OR

which turns on O1, O2, and O3 without affecting O4
and O5. The logical AND can be used to turn off
several bits:

OUT=OUT&7 ;CLEAR 2 BITS WITH
;LOGICAL AND

turns off O4 and O5 and does not affect O1-O3. Note
that the hex representation can be especially useful
when setting the higher bits:

O4 ON
O5 ON

is the same as:

OUT=OUT!024

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

21

IN is formed with I1-I8 in the same way OUT is
formed with O1-05:

Table 3.4 Input 1-8 Decimal Values

In Bits I8 I7 I6 I5

Value 128 64 32 16

In Bits I4 I3 I2 I1

Value 8 4 2 1

For example, if IN were equal to 130, that would
mean I2 and I8 were on and all others were off,
because 130 is the sum of those bits:

130 = 2 + 128

Analog I/O

The BJx provides the general purpose analog inputs,
AIN1, AIN2, and AIN3. These inputs resolve 0-5
VDC to 10 bits. AIN1-3 range from 0 to 1023. One
analog output is provided: AOUT outputs ±10 VDC
resolved to 8 bits. AOUT ranges from -128 to +127.

FAULT LOGIC

This section covers how to enable the BJx and how
faults affect the operation. This discussion will center
around Figure 3.1. Note that this drawing is a
functional diagram; it does not directly represent the
actual hardware and software used to implement these
functions.

Severity-4 Fault Latch

The Severity-4 Fault latch is diagrammed at the top of
Figure 3.1. As indicated, any Severity-4 Error
disables the amplifier, stops communications, and
blinks the FAULT LED, located on the BJx front
panel. Severity 4 errors are the most severe errors;
they indicate that the unit may not be functioning at
the most basic level. Communication is limited to
blinking the FAULT LED a fixed number of times,
followed by a pause. The number of blinks between
pauses indicates the error number. Do not confuse
this condition with autobauding, where the FAULT
LED blinks at a constant rate.

Please refer to Appendix D for a list of all errors with
the corresponding severity.

Severity-3 Fault Latch

 The Severity-3 Fault Latch is set by any Severity-3
error. This latch turns on the FAULT LED and the
FAULT software switch. The latch remains set until
the next Enable (EN) command.

Ready Latch

 The Ready Latch is set by the EN command. This
turns on the READY Switch. The Ready Latch
remains on until a disable command (DIS or K) or a
Severity 3 Error. The Ready Latch, combined with
the REMOTE Input, controls ACTIVE. When
ACTIVE is high, the amplifier is enabled. Note that
REMOTE can be disabled with the command

NOREMOTE

In this case, ACTIVE and READY always have the
same value. To reinstate REMOTE, type

NOREMOTE OFF

OK Latch

The OK Latch is set by Power-up, and the RUN and
Enable Commands. This latch controls the OK
(Green) LED on the BJx front panel, the OK Output
on J11, and the OK Software Switch. Any error that
breaks the program or disables the amplifier turns off
the OK Latch.

DRIVE CONTROL

This section discusses several variables which control
the basic functions of the drive.

Direction Control

The BJx has three switches that allow you to control
encoder direction:

DIR
DIR is the direction control for printing and setting
velocity and position variables, and for issuing jog
and move commands. Changing DIR does not invert
the feedback encoder direction. Essentially, DIR is a
convenience that allows you to reverse the direction
of rotation with a single command.

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

22

ENCDIR
ENCDIR sets the direction of the feedback encoder.
ENCDIR is normally set to 1. If you are installing a
SILVERLINE motor and a BJR(L), leave ENCDIR =
1. However, if you are installing a BJP or using a
non-SILVERLINE motor or encoder, be advised that
it is common to inadvertently invert the sign of the
feedback encoder. This causes the motor to run away
when enabled. ENCDIR allows you to reverse the
feedback direction without rewiring your system.
ENCDIR is remembered on power-up.

WARNING

!
IF ENCDIR IS SET
INCORRECTLY, THE
MOTOR WILL RUN AWAY.

MENCDIR
MENCDIR is similar to ENCDIR. It inverts the
direction of the master encoder. Changing
MENCDIR inverts the sign of PEXT and VEXT as
well as reversing electronic gearing and camming.
See Camming and Electronic Gearbox Sections in
Chapter 4.

Position

Position Command and Feedback,
PCMD & PFB
PCMD is the commanded position. It is generated
internally from motion commands such as Jog.
PCMD is in position units. The standard position
units are encoder counts. PCMD is set to PFB when
the BJx is disabled.

PFB, the position feedback, is the actual position of
the motor, and it is updated every millisecond. PFB
is in position units. It is always active, even when the
BJx is disabled. PFB is reset to zero when the BJx is
powered-up.

Position Error, PE & PEMAX
PE is position error, sometimes referred to as
following error. It is the difference between PCMD
and PFB. PE is zero when the BJx is disabled. PE is
in position units.

When the magnitude of the position error exceeds the
value stored in PEMAX, a Position Error Overflow
error is generated. This disables the BJx. Normally,
you want to set PEMAX to the lowest possible level
that will still allow the system to run reliably.
However, setting PEMAX too low can generate

nuisance errors since the position error has some
variation during motion. PEMAX is in position units.

Position error is limited to protect the system.
Excessive position error can indicate a fault
condition. For instance, bearings wear out over the
life of a motor. The increased load from worn
bearings can increase the position error during
motion. In many cases, position error is the first
indication of wear.

Sampling PFB, PCMD and PEXT
When PFB and PCMD are used on the same line,
they are always sampled during the same sampling
interval (millisecond). This allows you to use
PCMD, PFB, and a third variable, PEXT (see
Chapter 4), without concern that the variables might
be sampled at different times. For example:

P PCMD "-" PFB " = " PCMD-PFB

This command would print the expected results. This
is because the BJx stores PCMD and PFB at the
beginning of every command, then uses those stored
values when the command is executed.

Velocity

VCMD, VFB, VE, & VAVG
VCMD is the commanded velocity. Like PCMD,
VCMD is generated internally from motion
commands. VCMD is zero when the BJx is disabled.
VCMD is in velocity units.

VFB is the feedback velocity, and it is updated every
millisecond. VFB is always active, even when the
BJx is disabled; if you turn the motor shaft by hand
and print VFB on the terminal, you can see the
velocity changing. Because VFB is updated rapidly,
the speed can appear to vary, even when the motor is
rotating at a fairly constant speed. This is because the
VFB shows the speed averaged over only 1
millisecond. The speed from one millisecond to the
next normally varies a few RPM. The long term
speed (that is, measured over a few seconds) normally
varies much less (about 0.01%). VFB is in velocity
units.

VE is velocity error. VE is the difference between
VCMD and VFB in velocity units.

VAVG is the average of VFB over the previous
16 milliseconds. Occasionally, the normal sample-to-
sample variation of VFB is undesirable. In these
cases, use VAVG.

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

23

Any
Severity-3

 Error

Any
 Severity-4

 Error SET
LATCH
RESETPower-up

Turn off
Communications

Disable Amplifier

Blink
“FAULT” LED

SET
LATCH
RESET

“DIS” Command

“K” Command

SET
LATCH
RESET

“EN”
Command

Ready
Latch

Severity-3
Fault
Latch

Severity-4
Fault
Latch

“FAULT”
 LED

“FAULT”
 Switch

“REMOTE”
Input

“READY”
 Switch

“ACTIVE”
 Switch

Active
Gate

Any Severity-3
 Error

Any Severity-2
 Error

SET
LATCH
RESET

OK
Latch

“RUN” Command

“EN” Command

“OK”
 LED

“OK”
 Switch

Enable
Amplifier

“OK”
Output

Power Up

Figure 3.1 BJx Enable/Fault Logic Diagram

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

24

Velocity Limits, VMAX & VOSPD
VMAX is the BJx maximum velocity. VMAX is in
velocity units.

VOSPD is the maximum velocity for your system.
The BJx generates an overspeed fault if VFB is ever
greater than VOSPD. You can set VOSPD to any
level below 1.2_VMAX. When an overspeed occurs,
the BJx is disabled.

You should set VOSPD to at least 10% or 15% above
your system's maximum speed to avoid nuisance
overspeed faults. You can change VOSPD only when
the BJx is disabled. VOSPD is in velocity units.

Current

Motor Current, ICMD
ICMD is commanded motor current. ICMD, like
PCMD and VCMD, is generated internally from
motion commands. ICMD is in current units.

Current Limits, IMAX & ILIM
IMAX is the maximum level of current that the BJx
can output, set at the factory as 100%.

ILIM limits the peak of ICMD, the commanded
current. You can set ILIM to any level below IMAX.
This allows you to limit the current below the
maximum level that the BJx can output. You can set
ILIM at any time, even during profile moves. ILIM is
in current units.

Current Time Limit, SATTIME

SATTIME is that maximum length of time that the
BJx will output ILIM current, set at the factory as
2000 milliseconds (2 seconds).

When ICMD is equal to ILIM, SAT is ON (1). If
SAT stays ON for SATTIME milliseconds, the drive
will fault and disable, generating ERROR 28,
CURRENT SATURATION TIME-OUT. SATTIME
may be set by the user, and its units are milliseconds.

Enabling the Position Loop with PL

PL is a switch that controls the position loop. If PL is
on, then the position loop is enabled. If PL is off,
then it is disabled, and the BJx is running as a
velocity loop. Most positioning applications run with
PL on. Position loops are discussed in more detail
later in this chapter. PL turns on at power-up. You
can change PL at any time.

Controlling the Velocity Loop with
PROP

PROP is a switch that controls the integration section
of the velocity loop. If PROP is on, then the velocity
loop is proportional and the integral is disabled. If
PROP is off, then the velocity loop is fully
integrating. PROP is turned off at power-up, and
most applications run with PROP off. You can
change PROP at any time. Sometimes proportional
velocity loops are used during set-up.

ENABLING THE BJX

WARNING

! THE BJx WILL BE
ENABLED AND THE
MOTOR WILL TURN.

SECURE THE MOTOR.

At this point you should turn REMOTE, LIMIT, and
MOTION on as described in the Installation manual.
Type the following command to print the state of the
REMOTE input:

P REMOTE ;REMOTE SHOULD BE 1
P LIMIT ;LIMIT SHOULD BE 1
P MOTION ;MOTION SHOULD BE 1

If you are not using any, or all, of REMOTE, LIMIT,
and MOTION, you can individually disable each:

NOREMOTE ON ;DISABLE REMOTE
NOLIMIT ON ; " LIMIT
NOMOTION ON ; " MOTION

You can re-enable any of these functions with the
enable command. For example:

NOREMOTE OFF ;ENABLE REMOTE

WARNING

!
THE MOTOR MAY RUN
AWAY! BE PREPARED TO
DISARM THE BJx.

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

25

The feedback encoder may be electrically or
mechanically reversed. This is controlled by your
components, wiring, and the variable ENCDIR. If the
encoder is reversed, the motor will run away.

WARNING

!
SHOCK HAZARD!

Large voltages from the AC
Line and the DC Bus can cause
injury. Ensure that the wiring
is correct. See the Installation
manual.

WARNING

!

THE MOTOR MAY MOVE
UNEXPECTEDLY!

BE PREPARED TO REMOVE
POWER FROM THE BJx!

Complete "Initial Check-Out" in
the Installation manual before
continuing.

This section will enable the
BJx. The system may be
unstable. The motor may
begin oscillating or run away.
Be prepared to remove
power quickly.

To enable the BJx, apply power as described in the
BJx Installation manual and enter the enable
command:

EN

The BJx should turn on. To verify that it did turn on,
print ACTIVE. If ACTIVE is 1, then the BJx is
enabled; otherwise, it is disabled.

To disable the BJx, enter the disable command:

DIS

As an alternative, you can disable the BJx with the
one-letter kill command by typing:

K

ENABLE, DISABLE, and KILL are examples of BJx
commands. All of the BJx commands are listed, with
their formats and syntax, in Appendix C.

Appendix C is a quick
reference for all BJx
commands.

MOTION COMMANDS

This section discusses how to control motion using
the BJx. Basic motion commands are described first.
Later sections discuss advanced motion control.

Basic Motion Commands

AMAX, ACC, & DEC
The BJx controls acceleration with three variables:
AMAX, ACC, and DEC.

AMAX is the maximum acceleration allowed for
almost all motion commands. The only exception is
electronic gearbox. AMAX is the upper limit for the
normal acceleration rates, ACC and DEC. AMAX
should always be set below the acceleration level that
can damage your machine. Errors that stop motion
will decelerate the motor at AMAX; therefore, your
machine is subject to deceleration rates of AMAX at
any time. AMAX is in acceleration units, which are
RPM/second as a default. AMAX can be changed
only when the BJx is disabled.

CAUTION
!

Set AMAX below the
maximum acceleration
rate that your machine
can experience without
damage.

ACC is the acceleration rate for most moves and it is
given in acceleration units. ACC can be changed at
any time, although it must be less than AMAX.
Attempting to set ACC to a value greater than AMAX
will generate an error.

DEC is the deceleration rate for most moves. DEC is
also in acceleration units, and it can be changed at
any time. Attempting to set DEC to a value greater
than AMAX will generate an error.

NOTE

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

26

EN
Many times, the MOTION input is controlled by the
normally closed contacts of a push button. This push
button is often called "STOP," since pressing the
button opens the MOTION input and forces the
motor to stop. Emergency Stop should not be
implemented with the MOTION input. Emergency
should not be implemented with the MOTION input.
Emergency Stop should be connected to a contactor
that removes power from the system. This is because
an emergency stop, which is for safety, should not
depend on BJx functions to operate properly.
Before any motion can take place, the BJx must be
enabled. Type:

EN

The MOTION Input
MOTION is a hardware input that enables motion. If
MOTION is on, motion is enabled; otherwise, it's
inhibited. You can enable the BJx if MOTION is off,
but commanding motion will generate an error. See
the Installation manual for instructions on how to
wire MOTION.

MOTION can be disabled as follows:

NOMOTION ON

This eliminates the requirement that MOTION be on.
MOTION can then be used as a general purpose
input.

Type the following command to print the state of the
MOTION input:

P MOTION ;MOTION SHOULD BE 1

WARNING

!
Do not use MOTION or any
other BJx input for
Emergency Stop. When
Emergency Stop is
activated, it should directly
remove power from the
system.

STOP (S) Command
Any motion can be stopped using S, the STOP
command. S has no parameters. S decelerates the
motor at AMAX and terminates all motion
commands. The S command does not disable the
BJx.

Normally, the STOP command should only be given
from the terminal or from the program in response to
an error condition. A better method for stopping
motion from the program under normal circumstances
is to use the JOG (J) command (see JOG, later in this
chapter). Type:

J 0 ;JOG TO 0 SPEED--STOP MOTION
;AT DEC, NOT AMAX

The J 0 command also stops motion from any mode,
much like STOP. Unlike STOP, J 0 decelerates at
the rate specified by DEC.

The STOP (S) command
should not be used as a
part of normal program
operation. Use J 0.

At any time, when motion is commanded, if the
MOTION input turns off, an error is generated and all
motion is stopped, as if the STOP command were
given. Also, any errors with a severity of 2 or 3 will
stop motion in a straight line deceleration at a rate of
AMAX. Appendix D lists all errors and their
severity.

STOP and BREAK with Control X (^X)
You can execute a stop and break command with the
control-X (^X) character. Control-X or ^X means
that you hold down the control key (Ctrl) on your
terminal (or IBM-PC) and press the X key. This has
the same effect as typing B, then S from your
terminal.

Limiting Motion

The BJx allows you to limit motion with both
Software and Hardware Travel Limits.

Hardware Travel Limits
Hardware Travel Limits limit the range of motion. If
you have an application with boundaries that should
never be crossed, you are encouraged to use the
Hardware Travel Limits with limit switches.

Exceeding Hardware Travel Limits is a more severe
error than exceeding Software Travel Limits. The
BJx assumes that Software Travel Limits should
catch normal overtravel conditions and that a
Hardware Travel Limit indicates a serious problem.
Hardware Travel Limits disable the BJx rather than
just stopping motion.

NOTE

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

27

The Installation manual discusses how to wire
LIMIT. Usually, two limit switches are wired in
series and connected to LIMIT; the contacts of these
switches must be closed for the BJx to be enabled. If
the contacts open, the BJx will be disabled, the motor
will coast to a stop, and an error will be generated.
This limit is a safety device and not part of normal
program operation. Hardware Travel Limits are
always enabled.

If you are not using limit switches, you can disable
the LIMIT input by typing:

NOLIMIT ON

You can then use LIMIT as a general purpose input.
You can re-enable LIMIT at any time by typing:

NOLIMIT OFF

Software Travel Limits, PMAX & PMIN
Software Travel Limits limit the range of motion of
the motor. There are two software limits: maximum
and minimum. If position feedback (PFB) moves
outside the software limits, an error is generated and
motion stops. Software Travel Limits are intended as
a guard against motion that is out of range due to
improper operation or programming errors.

PMAX is the maximum position allowed and PMIN
is the minimum. If PFB is greater than PMAX,
negative motion is allowed but positive motion is not.
If PFB is less than PMIN, only positive motion is
allowed. PMAX and PMIN are in position units and
can be changed at any time.

Software Travel Limits are enabled with PLIM,
which can also be changed at any time. If PLIM is
on, software limits are active; otherwise, PMIN and
PMAX are ignored. PLIM is turned on at power-up.
If you have an application with boundaries that
should not be crossed, you are encouraged to use
Software Travel Limits.

Note that you should set DIR before setting the
Software Travel Limits. This is because DIR relates
PMAX and PMIN to clockwise and counter-
clockwise motion limits. If you change DIR, you
must reset PMAX and PMIN.

User Position Trip Points, PTRIP1 &
PTRIP2
The BJx provides two user position trip points, which
control a switch. You can use this switch to control
your program.

The two trip points are PTRIP1 and PTRIP2. Both
are in position units, and you can program either at
any time. If the position feedback (PFB) is greater
than or equal to PTRIP1, then the TRIP1 switch will
be on. If PFB is less than PTRIP1, then TRIP1 will
be off. Similarly, if PFB is greater than or equal to
PTRIP2, then TRIP2 will be on; otherwise, TRIP2
will be off.

Trip points are not limits in the sense that they do not
inhibit motion. They convert position feedback to an
on-or-off signal. Trip points are particularly useful
with alarms and the HOLD command, both of which
are presented in Chapter 5.
Position trip points require a lot of calculations. As a
result, they slow the execution of the user program by
about 4%. If you are not using trip points, you can
disable them by typing:

TRIP OFF

When the BJx is powered-up, trip points are enabled.

Profiles

When a positioner commands the motor to move from
one point to another, it must control acceleration,
deceleration, and traverse speed. The velocity of the
motion versus time is called the profile. Simple
profiles begin and end at zero speed and have three
segments: acceleration, traverse, and deceleration.
You must specify ACC, the acceleration rate, and
DEC, the deceleration rate, before commanding the
move. The traverse speed and the distance to move
are specified in the move command itself.

Figure 3.2. A Simple Profile

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

28

The graph in Figure 3.2 shows a simple profile. The
move begins at position 0 and ends at position 5000.
The traverse speed is 200 RPM. ACC and DEC are
specified independently before the move is
commanded.

S-Curves
The BJx also allows you to specify the type of
acceleration you want. You can select S-curve
accelerations for smoothness or straight-line
accelerations for quickness. The graph in Figure 3.3
shows the profile from Figure 3.2 using S-curves
instead of straight lines.

Figure 3.3. S-Curve Profile

Notice that ACC and DEC are still independent.
Notice also that they specify the average acceleration,
not the peak. Since S-curves reduce the acceleration
rate at the endpoints of the acceleration, the
acceleration rate in the middle must increase.
Typically, when you switch to S-curves, you must
reduce ACC and DEC to stay within the ratings of the
motor. However, since S-curves reduce overshoot,
you may find that you increase the overall
acceleration rate when you use them.

You may need to reduce
ACC and DEC when using
S-curves.

For some applications, S-curves can reduce the
average acceleration too much; in others, straight line
acceleration produces motion that jerks the motor
excessively. The BJx provides different levels of
S-curves, allowing you to make the trade-off. There
are three levels that are selected by setting the
variable SCRV to either 1, 2, or 3. For more
information on S-curves, see Industrial Drives
application note B101, "Acceleration Profiles."

Table 3.5 S-Curve Acceleration Chart

For this acceleration... Set SCRV to...

Straight-line 1

Polynomial 2

Sinusoid 3

Move Absolute (MA) Command
There are two kinds of simple moves: absolute and
incremental. With absolute moves, you specify the
end position; with incremental moves, you specify the
total distance of the move.

The MA command allows you to command absolute
moves by specifying the end position. ACC, DEC,
and SCRV are all in effect for MA moves. As an
option, you can specify the traverse speed. For
example,

MA 50000 1000

moves to position 50,000 at a peak speed of 1000
RPM.

Not specifying the speed in
MA commands reduces
execution time.

Move Incremental (MI) Command
The MI command allows you to command
incremental moves by specifying the total distance of
the move. ACC, DEC, and SCRV are all in effect for
MI moves. For example,

MI 5000 200

causes the motor to move 5000 counts at a peak
speed of 200 RPM. The profiles that were shown
earlier in Figures 3.2 and 3.3 could have been
generated from this example.

NOTE

NOTE

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

29

Incremental Move Example

WARNING

!
SHOCK HAZARD!

Large voltages from the AC
line and the DC bus can
cause injury. Wire the BJx as
described in the BJx
Installation manual.

WARNING

!

THE MOTOR MAY MOVE
UNEXPECTEDLY!

BE PREPARED TO REMOVE
POWER FROM THE BJx!

Complete "Initial Check-Out"
in the BJx Installation
manual before continuing.

This section will enable the
BJx. The system may be
unstable. The motor may
begin oscillating or run
away. Be prepared to
remove power quickly.

Turn on the AC line voltage. Type in the following
example:

EN
ACC 1000
DEC 1000
MI 4000 100

Profile Limits
With both the MA and MI commands, if the traverse
speed cannot be reached because ACC or DEC is too
small for the specified move, then the BJx reduces the
maximum speed so that the move, for all practical
purposes, is triangular. Actually, there is a very short
(less than 5 milliseconds) traverse segment so that the
move still has three segments.

The maximum time for an entire move is not limited.
However, the time for each acceleration or
deceleration is limited to 30 seconds. If the
acceleration rate is so low that this limit is exceeded,
then the BJx generates an error explaining that either

ACC or DEC is too low. This error is issued before
the motion command begins. In this case, ACC or
DEC must be increased, or the peak speed of the
move must be decreased.

Multiple Profile Commands
The BJx allows one succeeding move to be calculated
while the present move is being executed. This is
called buffering. Buffering reduces inter-index delay,
the delay between successive moves, almost to zero.
When you are commanding motion from the
Interactive mode (-->), be careful not to type in two
move commands while another is executing. This
generates an error. If you are commanding motion
from your program, the BJx automatically pauses
before calculating a third motion profile, thus
stopping this error from occurring.

Profile Final Position, PFNL
If you want to keep track of the end position of the
present move, the variable PFNL (Position Final) is
provided. This variable contains the final position of
a move. The variable can be used to compute the
distance remaining by combining it with PFB
(Position Feedback):

P "DISTANCE TO GO " PFNL-PFB
;PRINT THE AMOUNT OF
;POSITION TO GO TO
;FINISH THE MOVE

JOG (J) Command

This section describes J, the JOG command. Jogging
is useful when you want to command motion without
position endpoints. For example,

J 500

causes the motor to rotate at 500 RPM indefinitely.
Jogs are useful for machine set up and testing.

ACC and DEC are in effect with Jogs, as is SCRV.
Software and Hardware Travel Limits are also in
effect. Jog is the only move command that can cause
motion to change direction without stopping first.
However, since changing directions involves both
acceleration and deceleration, Jog commands that
change direction of rotation use ACC or DEC,
whichever is lower. Jog commands should be used
with caution, since motion continues indefinitely.

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

30

NORMALIZE (NORM) Command

NORM, the NORMALIZE command, is required if
you want to reset the BJx position feedback, PFB.
Often, you may want to set the position feedback to
some known value. For example, on power-up the
position feedback is set to zero. After a homing
sequence, you may need to reset the position register.
This is done using NORM. For example,

NORM 10000

sets PFB (position feedback) as well as PCMD
(POSITION command) to 10,000 in position units.
As an alternative, you can enter:

PFB=10000

Setting PFB has the same effect as the NORM
command. Use whichever you think makes your
program easier to understand.

Now type in:

P PFB

Normalize the position to 1000 with:

NORM 1000

Again, print PFB:

P PFB

and see that it is now 1000. The NORM command
cannot be used when GEAR is on or when motion is
commanded from MA, MI, or any other motion
command.

Gating Motion with GATE

The GATEMODE variable allows you to pre-
calculate a profile and begin motion within 1.5
milliseconds of a switch closure. To enable GATE,
turn on GATEMODE and follow it with one or two
MA or MI commands.

When the hardware input GATE transitions from low
to high, motion begins. GATE is on Connector J11.
After motion is begun, GATEMODE is turned off.
You must re-enable GATEMODE for each move you
want gated. Also, you cannot turn GATEMODE on
when motion is commanded from Jogs, MA, or MI

commands. If you turn GATEMODE on and
command motion, but turn GATEMODE off before
the GATE input turns on (thus, allowing motion to
begin), the commanded motion will be "forgotten" by
the BJx.

In the following example, two MI commands are
entered and precalculated with GATEMODE on.

GATEMODE ON ;ENABLE GATING
MI 1000 100 ;PRECALC MOVES.

;MOTION
MI -1000 ;DELAYED TIL GATE

;IS HIGH
W 0 ;WAIT FOR MOTION

;TO START

This means no motion will take place until the
hardware input GATE is high. If the above lines
were part of a program, the W command would delay
program execution until the GATE switch turned on.

Zero Position Error (ZPE) Command

The ZPE command zeros position error by setting
PCMD to PFB without changing PFB. There are
occasions when this will be necessary. For example,
if the BJx is run for some time as a velocity loop, then
position error can accumulate well beyond PEMAX.
If the position loop is turned on with this condition, a
position error overflow error will occur. To prevent
the error, you must first zero the position error, then
turn the position loop on by entering:

ZPE
PL ON

The ZPE command is also frequently used with
clamping, which is discussed later in this chapter.

GOHOME Command

 GOHOME generates a home sequence that
combines position capture with a two-step profile for
fast, reliable homing. The format is:

GOHOME Vel1 [Vel2] [Source]

where Vel1 is the first (fast) speed;
Vel2 is the second (slow) speed;
Source selects HOME or INDEX.

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

31

Figure 3.4 shows a typical GOHOME sequence.:

Velocity

Home
Source

Vel1

Vel2
Time

First, capture position
at source transition...

Then, move back to
captured position

Then, decel to stop...

Figure 3.4 GOHOME Command

Homing Velocities: Vel1 and Vel2
GOHOME generates a two-step homing sequence.
The first part of the sequence is normally at high
speed; the profile accelerates to Vel1 and searches for
the first transition on the home source. After
capturing position, the profile reverses and moves
back to the captured position. If Vel2 is not
specified, it is assumed to be 10% of Vel1.

GOHOME 2000 150 ;HOME AT 2000 RPM
;THEN REVERSE &
;HOME AT -150 RPM

GOHOME 2000 ;HOME AT 2000 RPM
;THEN REVERSE &
;HOME AT -200 RPM

The sign of Vel1 determines the direction of the
homing sequence. If Vel1 is positive, the initial
direction of homing will be positive and vice versa.
The second part of the profile is always opposite of
the first; the sign of Vel2 is ignored.

Homing Source
GOHOME allows homing based on either of two
inputs: the HOME switch (Connector J17) or the
Feedback Encoder Index (J12). Specify either
HOME or INDEX. If you do not specify either
source, the HOME switch is assumed.

GOHOME 200 HOME ;HOME TO
 ;HOME SWITCH

GOHOME 200 INDE ;HOME TO
 ;INDEX SWITCH

GOHOME 200 ;HOME TO
 ;HOME SWITCH

The home position is captured the first time the
source switch changes state. If you want to home to
the second change of state, you should jog past the
first change prior to issuing the GOHOME command
as shown in Figure 3.5.

Home
Desired Transition
for Home Position

Velocity

First, use J to pass
first transition...

then issue
GOHOME

Switch

Figure 3.5 GOHOME to 2nd Transition

Capturing Position

Position capture is a feature where the position
feedback (PFB) is captured when a hardware input
transitions. The BJx position capture is accurate to
±40 microseconds. In other words, the position that
is stored after a capture is equal to the actual position
of the motor at the time of the capture, within
40 microseconds. Capture uses the HOME, INDEX,
OR MINDEX hardware input as the capture trigger.

Enabling Capture, CAP, PCAP &
PEXTCAP
The switch CAP controls capture. If CAP is on, then
capturing is enabled. When capturing is enabled, the
BJx will watch one of three inputs: HOME, the
feedback encoder index, or the master encoder index.
You select the source of the capture with the variable
CAPSRC.

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

32

When the capture input changes to the state specified
by CAPDIR, the BJx will store PFB in the variable
PCAP and PEXT in the variable PEXTCAP. After
the capture, the BJx turns CAP off. This tells you the
capture is complete. You can then use PCAP and
PEXTCAP as you would any other monitoring
variable. PCAP is in position units. PEXTCAP is in
external position units.

Capture Direction, CAPDIR
The capture is triggered when the HOME input
changes from 0 to 1, or vice versa. If CAPDIR is 1,
the capture occurs when the HOME input changes
from 0 to 1. If CAPDIR is 0, the capture occurs when
HOME changes from 1 to 0. CAPDIR can be
changed at any time. Changing CAPDIR always
turns CAP off.

Capture Source, CAPSRC
CAPSRC specifies which capture input to use as the
capture trigger source. The possibilities are INDEX
input, MINDEX input, and the HOME input.

For this capture source... Set CAPSRC
to...

HOME 1
INDEX 2
MINDEX 3

Clamping

Clamping stops BJx motion when the position error
exceeds a set point. This is used to determine that the
motor, usually through a lead screw, has run a part
into a mechanical stop. The profile stops and the part
is held with limited torque. This is sometimes
referred to as "Feed to Positive Stop." The stop is
detected by watching position error; when position
error exceeds the variable PECLAMP, the part is
assumed to have run into a stop. When a stop has
been detected, the BJx will hold the current at ILIM,
which should be set to the proper holding current.
ILIM can be increased or decreased after the stop has
been detected. To enable clamping, turn CLAMP on.
PECLAMP can be changed at any time.

In general, clamping is done at low speeds with the
current limited to some low level. After the clamp
has occurred, the motor is assumed to be at zero
speed. When the clamp has occurred, you can raise
or lower ILIM to set the holding torque as desired.
You can tell whether a clamp has occurred by looking
at SEG, the present motion segment. If SEG is 0,
then motion has stopped.

After the BJx stops motion, the position error stays at
approximately PECLAMP. Before commanding any
new motion, you should zero the position error with
the ZPE command.

Clamping can be used with all move and jog
commands. If jogs are used, the motion continues
until the stop is found. If move commands are used,
then motion does not continue past the specified
endpoint, regardless of whether a part is found.

An example of clamping follows:

PECLAMP=1000 ;SET CLAMP = 1000
;POS UNITS

CLAMP ON ;ENABLE
;CLAMPING MODE

MA 100000 400 ;MOVE AT MOST
;100000 POS UNITS
;IF THE MOTOR
;GETS ALL THE
;WAY TO 100000,
;THEN THE STOP
;WAS NOT
;ENCOUNTERED.
;ASSUMED THE
;PART IS NOT
;THERE.

W 0 ;DELAY UNTIL
;MOTION STOPS

IF PCMD EQ 100000 P "PART NOT
FOUND"

;IF PCMD = 100000 =
;FINAL POSITION,
;THEN THE PART
;WAS NOT FOUND.

JOG TO (JT) & JOG FROM (JF)

In some applications, JOG commands need to be
synchronized with position feedback. With J, the
standard JOG command, the speed changes when the
command is entered. Position dependent jogs (Jog
To and Jog From) delay the speed change until a
specified position is reached. You specify the
position at which the change in speed begins with the
Jog From (JF) command. Similarly, you specify the
position at which the change in speed ends with the
Jog To (JT) command.

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

33

With position dependent jogs, you must specify a
position and the new speed. ACC, DEC, and SCRV
are in effect. Position dependent jogs are always
absolute moves (not incremental).

Figure 3.6 shows the effect of a JF command. This
example assumes that the speed is already 2000 RPM
when the JF command is executed.

;ASSUME PRESENT SPEED IS 2000 RPM
JF 50000 500

2000

500

Command
Entered
Here

5000 counts

RPM

RPM

Figure 3.6 Jog From (JF) Command

Figure 3.7 shows the effect of the JT command. This
example also assumes that the speed is 2000 RPM
when the command is executed.

;ASSUME PRESENT SPEED IS 2000 RPM
JT 50000 500

2000

500

Command
Entered
Here

5000 counts

RPM

RPM

Figure 3.7 Jog To (JT) Command

Position dependent commands must be used with
care. If you specify a position that has already

passed, the BJx will generate ERROR 42, "MOVE
W/O TIME." Also, if the Jog To command is given
so that ACC or DEC prohibits the profile from
reaching final speed before the specified position, the
BJx will generate ERROR 42. ERROR 41, "MOVE
NEEDS MOTION," is generated if Jog To or Jog
From are commanded when the velocity is 0. Finally,
a position dependent jog that attempts to change the
direction of rotation will generate an error. All of
these errors stop motion.

Registration
The BJx allows you to combine the position capture
with the Jog To command to implement index-to-
registration. One example of index-to-registration is
a conveyor belt on which items are placed in random
positions. An optical sensor detects the item
upstream of the operation. The BJx, controlling the
conveyor, continues at full speed and stops the item
where the operation will take place. The high-speed
position capture works at all velocities and during
accelerations; it is accurate to 40 microseconds.

To implement index-to-registration, you usually jog
the motor at a constant speed, capture the position
(with the registration device connected to the HOME
input), then use the Jog To command to stop the
motor at an endpoint (normally a specified distance
beyond the registration input).

Registration Example
The following example shows how to program the
BJx for registration. The desired operation of the
program is as follows:

1. Set CAPDIR (1 for low-to-high transition, 0
for high-to-low transition).

2. Enable capturing.
3. Begin move.
4. Wait for the BJx to capture.
5. Use the captured position to set the endpoint of

the move.

For example, the following code segment jogs at
2000 RPM and stops 4000 counts after the
registration input transitions from low to high.

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

34

CAPDIR 1 ;SET CAPDIR FOR
;LOW TO HIGH

CAP ON ;ENABLE CAPTURE
J 2000 ;BEGIN MOVE
TIL CAP EQ 0 ;WAIT FOR

;POSITION
;CAPTURE

JT PCAP+4000 0

Note that the motor comes to rest 4000 counts after
the position that was captured, not 4000 counts after
the JT command is executed. If 4000 counts was not
enough distance, ERROR 42, "MOVE W/O TIME,"
would be generated. This means that the commanded
speed change cannot be accomplished given DEC, the
deceleration limit. Note also that you must leave an
additional 10-15 milliseconds for the TIL (see
Chapter 5) and JT commands to be executed.

The JT command example given here brings the
system to rest. As an alternative, you can change the
speed to any value the motor can run, as long as you
do not attempt to change direction with one JT
command. For example, the following command
replaces the above JT command when you want to
change speed to 100 RPM at 4000 counts past PCAP.

JT PCAP+4000 100
;CHANGE SPEED TO
;100 RPM. BEGIN
;DECEL SO THE
;SPEED IS JUST
;REACHING 100 RPM
;WHEN THE POSITION IS
;4000 COUNTS PAST
;REGISTRATION MARK

For more information about registration, see
Industrial Drives application note "Cut to Length."

Multiple JF/JT Commands
Many applications require that multiple Jog From
(JF) and Jog To (JT) commands be executed
sequentially. In most cases, you will have to insert a
delay in your program between JT and JF commands.
For example, if you enter the following program, you
might think the motor will first jog to 100 RPM, then
to 400 RPM (at 20,000 counts), and finally come to
rest at 30,000 counts. Actually, the motor will jog to
about 40 RPM and continue at that speed until it
comes to rest at 30,000 counts. This is because the
JF/JT commands cause the motion profile to hold the
velocity command constant, even if an acceleration is
commanded from the previous motion command.

55$
EN ;ENABLE BJX
ACC 100000 ;SET ACCEL AND

;DECEL RATES
DEC 100000
NORM 0 ;NORMALIZE TO

;ZERO POSITION
J 100 ;JOG TO 100 RPM
JT 20000 400 ;ERROR--SHOULD

;DELAY TIL SPEED
;REACHES 100 RPM
;BEFORE
;EXECUTING JT
;COMMAND.

JT 30000 0 ;ERROR--SHOULD
;DELAY TIL SPEED
;REACHES 400 RPM
;BEFORE
;EXECUTING JF
;COMMAND.

DIS
B

 The solution is to insert delays to force the program
to wait until the motor reaches the final speed from
the previous motion command. For example, the
above program can be modified as follows.

55$
EN ;ENABLE BJX
ACC 100000 ;SET ACCEL AND

;DECEL RATES
DEC 100000
NORM 0 ;NORMALIZE TO

;ZERO POSITION
J 100 ;JOG TO 100 RPM
TIL VCMD EQ 100 ;WAIT TIL SPEED

;REACHES 100 RPM
JT 20000 400 ;EXECUTE JT

;COMMAND
TIL VCMD EQ 400 ;WAIT TIL SPEED

;REACHES 400 RPM
JT 30000 0 ;EXECUTE JT

;COMMAND
;DIS

B

Although delays with the TIL command work, delays
usually should be inserted with the WAIT (W)
command. The WAIT (W) command takes less
space and works better with multi-tasking, a subject
discussed in Chapter 5. For our example, the first
TIL command can be replaced with "W 2" and the
second can be replaced with "W 3."

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

35

Changing Profiles During Motion
Position dependent jogs can also be used to change
the speed or endpoints of an MA or MI command that
is already in progress. For example, if you want to
change the speed of a profile depending on an input,
you could write the following program to reduce the
speed when I1 is 1.

X1 = 10000 ;X1 STORES THE
;ENDPOINT

MA X1 5000 ;BEGIN AT 5000
;RPM

TIL SEG EQ 0 GOSUB 25
;25$ WATCHES I1
;TO CHANGE
;SPEED

B

25$
? I1 EQ 0 RET ;CHANGE ONLY IF

;I1 = 1
J 1000 ;REDUCE SPEED

;TO 1000 RPM
TIL SEG EQ 2 ;WAIT UNTIL SPEED

;IS 1000 RPM
JT X1 0 ;USE JT TO GET TO

;ORIGINAL
;ENDPOINT AT NEW
;SPEED

TIL SEG EQ 0 ;WAIT FOR MOTION
;TO STOP

B ;DONE

You must be careful not to begin the motion too late
in the profile. For example, suppose I1 became 1
after the profile was well into deceleration, and the
speed was, say 200 RPM. In this case, the JT
command would generate an error because by the
time it was executed, the motor position would be
past X1, the original endpoint. This is because the
unit would accelerate up to 1000 RPM before the JT
command was executed. In general, you must limit
the time during which you are looking for the speed
change. After this point, the profile must either
continue along the original profile or the endpoint
must be extended. For example, the program section
beginning at label 25 could be rewritten so that it
watched a position trip point, X1-2000.

25$
? PFB GT X1-2000 RET ;DO NOT

;REDUCE
;SPEED IF
;PFB >
;SETPOINT

;
;REST OF 25$ PROGRAM THE SAME
;

What value to use for the setpoint varies from one
application to another. These values must be set
based on experience. In many applications, the input
will not request a speed reduction near an endpoint,
so this may not be a problem.

Motion Segments

All moves and jogs occur in segments. Normal jogs
have two segments: accel/decel and traverse. Moves
(MI and MA) have three segments: accel, traverse,
and decel. Position dependent jogs have three
segments: traverse to position, accel/decel, and
traverse. Table 3.6 shows the different segments for
BJx moves.

Table 3.6 Segments for Different Moves

Segment MI,MA J JT/JF

1 Accel Accel/Decel Traverse

2 Traverse Traverse Accel/Decel

3 Decel N.A. Traverse

You can use the SEG to determine when motion is
complete, since SEG is zero when the BJx is not
commanding a profile.

CONTROL LOOPS

Four sections of control loops are of interest: input,
output, feedback, and tuning variables. The input is
compared to the feedback to generate an error. The
error signal is modified using the tuning variables to
generate the output. The tuning variables can be
modified to produce higher levels of performance;
unfortunately, higher performance brings with it
greater noise susceptibility and reduced stability. The
system designer must optimize noise and performance
for the application.

BJx control loops have one or two tuning variables.
All BJx loops follow the convention that larger

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

36

constants provide higher gain. Each BJx loop is
described below and shown in Figure 3.8.

Position Loop

The Position Loop input is the variable PCMD, the
Position command. The feedback is PFB, the
position feedback. The output is VCMD, Velocity
command, and its two tuning variables are KP, the
position loop gain, and KF, the position loop feed-
forward gain.

The position loop calculates the position error (PE) as
the difference of PCMD and PFB. As a secondary
command source, PCMD is differentiated
(d/dt)PCMD. The position loop then performs the
following calculations:

VCMD=KP * PE + KF * (d/dt)PCMD.

The position loop is optional. If the switch PL is on,
then the position loop is enabled; if it is off, then the
position loop is bypassed. PL is turned on at power-
up.

The feed-forward gain reduces position error at high
speed. Without feed-forward, the velocity command
is generated only from position error; a large position
error is required to command a high speed. If KF is
large enough, then a high velocity command can be
generated with little or no position error. The BJx
scales KF so that unity feed-forward occurs when KF
equals 16,384. In other words, if KF is 16,384, no
position error is required to generate the velocity
command in steady-state running conditions. Larger
KF makes the system more responsive to commands;
however, KF should never be larger than 16,384.

Unfortunately, large values of KF cause overshoot.
KP must be reduced to reduce overshoot. If you need
to minimize position error when the motor is turning,
you will need to optimize KF and KP. Typically, KF
ranges from 2000 to 10,000.

TQ (Torque mode) should be off when PL is turned
on. The system becomes unstable when PL and TQ
are both on. If you do not turn TQ off before turning
PL on, the BJx will force TQ off.

When PL is turned on, TQ is
turned off automatically.

Velocity Loop

The velocity loop takes its input from the position
loop if PL is on. If PL is off, motion commands
directly control the velocity command (VCMD). The
feedback is VFB, velocity feedback, and the
difference of these two signals is VE, velocity error.
Velocity error can be used in two control loops:
proportional and integrating.

Proportional Velocity Loop
If a proportional velocity loop is selected, then the
velocity error is multiplied by KPROP, the
proportional constant, to generate ICMD, the current
command. Proportional velocity loop is selected
when the PROP switch is on. PROP is turned off on
power-up.

Proportional velocity loops are much easier to
stabilize than integrating loops, so they are often used
during machine setup. However, they also allow
steady-state velocity error and, therefore, they are
generally replaced with integrating loops when the
machine is fully operational.

Integrating Velocity Loop
If an integrating velocity loop is selected, then the
velocity error is integrated and multiplied by KVI, the
velocity integration constant. Velocity feedback is
subtracted from this signal, then the signal is
multiplied by KV, the velocity loop gain, to form
ICMD. This velocity loop is selected when PROP is
off.

Torque Command
In a few applications, the BJx is given a "torque"
command. Actually, this is a current command, but at
lower speeds, motor torque is approximately
proportional to current. In this case, VCMD is
multiplied by KPROP to form ICMD. Note that this
differs from the proportional velocity loop only in
that VFB is not subtracted from VCMD. The switch
TQ must be on to select the torque mode and off for
all other modes. The position loop should be off (PL
off) when the BJx is running in Torque command
mode. The BJx will turn PL off when TQ is turned
on.

NOTE

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

37

When TQ is turned on, PL is
forced off.

Power-Up Control Loops

The BJx has, at power-up, the following settings:

• Position loop enabled (PL on).
• No feed-forward (KF=0)
• Integrating Velocity Loop (PROP off, TQ off)

These settings meet the requirements of a large
number of applications. Figure 3.8 shows each of the
five BJx controller modes.

UNITS

The BJx provides user units for the convenience of
the operator and the programmer. You can define the
units of acceleration, current, velocity, and position
for your machine. Also, if your BJx has an external
input (See Chapter 4), you can define independent
units of external position and external velocity.

The BJx uses internal units which are designed for
efficient computer processing. User-unit constants
scale the BJx internal units to more convenient units.
For example, if you type:

VOSPD = 1000

the 1000 is multiplied by VNUM/VDEN before it is
stored in the BJx memory.

With a simple, step-by-step procedure, you can define
your units as RPM, inches/minutes, degrees/second,
or any other units that are convenient.

Current Units
The BJx commands current with a digital-to-analog
converter (DAC). The BJx internal current unit is
1/4095th of full-scale current. (Full-scale current
refers to the peak rating of your BJx, not the
continuous rating. For example, the peak rating of a
BJR-4004 is 8 Amps.)

The conversion constants that determine user current
units are INUM, current units numerator, and IDEN,
current units denominator, as shown in Figure 3.9.
Notice that IDEN and INUM switch places
depending on whether you are setting or reading the
variable.

Current in

user units

INUM

IDEN

Current in

internal units

Setting Current Varibles

Current in

user unitsINUM

IDEN

Current in

internal units

Reading Current Varibles

Figure 3.9 BJx Current Units

INUM and IDEN have a range of 0 to 231. For
standard current units (percent), INUM is 4095 and
IDEN is 100. For example, when setting ILIM to
100, type

ILIM=100 ;SET ILIM TO 100%

The BJx converts the 100% to 4095 BJx internal
units as shown in Figure 3.10.

100(%)
4095

100
4095 (counts)

Example:

Figure 3.10 BJx Current Units Example

This sets ILIM to 4095 or 100% of full current.
When you type:

P ILIM

the BJx converts the 4095 BJx-internal units to 100%
by multiplying by IDEN and dividing by INUM.

NOTE

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

38

KF

KP

PFB

VCMD

VFB

d
dt

VE
+

--

+
+

+

Position Loop w/o Integration

[PL=1, TQ=0, PROP=1]

ICMD
KPROP

PE

KVI KV

VCMD

VFB

d
dt

VE
+

-

+

-

+

Velocity Loop w/Integration

[PL=0, TQ=0, PROP=0]

ICMD

dt

KF

KP KVI KV

PFB

VCMD

VFB

d
dt

VE
+

--

+
+

+

-

+

Position Loop w/Integration

[PL=1, TQ=0, PROP=0]

ICMD

dt

PE

VCMD

VFB

d
dt

VE
+

-

+

Velocity Loop w/o Integration

[PL=0, TQ=0, PROP=1]

ICMD
KPROP

VCMD

d
dt

Open Loop - Torque (Current)

[PL=0, TQ=1, PROP=0]

ICMD
KPROP

PCMD

Gear, Cam,
and

Position
Profile

PCMD

Gear, Cam,
and

Position
Profile

PCMD

Gear, Cam,
and

Position
Profile

PCMD

Gear, Cam,
and

Position
Profile

PCMD

Gear, Cam,
and

Position
Profile

Figure 3.8
BJx Control Modes

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

39

Setting Variables
All variables that have units associated with them
should be set after you have specified the user units.
This is because the values actually stored in the
variables are in BJx-internal units, not user units.
Changing the user units will not affect the
fundamental value stored in the variables.

Always set unit-based
variables after the units are
defined in the BJx.

For example, if you want VOSPD to be 100
inches/minute and you type:

VOSPD = 100

when velocity units are in RPM, VOSPD would be
100 RPM. If you change the velocity units to
inches/minute, VOSPD would remain 100 RPM--it
would simply be converted to the equivalent of
100 RPM in inches/minute. Refer to Appendix E,
which lists all variables and the units associated with
them.

Position Units

Standard units for position are counts. To select
counts as units, set PNUM and PDEN to 1. To select
other units, scale counts using PNUM and PDEN as a
fractional multiplier. For example, suppose you want
units to be revolutions. For this example, assume a
1000-line encoder or, with quadrature, 4000 counts
per revolution. Now use PNUM/PDEN to form a
scale factor of 4000:

PNUM = 4000
PDEN = 1

For most applications, revolutions are far too coarse.
Suppose we select degrees; here, we want to scale by
4000/360. Since the BJx language is integer based,
we can’t set PNUM to 4000/360 = 11.1111- , at least
not very accurately. Using PNUM and PDEN we can
enter the scale factor as an exact ratio:

PNUM = 4000
PDEN = 360

The exact representation is important. As we will see
in the section concerning PROTARY, PNUM, and

PDEN, in rotary-table application, even the smallest
inaccuracy will accumulate substantial error after
many revolutions.

In general, you are free to select your units. Be those
units millimeters, thousands of inches, or arc-minutes,
you need only:

1. Determine the scale factor from counts.

2. Separate the scale factor into an integer
numerator and denominator.

3. Set PNUM and PDEN accordingly.

One subtlety that can cause confusion is determining
how to divide the scale factor into PNUM and PDEN.
Normally, you will select units less resolved than
counts. In that case, PNUM will be larger than
PDEN. For example, changing units from counts to
revolutions (decreasing resolution) will increase
PNUM relative to PDEN. Also, as you may have
noticed, although the ratio PNUM/PDEN is
determined by your application, the individual values
are somewhat arbitrary. For example, the following
sets of PNUM/PDEN produce identical results:

Set 1 PNUM = 400 PDEN = 36
Set 2 PNUM = 4000 PDEN = 360
Set 3 PNUM = 40,000 PDEN = 3600

The only limitation is that both numbers must be less
than 231. However, better accuracy is maintained if
PNUM and PDEN are less than 215

Velocity Units
The standard velocity unit is RPM. The following
table shows how you set VNUM and VDEN for a
given encoder resolution.

Table 3.7 Standard Velocity Units (RPM)

Units
Encoder
Resolution VNUM VDEN
 500 21,845 10

RPM 1000 43,691 10

2000 87,382 10

(Other)η η∗ 43.691 10

NOTE

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

40

Note that when VDEN is fixed, VNUM is
proportional to encoder resolution. To calculate units
other than RPM, first determine the scale between
RPM and the desired units, then adjust VNUM and
VDEN according to the scale factor.

As with PNUM/PDEN, decreasing the resolution
requires increases in the ratio VNUM/VDEN.
However, it is a bit more complex with velocity units
because VNUM and VDEN are not 1 as were PNUM
and PDEN.

Accelerator Units
The standard unit for acceleration is RPM/second.
The following table shows how to set ANUM and
ADEN for a given encoder resolution.

Table 3.8 Standard English Acceleration
Units (RPM)

Unit
Encoder
Resolution ANUM ADEN
500 21,845 10,000

RPM/sec 1000 43,691 10,000
2000 87,382 10,000
Other (η) η∗ 43.691 10,000

External Units
External units are for the external pulse inputs
(Connector J13), VEXT and PEXT. The user units
are set by VXNUM and VXDEN for external velocity
(VEXT) and by PXNUM and PXDEN for external
position (PEXT). Define external units the same way
you defined position and velocity units.

Metric Units
To convert Tables 3.7 and 3.8 to metric units (rad/s
and rad/s2), multiply VNUM and ANUM by 9.55.

Indirectly Coupled Feedback
If the feedback encoder is belted or geared to the
motor, the belt or gear ratio must be accounted for.
Do this by including that ratio in the encoder
resolution.

For example, if a 1000-line encoder is connected to
the motor through a 3:1 (reducing) gear ratio, the
theoretical encoder resolution is 3000 lines per
revolution.

Example of Machine Specific Units
An example of a lead-screw will illustrate machine
specific units:

Encoder resolution 1000 lines (4000 counts)
Lead Screw Pitch 10 revs/in
Desired Units:

Position mils
Velocity mils/min

1 mil = 40 counts
100 mil/minute = 1 RPM

Table 3.9 Scaling Units Example

Standard Scale Resolutio
n

Units

Position PNUM=1 40 cts=1
mil

decrease PNUM=40

PDEN=1 PDEN=1

Velocity VNUM =
43,691

1RPM=100
mil/min

increase VNUM =
437

VDEN =
10

VDEN = 10

Position Rotary Mode, ROTARY, &
PROTARY

The BJx stores position in a 32-bit number. This
number is large enough to count many revolutions.
For example, the 32-bit number will store the counts
from a 1000-line encoder for about 10 million
revolutions before the 32-bit limit is exceeded.
Although this is large, it may not be large enough.
Some applications require the motor to rotate in one
direction indefinitely. Eventually, the 32-bit limit
will be exceeded, resulting in an error. The Rotary
mode allows the BJx to support these unidirectional
applications.

The Rotary mode forces all position-related variables
to "roll-over" after position feedback (PFB) exceeds a
specified limit. The variables that are rolled over are
PFB, PCMD, and PFNL. The rotary distance (the
specified limit before roll-over) is stored in
PROTARY. PROTARY is in position units.

When ROTARY is on, the Rotary mode is enabled.
If PFB is greater than PROTARY, then PFB, PCMD,
and PFNL are decremented by PROTARY. If PFB is
less than zero, then PFB, PCMD, and PFNL are
incremented by PROTARY. Note that DIR=0 does
not work well with the Rotary mode as PCMD, PFB,
and PFNL are always less than zero. You cannot
change PNUM, PDEN, or PROTARY when

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

41

ROTARY is ON. In addition, you must normalize
PFB so that 0 < PFB < PROTARY before turning
ROTARY ON. Enable the Rotary mode by typing:

ROTARY ON

Choosing PROTARY, PNUM, and
PDEN
If you have a rotary application such as a printing
drum, set PROTARY in position user units to be the
exact equivalent of one revolution of the drum.
PROTARY must be exact or position error will
accumulate over many revolutions. For example,
suppose the motor of an application is connected
through a 5:3 gearbox. For convenience, assume the
user units are in degrees of the table. PROTARY
would be one revolution of the table or 360 degrees.
How do you select PNUM, PDEN, and PROTARY?

The key is selecting PNUM and PDEN so that
PROTARY can be represented exactly as an integer.
This does not mean that PROTARY must be an
integer number of counts. In fact, it normally will not
be. Returning to the example, a motor movement of 5
revolutions would cause 3 revolutions of machine
(table) rotation, or 1080 user units (degrees).

 PNUM = 4096 * 5 and PDEN = 360 * 3

Thus, PROTARY would be 360. Notice that
PROTARY is not exact in counts; it is 5/3 of a
revolution or 6826 and 2/3 counts. However, it is
exact in user units. Therefore, error will not
accumulate as the table rotates. The incorrect way to
choose PNUM, PDEN, and PROTARY would be to
select PNUM and PDEN so that PROTARY could
not be represented as an integer. For example, we
could have stated that 5/3 revolution of the motor
would cause one revolution of the machine. Then:

 PNUM = INT(4096 * 5/3) = 6827
 PDEN = 360

In this case, PROTARY would be 359.98 (not 360)
degrees, so that error would accumulate as the table
turned.

Position Units must be
exact in the rotary mode to
prevent error accumulation.

Rotary Mode and Absolute Moves

When the BJx is in the Rotary mode, you must limit
the final position of all absolute moves to between 0
and PROTARY. If you want to move more than
PROTARY, you can use incremental moves. For
example, the following is a legal command.

MI 50*PROTARY

SERIAL COMMUNICATIONS

This section discusses details of BJx serial
communications. This includes autobauding,
multidrop connections, and transferring your program
to and from the BJx. If you are using Motion Link,
the Kollmorgen software package for the BJx, you do
not need to read the sections on transmitting and
receiving your program, or on system dump. Motion
Link provides facilities for these functions.

Autobauding

It is not necessary to set the baud rate on the BJx
directly. The BJx can determine the current baud rate
and set its own baud rate accordingly. This is called
autobauding. After the BJx determines the correct
baud rate, it will store this rate away in the variable
BAUD. The BJx will flash the FAULT LED to
indicate that it is autobauding. At this point, the BJx
is waiting for a few carriage returns. Motion Link
automatcally sends carriage returns if you select
"AUTOBAUD" at intialization. If you are using a
terminal, press the enter key several times.

Setting the BJx to Autobaud
There are two ways for the BJx to autobaud at power-
up:

1. Powering-up with the Autobaud switch on.
2. Setting the value of the variable BAUD to an

invalid value (say, 1000) before the next power-
up.

ABAUD: The Autobaud Switch
The Autobaud switch on the front of the BJx (SW1-2)
sets the unit to autobaud. Note that this also sets
ADDR to zero. Normally, you will need to enable
the terminal as well. To do both, set switches SW1-1
and SW1-2 ON (move the handles to near the PCB.).

NOTE

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

42

Top View
SW1

OFF

PCB

SW1 has two switches, SW1-1 (Terminal Enable) and
SW-2 (Autobaud). SW1-1 is nearest the diodes;
SW1-2 is next to J14. One way to remember is that
SW1-1 is the closer of the two to J15 and enables and
disables J15.

SW1
Front View

PCB

SW1-2

SW1-1
Terminal
Enable

Autobaud

J14

LEDs

If you do not want your BJx to autobaud when the
unit is powered-up, then turn ABAUD off. This is
important if you want the BJx to run the Power-Up

Label (POWER-UP$), because if ABAUD is on, the
BJx will not execute the program until
communications have been established.

Baud Rate, BAUD
If ABAUD is off, then the system will check the
variable BAUD for the desired baud rate. If it is not a
valid baud rate, the BJx will autobaud. After a
successful autobaud, an error is generated indicating
that the baud rate was out-of-range on power-up.

Prompts

The BJx issues a prompt when it is ready to receive a
new command. The BJx allows you to suppress the
prompt characters by typing:

PROMPT OFF

PROMPT is turned on at power-up. Prompts are
particularly important when communicating with
computers, since the computer that is transmitting to
the BJx must wait for a prompt before beginning a
new line. After the prompt is received, the computer
can transmit at the full baud rate, without inserting
delays.

Serial Watchdog

The BJx provides a serial watchdog timer for
applications where a command should be received
from a computer on a regular basis. If a complete
command is not received from the serial port in the
specified time, an error will be generated that will
disable the BJx and break the user program.

The serial watchdog enhances safety in some
applications since it will normally disable the BJx if
the communications line breaks. The serial watchdog
waits for a carriage return to signify a completed
command. It does not test the validity of the
command. For example, if your computer fails and
begins sending random carriage returns, the serial
watchdog will not generate an error.

WARNING

!
The serial watchdog is not
designed for use as a
safety device.

Do not use the serial
watchdog to prevent
personal injury.

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

43

CAUTION
!

The BJx serial watchdog is
intended to detect a broken
serial communications line. It
does not test the validity
 of data received from your
computer.

Set WTIME in milliseconds to the time that you want
the serial watchdog to timeout. To enable the serial
watchdog, type:

WATCH ON

Serial Checksum
Serial checksum provides error checking of
commands transmitted to the BJx through the serial
port. This communication mode requires all
commands be appended with a two character a suffix
which represents an 8-bit checksum. Commands with
correct checksums are acknowledged with the "ACK"
character (06H) and executed. Commands with
incorrect or missing checksums are acknowledged
with the "NACK" character (15H) and are not
executed.

Calculating the Serial Checksum
To calculate the serial checksum, follow this
procedure:

1. Sum the values of the string. Note that
Appendix B contains ASCII values for all
BJx characters.

Example "SCKSUM=0"

Char. ASCII Value
S 83
C 67
K 75
S 83
U 85
M 77
= 61
0 48
TOTAL 579

2. Convert the total to hex. Continuing our
example,

579 Decimal = 2 x 256 +
4 x 16 +
3 x 1

= 243H

3. Take the two least-significant (LS) bytes:
Two LS-Bytes (243H) = 43H.

4. Append the two ASCII characters to the
command string. For our example, append
43:

SCKSUM=043

Note that serial checksum is case sensitive. That is,
using lower-case characters in commands changes the
value of the checksum. Note also that the carriage
return which terminates the serial command is not
included in checksum calculations. Finally, note that
backspace is processed before the serial checksum is
calculated. In other words, in the command

SCKSUMQ<BACKSPACE>=043

the value of 43 is still correct.

Enabling/Disabling Serial Checksum
To enable serial checksum, type:

SCKSUM=1

To disable serial checksum, type

SCKSUM=043

Note that the 43 is the checksum for "SCKSUM=0"
and must be appended for the command to be
accepted.

Echo and Prompt
The BJx response to commands with serial checksum
enabled is

<Command (Echoed)>
 <ACK or NACK><CR><LF><Prompt>

To reduce communication time, you can disable
echoing by typing

ECHO=0

(Note: the line as shown is entered before enabling
serial checksum. Otherwise, append the checksum.)

Now the BJx response is:

CHAPTER 3 - COMMAND LANGUAGE BJX USER'S MANUAL

44

<ACK or NACK><Prompt>

You can also disable the prompt by typing:

PROMPT=0

Now the only response to serial commands will be the
<ACK> or <NACK> characters (06H or 15H).

Transmitting the Program

Two other serial commands are the >BDS and <BDS
for transmitting the user program directly to and from
the BJx (i.e., without using Motion Link). These
commands are documented in Chapter 5.

RECORD AND PLAY

The RECORD command allows you to record most
BJx variables in real time for later playback. You can
simultaneously record up to four variables. You can
record any variable except PE, TMR1, TMR2,
TMR3, TMR4, VAVG, VXAVG, or any user
switches. You can specify the time between points
from one millisecond to one minute. You can record
up to 1000 instances of 1 variable, 500 instances of 2
variables, 333 instances of 3, and 250 instances of 4
variables.

The format of the RECORD command is:

RECORD <Number> <Time> <1 to 4 Variables>

where Number is the number of intervals over which
the variables will be recorded, and Time is the time in
milliseconds of each interval.

Note: <Number> <= 1000 for 1 Variable
<Number> <= 500 for 2 Variables
<Number> <= 333 for 3 Variables
<Number> <= 250 for 4 Variables

For example,

405$;BEGINNING LABEL
EN ;ENABLE BJX
RECORD 500 1 VFB ;RECORD VFB FOR
J 1000 ;1/2 SECOND JOG
B ;1000 RPM

Records the velocity response of the BJx to a jog
command.

After data is recorded, you can use the PLAY
command to print each point on the screen. However,
Motion Link provides all the routines to retrieve, plot,
print, and store recorded data on your computer and
line printer.

The RECORD command is useful when tuning a
system because you can display the BJx response to
commands without an oscilloscope. However, it is
not limited to tuning. For example, you can record
VCMD to plot a motion profile, or you can plot
VEXT to watch the master encoder. You can also
plot user variables to watch the performance of your
program.

System Dump

The BJx can transmit all variables in addition to the
user program. This is called a system dump, and you
request it with the DUMP command. For example,
type:

DUMP

and the BJx will provide pages of information
including the program, all BJx variables, user
variables, and user switches. This also includes all
protected variables.

The system dump is provided so that the information
from the dump can be directly re-transmitted to any
BJx. This changes all NON-PROTECTED variables.
The DUMP command precedes protected variables
with a semicolon (;). This makes the line a comment
so that when the line is re-transmitted, it has no effect.
If the ";" were not there, re-transmitting the dump
information would generate an error when a protected
variable was changed. Every line of the user program
is preceded with a semicolon for the same reason.

Version Dump
Your BJx will print out its firmware version at any
time with the DUMP VERSION command:

DUMP VERSION

Multidrop Communications

Multidrop communication allows you to have many
(up to 32) axes on one serial line. When the BJx is in
Multidrop mode, each axis must have a unique
address. This address is a prefix on all
communications to and from the BJx. The address is

BJX USER'S MANUAL CHAPTER 3 - COMMAND LANGUAGE

45

stored in variable ADDR. ADDR is set to 0 for
standard (single-drop) communications. Valid
addresses are 48 (ASCII '0') through 57 (ASCII '9')
and 65 (ASCII 'A') through 90 (ASCII 'Z') (see
Appendix B). Note that the address must be set
before multiple units are connected to the same serial
line.

Assuming that autobauding is turned off, when the
BJx powers-up in Multidrop mode it is "asleep."
When asleep, the BJx continues to execute programs
and control the motor, but it does not communicate
over the serial line. The BJx executes commands that
normally print to the serial port (P, PS, R, RS,
INPUT, and errors) except that the output is not sent
to the serial transmitter. The delays incurred by
printing are still present.

When you transmit its address, the BJx wakes up and
communicates. The address is a backslash (\)
followed by the ASCII character represented by
ADDR. For example, type:

ADDR=65 ;SET ADDRESS TO
;65=ASCII A

\A ;WAKE UP "A"
P "THIS IS AXIS" ADDR

;PRINT ADDR
ADDR=0

;RESET DRIVE TO
;SINGLE-DROP

This example sets the
address of this unit to upper
case A.

Setting ADDR to 65 makes this axis address "A" and
automatically puts the BJx in Multidrop mode. This
axis then waits for the "\A." After this, BJx is
awakened and remains awake until it receives a "\."
A backslash puts ALL drives on the serial line to
sleep. If you select an axis in multidrop, only that
axis transmits and receives.

During multidrop, the prompts are changed. If you
typed in the example from above, you would have
noticed the prompt going from "-->" to "A->" after
you typed in the second line. All prompts in a
multidrop system have the axis address as the first
character of the prompt. This allows you to know
which axis you are communicating with at all times.
In this way, each prompt from each axis is unique.

Table 3.10 BJx Prompts

Non-multidrop
(ADDR=0)

Multidrop
(ADDR = 65)

--> A->

==> A=>

s-> As>

t.. At.

e-> Ae>

i-> Ai>

f-> Af>

c-> Ac>

Broadcast
You may want to send all BJx units on the serial line
a command simultaneously. This is called a
broadcast. You can broadcast by sending "*." In
this case, all BJx units execute the command. During
a broadcast, none of the BJx units can transmit, but
all will receive and execute the command.

NOTE

46

BJX USER'S MANUAL CHAPTER 4 - MASTER SLAVING

47

CHAPTER 4
MASTER SLAVING

INTRODUCTION

This chapter discusses the various master/slave
modes of the BJx. Normally, the master input is
from an encoder. However, the BJx can be field-
configured to accept external pulse inputs, such as
a pulse train from a stepper motor controller, a
frequency generator, or a customer synthesized
encoder signal. The external input can control
motion in all three BJx Master/Slave modes:
electronic gearbox, camming, and profile
regulation. The BJx, acting as the slave, accepts
commands from these external sources. See
Chapter 2 (Connector J13) of the Installation
manual for information on wiring the master input.

The master/slave option must be specified when
ordering your unit.

Master-Slave must be
specified when the BJx
is ordered.

VEXT and VXAVG

Your program has direct access to the external
input through the variables VEXT and PEXT. The
frequency of the external input is provided in
VEXT. VEXT is in external velocity units
(VXNUM and VXDEN). PEXT is the
accumulation of counts from the external input.
PEXT can be set to any value from the terminal or
from your program at any time; this is equivalent to
normalizing the external position. PEXT is in
external position units (PXNUM and PXDEN). If
the external input comes from a motor, VEXT and
PEXT represent the "master" motor's velocity and
position. In this way, PEXT, the master position, is
similar to PFB, the slave position. Likewise,
VEXT is similar to VFB. If the "master" motor has
the same resolution as the slave, then set PXNUM,
PXDEN, VXNUM, and VXDEN equal to PNUM,
PDEN, VNUM, and VDEN, respectively.
Otherwise, see Chapter 3 for more information on
calculating the units.

VXAVG is the average of VEXT over the previous
16 milliseconds. Occasionally, the normal sample-
to-sample variation of VEXT is undesirable. In
these cases, use VXAVG in place of VEXT.

NOTE

CHAPTER 4 - MASTER SLAVING BJX USER'S MANUAL

48

MASTER MODE

The master input is accepted in four formats
specified by the variable MSTRMODE:

MSTRMODE MODE
1 A/B Quadrature (Encoder)
2 UP/DOWN
3 COUNT/DIRECTION
4 COUNT ONLY

1. A/B Quadrature
A/B Quadrature is the standard format of
two-channel encoders. Each transition of
either channel increments (or decrements)
PEXT.

2. UP/DOWN
The UP/DOWN format is common stepper
motor format. Each positive transition of the
UP channel increments PEXT. Each
positive transition of DOWN decrements
PEXT.

3. COUNT/DIRECTION
The COUNT/DIRECTION is also a
common stepper motor controller format. If
COUNT channel is set to UP, each positive
transition of the COUNT channel increments
PEXT; if COUNT is set to DOWN, each
transition of COUNT decrements PEXT.

4. COUNT ONLY
COUNT ONLY is similar to
COUNT/DIRECTION except the direction
of counting is fixed. Channel B input is
ignored. With COUNT ONLY, each
position transition of Channel A (COUNT)
increments PEXT.

MENCDIR

The switch MENCDIR (Master Encoder Direction)
inverts the direction of the master input. Normally,
MENCDIR will be set to 1. The following figure
shows increasing PEXT when MENCDIR is 1.
Notice that A leads B in this mode. Setting
MENCDIR to 0 reverses the effect on PEXT so
that A-leads-B will generate decreasing PEXT.

In mode 3 (i.e. MENCDIR = 1), PEXT normally
counts up when Channel B = 1. If MENCDIR = 0,
(assuming Channel B remains 1) PEXT will count
down. In all cases, VEXT is inverted. The

following table shows detailed interaction between
modes 2-4 and MENCDIR.

Figure 4.1 Increasing PEXT when
MENCDIR is 1

Table 4.1 Effects of MENCDIR

MODE MENCODER MENC-
DIR

CHAN
A

CHAN
B

UP/ 1 UP DOWN

DOWN 2
0 DOWN UP

COUNT/ 1 COUNT UP/DOWN

DIR 3
0 COUNT DOWN/UP

COUNT 1 UP N/A

ONLY 4
0 DOWN N/A

ELECTRONIC GEARBOX

Electronic gearbox is one of three BJx
Master/Slave modes. Refer to Figure 4.2.
Electronic gearbox is used to link two motors
together so that the velocity of one is proportional
to the velocity of the other. The constant of
proportionality can be negative, allowing the
velocities to be in opposite directions.

Gear Ratio, GEARI & GEARO

In electronic gearbox, the command signal comes
from the external input. The pulses are multiplied
by a gear ratio to form the position or velocity

CHAN A

CHAN B

Time

BJX USER'S MANUAL CHAPTER 4 - MASTER SLAVING

49

Figure 4.2 BJx Master Slaving

X4
Decode

Velocity

Position

VXDEN
VXNUM

PXDEN
PXNUM

GEARI

GEARO

VEXT

PEXT

PCMD

Motion
Command

+
+

Slave BJx

X4
Decode Velocity

Position PXDEN

PXNUM

VXDEN
VXNUM

PEXT

VEXT

PCMDMotion
Command

Encoder/Pulse

Slave BJx

1
REGKHZ

Electronic

Profile

Motor BJx Encoder
Feedback

or

or

Encoder

Digital Input

or

Master Signal Slave Axis

BJx Master/Slaving

Conn. J13
Motor

Stepper Motor
Controller

Conn. J12

Input

Encoder/Pulse
Input

Conn. J13

Gearbox

Regulation

Smart
Drive

Profile
Generation

Profile
Generation

Conn. J13

CHAPTER 4 - MASTER SLAVING BJX USER'S MANUAL

50

command. The ratio is defined by two variables:
input gear teeth (GEARI) and output gear teeth
(GEARO). GEARI must be between ±32,767;
GEARO must be between 1 and 32,767. If the
sign of GEARI is changed, then the direction of
rotation will be reversed. The direction can also
be reversed by inverting the switch MENCDIR.

If the master is a motor or encoder, calculate
GEARI and GEARO with:

GEARI

GEARO
 =

REV

REV

RESOLUTION

RESOLUTION
 SLAVE

MASTER

SLAVE

MASTER

×

where:

REV
MASTER

 is an arbitrary number of

revolutions of the master motor,

REV SLAVE is the corresponding number of

revolutions of the slave motor,

RESOLUTION SLAVE is the resolution of the

slave motor in counts/revolution, and

RESOLUTION MASTER is the resolution of

the master motor in counts/revolution.

If the master is a pulse train that does correspond
to a motor or encoder, calculate GEARI and
GEARO with:

GEARI

GEARO
 =

REV RESOLUTION

COUNTS
SLAVE SLAVE

MASTER

×

where:

COUNTSMASTER is an arbitrary number of

counts of the master signal, and

REVSLAVE and RESOLUTION SLAVE are

as before.

To enable the Gearbox mode, type:

GEAR ON

If the ratio is not an integer, the BJx does not
"drop pulses." The BJx keeps track of partial
pulses to eliminate dropping pulses over time. If
the number of pulses coming into the BJx is at a
rate that is too large, then ERROR 97, "GEAR

OVERFLOW," will be generated. This error can
also be caused by the ratio of GEARO to GEARI
being too large. Note that large feed-forward
(KF > 4000) is normally undesirable in
electronic gearbox systems because it causes
overshoot.

Gearbox Example 1
Two BJx units are connected in a master/slave
system. Both have 1000-line encoders so that
one revolution is equivalent to 4000 counts.
Suppose we want the slave motor to rotate at
one-third the speed of the master motor. What
are the values of GEARI and GEARO?

GEARI

GEARO
=

REV

REV

RESOLUTION

RESOLUTION
 SLAVE

MASTER

SLAVE

MASTER

×

GEARI

GEARO

4000

4000

1

3
= × =1

3

You can select any integer values for GEARI and
GEARO that have the ratio 1:3.

Gearbox Example 2
Suppose the master signal in Example 1 came
from a 500-line encoder. With quadrature
encoding, a 500-line encoder will generate 2000
counts per revolution. If you still wanted 1:3
gearing, then:

GEARI

GEARO
=

REV

REV

RESOLUTION

RESOLUTION
 SLAVE

MASTER

SLAVE

MASTER

×

GEARI

GEARO
x

4000

2000
= = =1

3

4000

6000

2

3

So, GEARI would be 2 and GEARO would be 3.

Profiles and Gearbox

The command from electronic gearing can be
summed with incremental moves and jogs. MI
commands are summed with the gearbox
command to form the profile. This can be used
for "phase adjustment," a common function used
with electronic gearbox. Phase adjustment
means that the slave will be locked to the master
through the electronic gearbox, but you can add a
profile on top of the gearbox command. For
example, you may want to increase the slave
position (phase) by 90° while remaining in gear.
In this case, enter the following commands:

BJX USER'S MANUAL CHAPTER 4 - MASTER SLAVING

51

GEAR ON ;ENABLE ELECTRONIC
;GEARBOX

;
; ...NORMALLY, SOME TIME WOULD
;PASS BETWEEN THESE
COMMANDS...
;
MI 1000 10 ;PHASE ADJUST 90

;DEGREES AT 10 RPM.
;SYSTEM REMAINS IN

;GEARBOX THROUGH
;THE PHASE

;ADJUSTMENT.

You cannot use MA commands when GEAR is
on. Also, you cannot use position-dependent
jogs (JT or JF) when GEAR is on.

Gearing and KF
Note that you should avoid large KF (>4000)
when gearing. Deviations in the master input
frequently cause unacceptable levels of busyness.

Avoid KF > 4000 when
using Gearing.

Velocity Offset, VOFF

VOFF, velocity offset, is added to the velocity
command when the gearbox is enabled. VOFF is
in velocity units. VOFF can be changed at any
time. Note that VOFF is set to zero when GEAR
is enabled, because if VOFF is large (say, 2000
RPM), enabling the gearbox would immediately
command motion.

VOFF is set to zero when
GEAR is turned on.

Gearbox, ACC/DEC, and Jogs

When the BJx is run as a velocity loop (PL off),
acceleration and deceleration rates can be limited
by the variables ACC and DEC. This allows you
to limit the acceleration from external velocity
commands that are otherwise unlimited. If you
want the acceleration and deceleration to be
limited by ACC and DEC, type:

RAMP ON ;LIMIT ACC AND
;DEC WHEN PL IS OFF

PROFILE REGULATION

Profile regulation allows you to synchronize the
rate of profile execution according to the external
input. This modifies the velocity and
acceleration of move commands without
affecting the final position of the move. The rate
of the move is dependent on the frequency of an
external clock, which is connected to the external
input, in addition to the normal limits of the
move. The external input may be a master motor
to which all moves must be synchronized (such
as a conveyor belt motor), or it may be a signal
that you generate electronically.

Profile regulation is based on an accumulation of
counts from the external input during the move.
If the external frequency changes during a move,
the velocity of that move will be proportional to
the clock frequency. In fact, if the external input
frequency goes to zero, then motion will stop.
Note that if the external input changes rapidly,
the profile is not limited to ACC or DEC. For
example, if the external frequency stopped
suddenly, the BJx would command motion to
stop just as suddenly. Note also that large feed-
forward (KF > 4000) is normally undesirable
during regulation because it causes overshoot.

WARNING

!
In Profile Regulation, rapid
changes in the frequency
can produce unexpected
results.

The profile acceleration is
not limited by ACC or DEC.

Avoid KF > 4000 when
using Profile Regulation.

REG & REGKHZ

REG enables the Profile Regulate mode. If REG
is on, then profile regulation is enabled. REG
and GEAR cannot be on at the same time.

NOTE

NOTE

NOTE

CHAPTER 4 - MASTER SLAVING BJX USER'S MANUAL

52

To use profile regulation, you must determine:

1. The maximum frequency of the external input.
Set REGKHZ to this value.

2. The desired speed of the move when the
external input frequency is REGKHZ. Use this
value as the commanded velocity of the profile.

The maximum frequency of the external input is
stored in the variable REGKHZ in kHz. The profile
will execute normally (that is, at the specified velocity
and acceleration) when the external input frequency is
equal to REGKHZ. If the input frequency is less than
REGKHZ, then the profile will move the specified
distance, but the acceleration and velocity will be
reduced in proportion to the input frequency. The
move will never go faster than specified in the
original move command, even if the input frequency
goes above REGKHZ. However, the input frequency
should always be less than REGKHZ. REGKHZ is
only resolved to 1 kHz (for example, 499.5 kHz is
converted to 500 kHz).

REGKHZ is somewhat arbitrary; it must be greater
than the maximum frequency of the external input and
less than 2 MHz. Beyond those limits you can set it
to any frequency that is convenient and adjust the
commanded motion by changing the speed of the
profile.

Profile Regulation works with standard moves (MA
and MI) and all jogs (J, JT, and JF).

The frequency of the
external input should
always be less than
REGKHZ.

Profile Regulation and Counting
Backwards

In general, if you use profile regulation, the external
input should count forward (that is, VEXT should be
positive when VXNUM and VXDEN are positive).
The profile regulation firmware allows the input to
count backwards for up to 30,000 counts. This is
useful for applications such as conveyor belts that
generally go forward but can go backward for short
distances. If the external input counts backwards, the
Profile Regulation mode works as follows:

• The profile stops (that is, no motion is
commanded) during backward counting.

• The backward counting must be limited to
30,000 counts. Otherwise, ERROR 64 is
generated.

• The profile does not continue as soon as
forward counting begins. The forward counts
must completely offset the backward counts
before the profile will continue.

• At the point where forward counts offset
backward counts, the profile continues as if the
input had never gone backwards.

Regulation Example

A machine has an axis that operates on parts passing
by on a conveyor belt. The profiles executed by the
motor must be at a rate proportional to the conveyor
belt speed. The belt normally moves at about 200
inches/minute. An encoder has been placed on the
conveyor, and the maximum belt speed of 275
inches/minute is equivalent to 780 kHz on the
encoder. If the belt is at maximum speed, the profile
of the motor is to rotate one revolution at a peak
speed of 400 RPM.
Solution: Connect the conveyor belt motor encoder
to the input channel of the BJx, as shown in the
Installation Manual. The following program should
be executed:

REG ON ;ENABLE
;PROFILE
;REGULATION

REGKHZ=780;SET THE MAX
;EXTERNAL
;FREQUENCY TO
;780 KHZ

MI 4000 400 ;MOVE ONE
;REVOLUTION

;AT 400 RPM

In the case above, the MI move will generate a one-
revolution move at a speed proportional to the
external input frequency, with 400 RPM the
maximum rate when the external input frequency is
780 kHz.
Note that the belt speed never reaches 275
inches/minute. However, REGKHZ must be higher
than the worst case maximum belt speed. For
example, the above program can be modified to allow
an even larger belt speed.

NOTE

BJX USER'S MANUAL CHAPTER 4 - MASTER SLAVING

53

REG ON ;ENABLE
;PROFILE
;REGULATION

REGKHZ=1560 ;SET THE MAX
;EXTERNAL
;FREQUENCY
;TO 1.56 MHZ

MI 4096 800 ;MOVE ONE
;REVOLUTION

;AT 800 RPM

Notice that REGKHZ was doubled. However, since
the speed of the move was also doubled to 800 RPM,
the commanded move is identical.

CAMMING

The BJx provides electronic camming. However, the
unit must be configured with the extended memory
and master slave options. These options must be
specified at the time your unit is ordered.

Camming requires the
BJx with Extended
Memory and Master-
Slave Options.

Conventional Cams

Conventional cams convert rotational motion to linear
motion. As Figure 4.3 shows, the "command" signal
comes from a master-drive shaft fitted with a cam
lobe. The cam generates linear motion on a tool
which is driven by a "follower." Cams are used when
a specific profile must be generated each time a drive
shaft turns one revolution. The cam lobe can have a
wide variety of shapes.

Electronic cams offer two important advantages over
mechanical cams: the profile of an electronic cam is
much easier to change, and the profiles are not
subject to mechanical wear. One of the most
important features of an electronic cam is that the
master drive can rotate in one direction indefinitely.
With conventional positioners, this will eventually
cause an error because the internal position counter
will overflow. Also, the electronic cam controller
must support gear ratios between the drive shaft and
the follower. Again, the drive can rotate indefinitely,
and the controller must not lose counts. The BJx has
been designed with both of these criteria.

Center of
Rotation

Cam

Linear
Motion

Tool

Lobe

Figure
4.3 Cam Lobe

CAM Setup

To use BJx camming, you need to follow these steps:

1) Generate a cam table and enter it into the BJx.
2) Scale the BJx electronic gearbox.
3) Align the machine and enable camming.

0°

90°

180° (r=.940")

 270°

45°315°

225° 135°
(r=.750")

(r=.583")(r=.583")

(r=.750")

(r=.530")
(r=.530")

(r=.530")

Figure 4.4 Dividing a CAM Lobe

Generating a Table
To generate a table, start with a graph showing the
master drive position versus the follower position.
Divide this graph into 128 evenly spaced sections.
Calculate or measure the radius from the lobe center-
of-rotation at each of the 128 points. Load these radii

NOTE

CHAPTER 4 - MASTER SLAVING BJX USER'S MANUAL

54

into the BJx user variables X100-X227 as shown
below:

Segment
Number

Master
Position

(Degrees)

Load Position
in this

User Variable

1 0 X100
2 2.81 X101
3 5.62 X102
4 8.43 X103
. . .
. . .
. . .

126 351.56 X225
127 354.38 X226
128 357.19 X227

Figure 4.5 Camming Table

At the end of the table, the position command wraps
around X227 to X100.

For the example in Figures 4.3 and 4.4, 8 positions in
the table would be

Lobe Position Register Tool Position
0° (=360°) x100 0.530"

45° x116 0.530"

90° x132 0.583"

135° x148 0.750"

180° x164 0.940"

225° x180 0.750"

270° x196 0.583"

315° x212 0.530"

Note that all user variables are zeroed at power-up.
You must reload these variables from the user
program.

The Cam Table (X100-X227)
must be reloaded at every
power-up.

Scale the Gearbox
The BJx processes the master drive signal through the
gearbox so you can select the gear ratio you need.
You must select the gear ratio so that when the master

rotates 360 degrees, 32,768 counts are generated in
the BJx. Think of the 360-degree horizontal axis as
being 32,768 counts long. For example, suppose the
sensor on the drive shaft is a 1000-line encoder.
Because of quadrature, the encoder would generate
4000 counts for every rotation. So the 4000 counts
should be scaled through the gearbox to generate
32,768 counts. The gear ratio would be:

GEARI

GEARO
= =32 768

4000

1024

125

,

or, GEARI=1024 and GEARO=125.

If you want to test your scaling, enable your BJx
(without camming), turn GEAR ON, and rotate the
master input 360 degrees. PEXT should increase or
decrease by 32,768 counts.

Align the Machine
On power-up, the cam axis must be aligned to the
drive shaft. The simplest method is to assume the
cam cycle always begins at the start of the cam table
as recorded in X100.

1) Home using GOHOME.
2) Move to X100 using MA.
3) Turn CAM on and normalize with NORM 0

CAM.

When the "NORM <Master Drive Position> CAM"
command is executed, PCMD is read from the cam
table. PFB is set to the same value as PCAM and,
therefore, there is no PE (position error).

If you are using position units, the most convenient
place to normalize for camming is when the master
drive is at zero. This is because the master drive
position (PCMD) uses position units (PNUM and
PDEN), which are normally scaled for the follower.
When you normalize to zero, the units do not have
any effect. However, if you want to normalize the
master to a non-zero position, you must

A) Determine the position of the drive master to
which you will normalize;

B) Convert the position to counts so 360 degrees
equals 32,768 counts;

C) Temporarily set position units to 1:1 (PNUM =
PDEN = 1);

NOTE

BJX USER'S MANUAL CHAPTER 4 - MASTER SLAVING

55

D) Normalize to the position in counts:
EN
NORM <Master Drive Position in

Counts> CAM

E) Restore the position units to their original
values.

For example, if you know the follower is 3 inches and
the drive is 90 degrees:

A) Drive position = 90 degrees.
B) Drive position = 8192 counts.
C) PNUM=1

PDEN=1
D) EN

NORM 8192 CAM
E) Restore PNUM and PDEN

Finally, you must turn GEAR on. This connects the
drive to the follower. If you want to test your system
before you connect the master-drive, you can use
VOFF. VOFF is the offset speed for the electronic
gearbox. For example, if the master drive is not
moving and you turn GEAR ON and set VOFF to 100
RPM, the position command will increase at a rate of
100 RPM. This has the same effect as the encoder
option input running at 100 RPM.

PCAM and PCMD

The BJx uses a special variable for camming, PCAM.
PCAM is the position command from the cam table.
This is usually the role for PCMD (position
command). However, when camming is enabled,
PCAM represents the position from the electronic
gearbox; that is, the position that goes into the table.
PCAM is the output from the table.

PCMD is automatically in a "ROTARY" mode where
the distance of one rotation is fixed at 32,768 counts.
PCAM can be printed or recorded with PC-Scope. In
fact, if you want to see your cam profile, you can
record PCAM and PCMD simultaneously. For
example, the following line records both positions for
0.5 seconds.

RECORD 500 1 PCMD PCAM

You can then use PC-Scope to verify your profile.
Also, the PS and RS commands display
"CAMMING" if GEAR and CAM are both ON.

Camming and KF

Note that you should avoid large KF (>4000) when
camming. Deviations in the master input frequently
cause unacceptable levels of busyness.

Avoid KF > 4000 when
using camming.

Limitations

There are several limitations for camming
applications, reflecting the fact that many BJx
functions are not useful when camming. For
example, profile commands (MI, MA, J, JT, JF) are
not allowed. ROTARY must be OFF. Any error that
disables the drive also disables camming; you must
re-normalize after such errors. Error 23,
SOFTWARE OVERTRAVEL, normally disables the
BJx and breaks the user program; when camming is
off, this error only breaks the user program.

Implementation

Camming is implemented as a modification of the
BJx gearbox. As Figure 4.6 shows, the standard
gearbox produces PCMD by multiplying PEXT by
the ratio GEARI/GEARO. PE is formed by
subtracting PFB from PCMD. Usually, PEXT is
generated from another motor's feedback sensor. In
this way, a master motor position (PEXT) controls
the slave motor position (PFB).

+

-
PCMDPEXT

Ratio:

GEARI
GEARO

PFB

PE

Figure 4.6 BJx Gearbox Position Error

To implement camming, Kollmorgen modified the
gearbox by adding a look-up table. As Figure 4.7
shows, PEXT is processed by the gearbox to form
PCMD. PCMD is then used as an index into the
CAM look-up table to produce a new variable,

NOTE

CHAPTER 4 - MASTER SLAVING BJX USER'S MANUAL

56

PCAM. When camming is enabled, PCAM is used to
form PE.

+

-
PCAMPCMDPEXT

Ratio:

GEARI
GEARO

CAM
Look-up

Table
(X100-

X227)

PFB

PE

Figure 4.7 BJx Cam Position Error

Interpolation
The BJx Cam Table has 128 points but, using
interpolation, the BJx is able to generate a 32,768-
point cam. The interpolation algorithm splits each
cam table point into 256 linearly interpolated mid-
point positions based on the master input. This is
why the gear ratio must be chosen so that each
revolution of the Master Cam input generates 32,768
counts of PCMD to the cam table. This scaling is
easily accomplished by programming the GEARI
variable to 32,768 and then programming the number
of counts generated by one revolution of the master
input CAM into GEARO. An example follows.

Selecting GEARI and GEARO
The master input device is a 2000-line encoder. One
cam profile should be generated each time the master
encoder turns one revolution.

Each revolution of this encoder would produce 8000
(2000x4) counts of position command. For one cam
profile, the master input should receive 8000 counts.
This means that the ratio of GEARO to GEARI
should be 8000/32,768. Note that GEARI cannot be
set to 32,768 as the limit is 32,767 and that small
difference will cause error to accumulate. Instead, we
must reduce GEARI while maintaining the original
ratio to GEARO. In this example, set GEARO to 125
and GEARI to 1024.

The variable GEARO must
be a number between 1 and
32,767. The variable GEARI
must be a number between
-32,768 and 32,767.

Test Program
The following test program will perform these tasks:

1. Load X100-X227 with a triangle wave where
x100 = 0, x101 = 100, x102 = 200, etc. The
midpoint of the triangle wave is X164 so that
X164 = 6400, X163 = 6300, X164 = 6400,
X165=6300, X166 = 6200, and so on.

2. Enable the BJx and camming.
3. Use VOFF to move PCMD through the cam

cycle. VOFF is usually used with the gearbox to
add an offset speed. Here, we use it to simplify
the test.

4. Calculate which segment this iteration is in (it
repeats from segment 0 to segment 127 every
128 iterations) and store it in X2.

5. Determine PCMD at the end of the segment.
6. Wait until PCMD reaches the boundary. Store

the commanded position (PCAM).
7. Calculate error between what the command is

(X4) and what it should be (X(X2)).
8. Subroutines to print whether iteration tested good

or bad.

Program Listing

;CAM TEST
;
;USE VOFF FOR THIS TEST TO KEEP
;VCMD MOVING AT A CONSTANT
;SPEED. SELECT THAT SPEED TO ;BE 20
RPM, WHICH IS ABOUT 1300
;COUNTS/SECOND FOR A 1000-LINE
;ENCODER. THE ENTIRE CAM ;CYCLE IS
32768 COUNTS.
;EACH OF THE 128 SEGMENTS IS ;256
COUNTS. SO 20 RPM CYCLES
;THROUGH THE CAM CYCLE AT
;ONE CYCLE PER 32768/1300 OR 25
;SECONDS.
;
;1$
;THIS SECTION LOADS CAM VARS
;WITH A TRIANGLE PROFILE WHERE
;EACH SEGMENT IS DIFFERENT
;FROM THE LAST BY 100 COUNTS

;LOAD VARIABLES X100-X164
;XI=100 ;STARTING

;VARIABLE
;2$;LOOP START
X(X1)=(X1-100)*100 ;LOAD THE "UP

;SIDE" OF THE
;TRIANGLE

X1=X1+1 ;INCREMENT
;LOOP CTR

NOTE

BJX USER'S MANUAL CHAPTER 4 - MASTER SLAVING

57

?X1 LE 164 GOTO 2 ;TEST --KEEP
;GOING TO X164

;
;NOW, LOAD VARIABLES X165-X227
;WITH THE "DOWN SIDE" OF THE
;COUNTER
3$;LOOP START
X(X1)=X164-(X1-164)*100
X1=X1+1 ;INCREMENT

;LOOP CTR
? X1 LE 227 GOTO 3 ;TEST --KEEP

;GOING TO X227
;
;NOW, IT'S TIME TO START THE CAM
4$
PLIM OFF ;STANDARD LINE

;TO ENABLE

GEAR OFF ;DISABLE GEAR
;SO WE CAN
;ENABLE CAM

EN
NORM 0 CAM;NORMALIZE &

;ENABLE CAM
GEAR ON ;NOW, WE CAN

;ENABLE GEAR
VOFF 20 ;USE OFFSET

;SPEED OF 20
;RPM TO GO
;THROUGH
;CAM CYCLE

B ;BREAK TO
;IMMEDIATE

CONTINUE

The CONTINUE command is provided as a
controlled way to turn off master/slave position
control. The CONTINUE command tells the BJx to
keep the motor going at its present speed while
simultaneously turning off REG and GEAR. One use
of this command is to cause a controlled deceleration
to 200 RPM, when the electronic gearbox is enabled,
for example. If you just type:

J 200

it would have the effect of adding 200 RPM to the
command from the gearbox. However, if you type:

CONTINUE
J 200

the CONTINUE would disable the electronic gearbox
while commanding the motor to continue at whatever
speed it was going when the command was executed.
Then the J 200 command would bring about a
controlled deceleration to 200 RPM.
CONTINUE normally looks at the velocity command
for 1 millisecond. If the velocity command is
generated from the electronic gearbox or a regulated
profile, it can vary considerably. The CONTINUE
command allows you to specify a time period, up to 1
second, over which velocity command is averaged.
For example, if you entered:

CONTINUE 50

the CONTINUE command would change the velocity
command to the average velocity command over the
previous 50 milliseconds. CONTINUE always sets
SEG to 1.

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

59

CHAPTER 5
USER PROGRAMS

INTRODUCTION

This chapter explains the capabilities of the BJx
programming language. Examples of programming
techniques will aid you in developing applications.

User programs are combinations of BJx commands.
These programs are stored in non-volatile RAM and
retained during power-down. User programs are
composed of commands such as those in Chapters 3 and
4. In addition, there are commands that control the
way the program executes; these commands are covered
in this chapter.

PROGRAMMING TECHNIQUES

This section discusses programming practices. The BJx
has a flexible language. Follow accepted programming
practices to ensure that this flexibility does not lead to
overly-complex programs. If you follow good
programming practices you will:

• be able to modify programs when the application
changes;

• have fewer programming errors;

• have an easier time fixing the programming errors
that do occur; and

• be able to get help with errors you cannot fix.

1. DO NOT PROGRAM SAFETY FUNCTIONS.

WARNING

!
Always hardwire personal
safety functions. Never
program these functions.

Always hardwire safety functions. This includes
EMERGENCY STOP or ESTOP. You should not
depend on your program for safety functions
because of three potential problems: 1) you can
easily make programming errors; 2) a function on
the BJx may not work in exactly the way you
expect it to in every condition; and 3) a critical
component in your system may fail and prevent the
function from working. Remember, safety
functions are rarely exercised so that if one of these
problems does occur, it can go undetected
indefinitely. If personal safety is involved, always
hardwire the function.

CHAPTER 5 - USER PROGRAMS BJX USER'S MANUAL

60

2. USE CAUTION WHEN PROGRAMMING
EQUIPMENT PROTECTION FUNCTIONS.

CAUTION
!

Programming errors can
damage equipment.

Use caution when
programming equipment-
protection functions.

Sometimes you can hardwire equipment protection
functions, but other times this is impractical and
you must program the functions. If this is the case,
be careful. Remember, if your program has an
error, it can result in damage to your equipment.

3. WRITE A SIMPLE SPECIFICATION FOR
YOUR APPLICATION.

Write an outline of all the functions your
application will require before you start
programming. This will serve as a specification.
Everyone who is involved with your system
(customers, supervisors, co-workers, operators)
should agree on the specification. While last-
minute requests for program changes will still
occur, this is a reasonable step towards reducing
the incidence of such requests.

4. WRITE A FLOWCHART OF YOUR PROGRAM.

Kollmorgen strongly recommends the use of
flowcharts. They are required if you need
programming help from Kollmorgen customer
service.

5. COMMENT YOUR PROGRAM.

Always comment your programs. Comments help
explain your program to other people. Keep in
mind that others may need to modify your program
in the future. Comments also help you remember
why you chose certain ways to do things.

6. AVOID SPAGHETTI CODE.

A program with too much branching is often called
spaghetti code because of the look of the
flowcharts. Avoid branching, especially branching
up (toward the top of your program); logic in
programs that branches down is more intuitive and,
thus, less prone to errors.

Customer Service

If you need help with software or understanding BJx
functions, you can contact the Regional Kollmorgen
Sales Office (See Appendix F). Ask for the
Applications Engineer. Please observe the following
procedure:

1. Be prepared to provide the following items:
a. A written specification of the system;
b. A flowchart; and
c. A hard copy of the program.

2. Be prepared to take the following actions, should
they be necessary:
a. Strip out sections of your program to help

locate a problem.
b. Rewrite sections of your program that do not

conform to the programming practices
described in this chapter.

c. Video tape your machine to help demonstrate
the problem.

If you need help with your program, Kollmorgen is
committed to helping you. BJx software support is
provided by:

1. Helping you organize your program.
2. Explaining proper programming practices.
3. Discussing BJx functions.

Test Program

Chapter 2 provided an in-depth procedure for installing
and using Motion Link. This section provides you with
enough information to get started. Enter a simple
program with the following procedure:

1. Establish communication with the BJx as
discussed in Chapter 3 of the Installation manual.

2. Press the right arrow key to display the menu bar.
Select PROGRAM.

3. Select NEW.

4. Enter this program:

10$
P "HELLO WORLD"
B

5. Press the escape key to exit the Motion Link
Editor.

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

61

6. Motion Link will ask you if you want to save
your program. Enter "Y" and name your
program "TEST."

7. Motion Link will now ask you if you want to
transmit the program to the BJx. Enter "Y."

8. After the transmission is complete, you should
receive the interactive prompt (-->). Type:

RUN 10

Your program should print:

HELLO WORLD
-->

See Chapter 2 for a complete description of Motion
Link.

BUILDING A PROGRAM

Programs are sequences of commands, many of which
can also be executed directly from the keyboard.
Examples of these commands are MI, MA, and P
(Print). However, in order for a program to run
properly, other commands, called program control
commands, are required. Examples of these commands
are GOTO and GOSUB.

Basic Commands

Labels
Labels are used to mark places in the program where
execution begins or continues. There are two kinds of
labels: general purpose and dedicated.

General purpose labels are numbers from 0 to 500
followed by a dollar sign ($). You can execute a
program that begins at a general purpose label with the
RUN command. You can jump to a label from within
your program with the GOTO and GOSUB commands.
RUN, GOTO, and GOSUB are described later in this
chapter.

Dedicated labels each have specific functions; these
include alarms, auto programs, and the user error
handler. These labels are letters or words followed by a
dollar sign. For example, A$ is the A-Alarm label.
Dedicated labels cannot be used by the RUN, GOTO, or
GOSUB commands. These labels are discussed with
multi-tasking later in this chapter.

RUN
The RUN command is used to start the program from
the Interactive mode. For example, type:

RUN 3

If there are no errors, program execution begins at label
3. If the label is not in the program, an error is
generated and no part of the program is executed. You
cannot use the RUN command for dedicated labels.

Before the program is run, the BJx searches the entire
program for some types of errors. If, after you enter a
RUN command, an error is detected, the BJx will
display the appropriate error message together with the
offending line. Also, RUN checks for program
corruption and generates a "PROGRAM CORRUPT"
error if necessary. The program corrupt error can be
cleared by retransmitting the program from Motion
Link. If a "Program Corrupt" error occurs, it may
indicate a serious condition. Contact the factory.

Break (B)
The Break (B) command stops program execution and
returns to the interactive state. The Break command
does not stop motion. Profile commands are allowed to
continue until they are complete. If you want to break
the program and stop motion, precede the Break
command with the Stop (S) command.

GOTO
The GOTO command is used within the program to
jump to a label.

GOSUB and RET
The GOSUB command goes to a subroutine at the
specified label. For example:

GOSUB 66

begins a subroutine at label 66. The RET command
returns from the subroutine and begins executing the
program below the original GOSUB command.
GOSUBs can be nested up to four levels.

For example, type in the following program:

CHAPTER 5 - USER PROGRAMS BJX USER'S MANUAL

62

4$
GOSUB 5
P "RETURNED FROM SUBROUTINE 5"
B
;
5$
P "EXECUTING SUBROUTINE 5"
RET

Exit the Editor and type:

RUN 4

The result should be:

EXECUTING SUBROUTINE 5
RETURNED FROM SUBROUTINE 5

CONDITIONAL COMMANDS

The BJx provides several conditional commands that
allow your program to make decisions. Conditional
commands include ? (Quick-IF), TIL, IF, ELIF, and
ELSE. These commands all depend on conditions. A
condition is an arithmetic comparison of two numbers,
variables, or expressions. The BJx supports all 6
common types of arithmetic conditions. Use the
following two-character codes:

Table 5.1 BJx Conditions

GT Greater Than
GE Greater Than Or Equal To

LT Less Than

LE Less Than Or Equal To

EQ Equal To

NE Not Equal To

QUICK IF (?) COMMAND
The ?, or Quick IF, is a single-line command that allows
you to specify a condition, a command to be executed if
the condition is true, and another to be executed if the
condition is false. The format of the ? command is:

? condition TRUE-command : FALSE-command

TRUE-command is executed if the condition is true;
otherwise, the FALSE-command is executed. Both
TRUE-command and FALSE-command are optional,
although at least one must be present.

Some examples of the ? command are:

? VFB GT 3000 P "FAST" : P "SLOW"
? X1 GT 5 P "X1 > 5" : P "X1 <= 5"
? 2*X2-5 LE X1/100 GOSUB 40
? X1/2*2 EQ X1 GOTO 5

;GOTO 5 IF X1 IS
;EVEN. DO

;NOTHING IF X1 IS
;ODD.

? I4 EQ 1 J 2000 ;I4 IS A JOG
;BUTTON

The ? command can be used to make a loop counter, as
demonstrated by the following statements:

X30 = 1 ;X30 IS THE
;LOOP COUNTER

12$;THE LOOP BEGINS
;AT 12$

GOSUB 10 ;GO TO
;SUBROUTINE 10

X30 = X30+1 ;INCREMENT THE
;LOOP COUNTER

? X30 LE 25 GOTO 12
;LOOP 25 TIMES

Nesting ? Commands
You can nest one ? command inside another. For
example, suppose you want to break program execution
if X1 is less than 100 and greater than
-100:

? X1 LT 100 ? X1 GT -100 B

Nesting two ? commands is the same as ANDing the
two conditions. Nesting of ? commands is limited by
the number of entries and the maximum length of a line.
BJx commands are limited to 15 entries (the example
above has 9 entries: ? , X1, LT, 100, ?, X1, GT, -100,
and B). Since each level of ? command nesting requires
4 entries, you cannot have more than 3 levels of nesting.
Also, a ? command must be less than 80 characters long
since it must fit on a single line.

TIL COMMAND
TIL is a single-line command that allows you to specify
a condition and a command to be executed repeatedly
until that condition is true. The TIL command has the
following format:

TIL condition FALSE-command

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

63

FALSE-command is repeatedly executed as long as the
condition is false. If the condition is true at the
beginning of the TIL command, then FALSE-command
is never executed. In this case, program execution
continues to the next step. An example of the TIL
command would be to print a line to the operator
continuously until the variable PFB is greater than
10,000. This statement delays program execution until
the condition is true and also refreshes the display while
the program waits:

TIL PFB GT 10000 P "WAITING"

The TIL command can simply delay a program until a
condition occurs; in this case, do not enter a FALSE-
command. For example:

TIL PFB GT 10000

TIL can be used to delay
program execution.

More examples of the TIL command are:

TIL I1 EQ ON ;DELAY EXECUTION
TIL I1 EQ ON P "PRESS INPUT #1"

TIL SEG EQ 0 ;DELAY UNTIL
;MOTION STOPS

TIL SEG EQ 0 P PFB
;PRINT UNTIL

;MOTION STOPS

IF, ELIF, ELSE, and ENDIF Commands
The IF command, together with ELIF, ELSE, and
ENDIF, will allow you to conditionally execute large
blocks of commands. These commands are provided
because the ? command is limited to a single line. Use
the IF command to write more readable programs.

The format of the IF, ELIF, ELSE, and ENDIF
commands follows. Note that the conditions have the
same format as the conditions for the TIL and ?
commands. Note also that block can indicate any
number of commands:

IF IF-condition
 Block-IF
ELIF ELIF-condition #1
 ELIF-block #1
ELIF ELIF-condition #2
 ELIF-block #2
ELSE
 ELSE-block
ENDIF

The above example shows two ELIF commands. You
can have any number of ELIF commands. The
operation of this example IF command is as follows:

If... IF-condition is TRUE,

All commands in the Block-IF are executed.

No other blocks are executed.

Program execution continues after the ENDIF
command.

Otherwise if... ELIF-condition #1 is TRUE,

All commands in ELIF-block #1 are executed.

No other blocks are executed.

Program execution continues after the ENDIF
command.

Otherwise if... ELIF-condition #2 is TRUE,

All commands in ELIF-block #2 are executed.

No other blocks are executed.

Program execution continues after the ENDIF
command.

Otherwise...

All commands in ELSE-block are executed

Program execution continues after the ENDIF
command.

Note that only the first block with a true condition is
executed. The IF, ELIF, ELSE, and ENDIF commands
have several restrictions and options:

Table 5.2 Block-IF Restrictions and Options

NOTE

CHAPTER 5 - USER PROGRAMS BJX USER'S MANUAL

64

Each IF/ELIF/ELSE/ENDIF set...

...must have one and only one IF.

...may have any number of ELIFs.

...need not have any ELIFs.

...may have one ELSE.

...need not have an ELSE.

...must have one and only one ENDIF.

IF vs. ?
You can use ? in place of IF commands. For example,
clamping applications make decisions based on the final
position of the motor after a move. For our example,
assume that the PFB should be between 50 and -50. If
PFB is within range, the program should turn output O1
on and print an appropriate message. If it is out of
range, O1 should be turned off and a message should be
printed. The table below shows the desired operation:

Table 5.3 Desired Operation of Program
Example

PFB RANGE O1 MESSAGE TO PRINT

PFB > 50 OFF PFB TOO LARGE

PFB < -50 OFF PFB TOO SMALL

-50 < PFB < 50 ON PFB WITHIN RANGE

The IF, ELIF, ELSE, and ENDIF commands implement
the desired functions:

IF PFB GT 50 ;BEGIN BLOCK-IF
 O1 OFF ;O1 MEANS "WITHIN

;RANGE"
 P "PFB EXCEEDED MAXIMUM"

;PRINT ERROR
;MESSAGE

ELIF PCMD LT -50 ;CHECK THE
;NEGATIVE LIMIT

 P "PFB EXCEEDED MINIMUM"
;PRINT ERROR

;MESSAGE
 O1 OFF ;O1 MEANS "WITHIN

;RANGE"
ELSE ;IF HERE, THEN

;WITHIN RANGE
 O1 ON ;TURN ON O1
 P "PFB WITHIN RANGE"

;PRINT MESSAGE
ENDIF ;END OF BLOCK-IF

This example could have been written with ?
commands, but it would have been less intuitive.

Nesting IF commands
You can nest IF commands. The following program
shows two levels of nesting:

55$
IF X1 GT 0
 IF X2 GT 0
 P "BOTH X1 AND X2 > 0"
 ELSE
 P "ONLY X1 GT 0"
 ENDIF
ELSE
 IF X2 GT 0
 P "ONLY X2 GT 0"
 ELSE
 P "NEITHER X1 NOR X2 > 0"
 ENDIF
ENDIF
B

You can nest IF commands indefinitely. You should be
careful to include all of the ENDIFs to close each level
of nested IF. The indentation shown above is not
required but is present to make the program more
readable. The BJx ignores the indentation.

IFs with GOTO and GOSUB
You can use the GOSUB command from within a
Block-IF, even if you have another Block-IF in that
subroutine. In this case, the IF in the subroutine is like
a nested IF. However, be careful to return from the
subroutine after you have executed the ENDIF. You
should never return from a subroutine from between IF
and ENDIF. Finally, you may use a GOTO to jump
completely out of an IF-ELSE control structure. When
a GOTO is executed after an IF has been executed but
before an ENDIF has been executed, all ENDIFs are
automatically executed. This means you cannot jump to
a label within any IF-ELSE structure. Note that
jumping out of a control structure in such a manner is
often a poor programming practice and should be
avoided.

You cannot GOTO the
middle of an IF/ENDIF set.
You should never execute
a RET from between an IF
and ENDIF.

NOTE

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

65

SYNCHRONIZING YOUR PROGRAM

This section describes the functions and variables that
allow you to synchronize the program to events, both
external and internal.

Idling Commands

Idling commands are advanced alternatives to the TIL
command. Idling commands are important when you
are using multi-tasking, which is discussed later in this
chapter. For now, be aware that while TIL delays
execution of all parts of the program, idling commands
stop only the current task; other tasks can execute
during the delay.

There are four idling commands: Hold (H), Dwell (D),
Wait (W), and INPUT. This section discusses the first
three; INPUT is discussed later in this chapter. Hold
waits for switches to change state, Dwell waits for a
timer, and Wait waits for a motion segment.

HOLD (H)
The HOLD command waits for a switch to be either on
or off. You specify the HOLD command with the
switch and the desired state. For example,

H I1 ON ;HOLD UNTIL INPUT
;I1 IS ON

H O2 OFF ;HOLD UNTIL
;OUTPUT O2 IS

H TRIP1 ON ;OFF HOLD UNTIL
;PFB > PTRIP1

Enter the following program:

29$
P "TURN I1 ON"
H I1 ON
P "I1 IS NOW ON"
B

Now transmit the program, turn input I1 off, and
observe the action of the HOLD command by typing:

RUN 29

You can Hold for any switch except some user
switches. Only user switches XS1-XS10 are allowed
with the HOLD command.

DWELL (D)
Sometimes it is desirable to delay execution for a
specified amount of time. The Dwell (D) command is
the easiest way to do this. The delay is specified in
milliseconds. For example:

D 1000 ;DWELL 1000
;MILLISECONDS

delays execution for 1000 milliseconds or 1 second.
Dwell can be demonstrated by typing in the following
simple program:

6$
P "BEGIN 5 SECOND DWELL"
D 5000
P "END 5 SECOND DWELL"
B

Now exit and type:

RUN 6

The result should be:

BEGIN 5 SECOND DWELL
END 5 SECOND DWELL

with 5 seconds between lines being printed. Dwells can
be up to 2,147,483,647 milliseconds or about 25 days.

WAIT (W)
When using move and jog commands, it is often
necessary to synchronize the execution of your program
to motion. The Wait (W) command can be used to wait
for the specified motion segment to start. (Refer to
Chapter 3 for a discussion of Motion Segments and the
variable SEG.) Examples of the Wait command are:

CHAPTER 5 - USER PROGRAMS BJX USER'S MANUAL

66

W 1 ;WAIT FOR MOTION
;COMMAND TO BEGIN

W 2 ;WAIT FOR SEGMENT 2 TO
;START

W 0 ;WAIT FOR MOTION TO
;STOP

W 1 delays program execution until the last motion
command entered has started segment 1. W 2 delays
until segment 2. W 0 delays program execution until the
last motion command has stopped.

In the example below, WAIT is used to delay the
calculations of the third move until the second move has
begun:

MI 10000 100 ;BEGIN 1ST MOVE
MI 10000 200 ;CALCULATE THE

;2ND MOVE DURING
;THE 1ST.

W 1 ;DELAY PROGRAM
;EXECUTION UNTIL

;2ND MOVE STARTS
MI 10000 300 ;CALCULATE THE

;3RD MOVE

If a second move is entered while the first is running,
Wait always waits for the second move:

MI -50000 1000 ;BEGIN 1ST MOVE
MI -50000 1000 ;CALCULATE 2ND

;MOVE
W 2 ;WAIT FOR SEG 2

;OF 2ND MOVE

Another example of the WAIT (W) command is seen
when using multiple JOG TO/JOG FROM commands.
Normally, you should place a WAIT (W) command
between these commands, because the initial traverse of
a JOG FROM/JOG TO command begins as soon as the
command is entered. Usually, you will want the
traverse to begin at the end of the last specified
acceleration segment. For example, consider:

J 1000 ;START MOTION
W 2 ;WAIT TIL JOG

;ACCEL IS DONE
JT 10000 200 ;ENTER JT FOR

;FIRST DECEL
W 3 ;WAIT TIL JT DECEL

;IS DONE
JT 11000 0 ;ENTER FINAL

;SEGMENT OF
;MOVE

Using Timers, TMR1-4

The general purpose timers, TMR1-4, are provided for
timing that is too complex for the Dwell command. The
timers are set in milliseconds and are limited to
2,147,483,647 milliseconds or about 25 days. You set
the timer; the BJx counts it down until it reaches zero.

Type in this example, which continuously reprints a
message for 1 second:

8$
TMR1=1000
TIL TMR1 LE 0 P "WAIT FOR 1 SEC"
B

and type:

RUN 8

Type in this example showing how multiple delays can
be based on one timer setting:

9$
TMR1 3000 ;SET TMR1 TO 3 SECONDS
P "3 SECONDS"
TIL TMR1 LE 2000
P "2 SECONDS"
TIL TMR1 LE 1000
P "1 SECOND"
TIL TMR1 EQ 0
B

and type:

RUN 9

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

67

Regulation Timer, RD

Fixed length delays can be added into a program with
the Dwell (D) command. In some applications,
especially those that use profile regulation, it is
necessary to add a delay with a length that varies with
the regulating frequency. The Regulated-Dwell (RD)
command is provided for these occasions. When the
external input frequency is equal to REGKHZ, the delay
of the RD command is in milliseconds, just like D
command. However, when the external input frequency
decreases, the regulated dwell time lengthens so that the
Dwell is proportional to the inverse of the external
frequency. For example:

45$
REGKHZ 100;SET REGKHZ TO

;100 KHZ
RD 2000 ;REG DOES NOT

;NEED TO BE ON
P "DELAY COMPLETE"
B

In this case, the RD command causes a 2-second dwell
when the external input frequency is 100 kHz and a 4-
second dwell when the frequency is 50 kHz. Note that
RD delays are always regulated by the external
frequency, even when REG is off.

USING GENERAL PURPOSE INPUTS

General purpose inputs can be used to control the
program. From Chapter 3 you may recall that these
inputs can be referred to one at a time using variables
I1-I8, or collectively IN. If the program must wait for a
particular input to be on or off before continuing
execution, the TIL command can be used:

TIL I5 EQ 0

If this statement is executed from the program, the
program will delay execution until I5 is 0.

If the program must wait for many inputs to be on or
off, then the TIL command can be expanded. For
example, if inputs 1, 4, 5, and 6 must all be on, either of
the following TIL instructions can be used:

TIL I1+I4+I5+I6 EQ 4
;THIS USES

;ALGEBRAIC MATH
TIL I1&I4&I5&I6 EQ 1

;THIS USES
;LOGICAL MATH

;BOTH WORK

It is slightly more complicated if the program must wait
for some inputs to be on and others off. For example, if
inputs 1, 4, and 5 must be on, and input 6 must be off,
the following TIL instructions can be used:

TIL I1+I4+I5+(1-I6) EQ 4
;ALGEBRAIC MATH

TIL I1&I4&I5&(1-I6) EQ 1
;LOGICAL MATH

Notice the use of (1-I6). This is a logical NOT.

If more than a few inputs must be tested, then
referencing them one at a time can be cumbersome. As
an alternative, IN can be used. This can be
demonstrated with the example above. If the program
must wait for inputs 1, 4, and 5 to be on and input 6 to
be off, logical math can be used to mask the inputs that
are not supposed to be tested: inputs 2, 3, and 7, 8. A
mask is a binary word with a 0 for each input that is not
tested and a 1 for each that is. In this example, the
mask would be:

Input Number 8 7 6 5 4 3 2 1

Test Input? N N Y Y Y N N Y

Binary Mask 0 0 1 1 1 0 0 1

Since the mask can be in hex or decimal, it can be
expressed as:

00111001 (BINARY) equals 39 (HEX) or 57
(DECIMAL), which equals 1+8+16+32 (DECIMAL).

Now that the mask is known, the condition must be
determined. The condition is formed much like the
mask. In this case, there is a binary 1 for each input that
must be on and a binary 0 for each input that is either
off or masked:

CHAPTER 5 - USER PROGRAMS BJX USER'S MANUAL

68

I/O Number 8 7 6 5 4 3 2 1

I/O On? N N N Y Y N N Y

Binary Mask 0 0 0 1 1 0 0 1

Since the condition must be in hex or decimal, it can be
expressed as:

00011001 (BINARY) equals 19 (HEX) or 25
(DECIMAL),

which equals 1+8+16 (DECIMAL).

Now the mask and the condition can be used in a TIL
instruction in the format:

TIL IN&mask EQ condition

For our example,

TIL IN&39H EQ 19H ;THIS USES HEX
 ;CONSTANTS

This accomplishes the same function as the TIL
instruction, which refers to inputs one at a time.
However, using the IN word allows the function to be
done in a less cumbersome manner.

OPERATOR INTERFACE

This section covers interfacing via the serial port.
Often, it is necessary to have the BJx send information
to the operator or ask the operator for information. For
example, it may be useful to output speed and position,
or ask the operator for a new speed command. This is
easily accomplished using BJx serial I/O instructions.

PRINT (P)

The PRINT (P) command prints text and variables to
the terminal. Text and variables may be freely
intermixed, limited only by the 80-character maximum
instruction length. The following command prints the
speed on the terminal:

P "SPEED = " VFB " RPM"

Assuming VFB is 1962, the BJx will respond with:
SPEED = 1962 RPM

Note that text must be enclosed by double quotes, and
that text and/or variables must be separated by at least
one blank space.

Printing Decimal Numbers
Variables are normally printed as decimal integers in a
field that is 12 characters wide. Formatting can be used
to adjust the field width or to print decimal points.

To change the width of the field, follow the variable
name with the width enclosed in square brackets ([]).
Referring to the above example,

P "SPEED = " VFB[5] " RPM"

will cause the BJx to print:

SPEED = 1962 RPM

If you try to print a number and do not have enough
space in the format for the number, then the BJx will fill
the format width with X's. For example,

P "SPEED = " VFB[3] " RPM"

will result in:

SPEED = XXX RPM

(again, assuming the speed is 1962 RPM).

Printing Decimal Points
You can also use the BJx to print a decimal point. The
BJx performs calculations with integers. However, it is
often desirable to convert integers to floating point
numbers, especially when printing out information for
the operator. This allows you to make the integer math
of the BJx transparent to the operator. For our example,
suppose you would prefer to print out the speed in
KRPM (thousands of RPM). You can use print
formatting to convert the program units (RPM) to
KRPM with the following print command:

P "SPEED = " VFB[5.3] " KRPM"

Assuming VFB is 1962, this command would produce:

SPEED = 1.962 KRPM.

The ".3" following the "5" in the format causes the BJx
to insert a decimal point three places from the right of
the number. To the operator, this is more convenient,
though the programmer still must work in integer units.

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

69

You also have the option of printing fewer digits than
follow the decimal point. This also can be specified in
the format. For example, suppose you only wanted to
print one digit after the decimal point. The print
command from above would be changed to limit the
number of digits to be printed:

P "SPEED = " VFB[5.3.1] " KRPM"

This command would produce:

SPEED = 1.9 KRPM

So the general format for decimal format is:

[OVERALL WIDTH.DECIMAL POSITION.PRINTABLE DIGITS]

For the example above ([5.3.1]), the overall width was
5, the decimal position was 3, and the number of
printable digits after the decimal was 1. You can leave
off any of these three specifications. The overall width
defaults to 12, the decimal position to zero, and the
printable digits to the value of the decimal position.

Printing Hex Numbers
To print a variable in hexadecimal, follow the variable
name with an H enclosed in square brackets ([H]). The
variable will be printed in a field 9 characters wide,
including an appended "H" to indicate hex. The default
field width 9 can be changed by following the "H" with
the desired field width. For example:

X1 = 255
P "X1 = " X1[H]
P "X1 = " X1[H3]

will cause the BJx to print:

X1 = FFH
X1 = FFH

Two's-complement notation is used when printing in
hex. This means that printing negative hex values
requires the full field width of 9 characters. When
printing in hex format, the field must be wide enough to
include the appended "H."

Printing Binary Numbers
To print a variable in binary format, follow the variable
name with a B enclosed in square brackets ([B]). The
variable will be printed in a field 33 characters wide,
including an appended "B" to indicate binary. All of

the leading zeros will be printed. The default field
width of 33 can be reduced by following the "B" with
the desired field width. For example:

X2 = 127
P "X2 = " X2[B]
P "X2 = " X2[B10]

will cause the BJx to print:

X2 = 0000000000000000000000001111111B
X2 = 001111111B

Printing Switches
Formatted printing can also be used to display switches
(any variable with a value of 0 or 1) either as Y or N or
as on or off. This allows you to communicate with the
operator better than just printing 0 or 1. The switch
format (on or off) is printed with a bracketed S ([S])
following the variable:

XS1 = 1
P "USER SWITCH #1 IS " XS1[S]

These commands would result in:

USER SWITCH #1 IS ON

Similarly,

XS1 = 0
P "USER SWITCH #1 IS " XS1[S]

results in:

USER SWITCH #1 IS OFF

In addition, you can print a switch as Y or N if you
follow the switch with a bracketed Y ([Y]). For
example,

P XS1[Y]

will print either Y or N depending on whether XS1 is 1
or 0, respectively. This format is useful with the input
command which we will discuss later. The input
command allows the operator to respond with Y or N
and stores 1 or 0 in a BJx variable. This print format
allows you to print the previous answer on the screen
the way it was entered.

CHAPTER 5 - USER PROGRAMS BJX USER'S MANUAL

70

Printing Expressions
The P instruction is not restricted to printing only
variables. In general, any numeric expression can be
formatted and printed. All the following examples are
valid:

P "MINUS 1 IN HEX IS " -1[H]
P X1+X3 "= X1+X3"
P "SENSE OF DIRECTION IS " DIR*2-1[2]
P "DISTANCE TO GO IS " PFNL-PFB[.3]

Printing ASCII Characters
The BJx will also convert numbers to ASCII format
before printing. You can do this by following the
variable or expression with a bracketed C ([C]). This
will cause the BJx to print out the character for which
the number is an ASCII code. For example,

X6 = 65
P "THE NUMBER " X6[2] " IS THE ASCII
CODE FOR " X6[C]

will result in:

THE NUMBER 65 IS THE ASCII CODE FOR A

If the number is greater than 127 (that is, the eighth bit
is set), the BJx removes the eighth bit before
transmitting the character. For example:

P 65[C] " IS THE SAME AS " 128+65[C]

since the BJx removes the eighth bit of the expression
on the right, which has the end effect of reducing the
number by 128. If the number is larger than 255, the
BJx divides the variable or expression into 4 bytes and
prints them out separately. For example:

X2 = 256*256*256*65+256*256*65+256*65+65
P X2[C]

prints:

AAAA

since the number stored in X2 is equivalent to 4 bytes of
65.

The default field width of the character format is 4, and
you can change the field width by following the C with
the desired format.

Printing Control Characters
The BJx uses the standard ASCII character set as shown
in Appendix B. There are unprintable characters, such
as the bell (ASCII 7) and carriage return (ASCII 0DH).
These characters have an effect on the terminal but do
not print anything on the screen. Unprintable characters
range from ASCII 1 to 1FH. The BJx cannot print
ASCII 0.

As Appendix B shows, each unprintable character can
be produced with a control sequence. For example,
most terminals will sound a bell when you press
<Control>G (hold down the control key while pressing
the G key). As Appendix B shows, <Control>G
produces 07 or the ASCII bell. You can use the BJx to
produce unprintable characters by preceding the
appropriate character with the carat (^) to signify an
unprintable character. For example, the following BJx
command will sound the bell on your terminal:

P "^G"

You can also use the character format to print control
characters. For example:

P 07[C]

also sounds the bell. The character format allows you
to print variables as ASCII codes. However, the easiest
way to print control characters is normally with the
carat (^). One reason for this is that control characters
can be within text strings. For example:

P "BELL = <CONTROL>G. ^G SOUNDS
A BELL"

If you use the carat to specify an invalid control
character, such as ^1, the BJx will print the carat and
the 1 ("^1"). Only ^A to ^Z, ^[, ^/, ^], ^^ and ^_ are
allowed.

Cursor Addressing
Many displays allow you to address the cursor. For
example, the DEP-01 from Kollmorgen is a 40-
character display that allows you to address any location
from 0 (leftmost top line) to 39 (rightmost bottom line).
First, send ASCII 27 ("^[") followed by the address of
ASCII 0 ("^@") through ASCII 79 ("O"). For example,
you can address the rightmost space of line one (space
#39) with the control character sequence ^['. The ^[
specifies cursor addressing and "'" (ASCII 39) specifies
space #40.

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

71

One problem with cursor addressing is that the BJx
cannot transmit ASCII 0 (^@). This is a common
limitation for terminals. If you want to address space
#0, you must first address space #1, then transmit a
backspace (ASCII 8 or "^H"). For example, if the
following line is executed from the user program while
the BJx serial port is connected to the DEP-01, "X" will
be printed on space #0.

P "^[^A^HX MARKS THE FIRST SPACE"

Printing BJx Status (PS)
The PRINT STATUS (PS) command is like the P
command except that it appends the BJx status to the
end of the printed line. There are five different status
words that can be printed with the PS command. Each
is listed below with its meaning.

Table 5.4 Printing BJx Status

Status Explanation

OFF BJx is OFF

READY BJx is ready, but REMOTE is OFF.

ACTIVE BJx is active, but no motion.

FAULT BJx has a fault condition.

JOG BJx is jogging.

PROFILE BJx is executing profile.

GEAR BJx is in gear mode.

You can use all formats and combinations with PS that
you did with P. These results are identical except that
the BJx status is appended onto the line.

REFRESH (R & RS) Commands

The REFRESH commands, R and RS, are identical to P
and PS, except that R and RS send only a carriage
return. The P and PS commands print lines that end
with linefeed and carriage return pairs. R and RS
commands display lines that can be overwritten.

The following example demonstrates how the
REFRESH commands work. Type in this example from
the Editor:

7$
RS "VELOCITY FEEDBACK=" VFB
GOTO 7

Now exit the Editor and type:

RUN 7

Rotate the motor shaft by hand so that the velocity
feedback changes. Press the escape key and enter the
Break command to break program execution. Notice
that the velocity is continuously updated, but the line
appears to be stationary. A similar program with the P
or PS commands would cause the lines to scroll to the
top of the screen.

INPUT

The INPUT command causes the BJx to print a
message to the terminal and wait for a response from
the operator. The input information can be stored in
any programmable variable. This allows the operator to
change or enter information without making any
changes to the program itself.

Type in the following example INPUT instruction:

INPUT "ENTER NEW SPEED : " X2

This causes the BJx to print:

ENTER NEW SPEED :

Type the new speed into the terminal. After you are
prompted, enter a number and press the enter key. The
number you enter is stored in the variable X2. If you
press the enter key without entering a number, the
variable X2 is left unchanged. Use the Print command
to display the new value of X2:

P X2

INPUT Limits
You can also specify an upper and lower limit for the
operator entry. If the above INPUT instruction were
written as:

CHAPTER 5 - USER PROGRAMS BJX USER'S MANUAL

72

INPUT "ENTER SPEED : " X2 10 100

the BJx would force the operator to input a value
between the specified low limit (10) and high limit
(100). If the input is invalid or outside the range, an
error message is sent and the operator is prompted
again.

The limits can be constants, as shown above, as well as
any valid numerical expression. If the limits are outside
the variable's normal range, they are ignored. If they
are not specified at all, the variable's normal range is
used as the limit. For example, the limits on ACC are 0
and AMAX. Type in this command:

X1=ACC ;STORE ACC
INPUT "ENTER ACC : " ACC -1000 1000

The BJx knows that the lower limit on ACC is 0 so that
no negative numbers will be accepted. If AMAX is less
than 1000, AMAX will be the upper limit. Otherwise,
1000 will be the upper limit. If you specify limits
outside the variable's program limits, the BJx uses the
program limits. Appendix E lists all variables and their
program limits.

INPUT and Decimal Point
You can use the INPUT to prompt the operator for
values that include a decimal point. You must specify
the number of characters after the decimal point. This
is the only way you can enter numbers having a
fractional part into the BJx. For example, suppose your
user position units are mils (0.001 inch). You can
prompt the operator for any position in inches with the
INPUT. The following example stores the results of the
INPUT command in X1. Enter this short program in
your BJx, then type RUN 44:

44$
INPUT "ENTER NEW POSITION: " X1[3]
P "NEW POSITION = " X1[.3]
P "ACTUALLY, X1= " X1
B

Notice the bracketed 3 following X1 in the INPUT
command. This causes the operator input to be
multiplied by 1000 (103) before it is stored in X1. The
print statements that follow display X1 in inches (as the
operator would prefer to see it), then in mils (as the BJx
motion commands process it).

SERIAL Switch

You can use the SERIAL switch to make sure that the
serial port is not busy before you execute a command.
If SERIAL is on, the serial port is ready. Otherwise, the
serial port is not ready. For example, suppose you do
not want to execute an INPUT command if the serial
port is busy. It might be busy from a print command, or
from a previously executed input command. In that
case, use these commands:

? SERIAL EQ ON INPUT "ENTER SPEED" X1

MULTI-TASKING

Multi-tasking, an important feature of the BJx, allows
you to write separate tasks that run concurrently, which
means more than one task executes at the same time.
For example, you can write a program with two separate
tasks: one to ask the operator questions and another to
command motion. These two tasks can run
independently so that while the operator is answering
questions, the motion continues.

Each task has a priority level. The BJx has 6 different
task levels as shown in Table 5.5. High priority means
that if two tasks need to run at the same time, then the
commands from the task with highest priority will
execute first. For example, Alarm A has the highest
priority. If Alarm A and Alarm B are "fired" at the
same time, Alarm A will run until it is complete, then
Alarm B will run.

Multi-Tasking and Autobauding

If you set the BJx to autobaud, multi-tasking will not be
enabled until communication has been established. This
means the BJx will not operate if a terminal or computer
is not present. Therefore, you normally will want to
disable autobauding by turning ABAUD switch (on the
front of the BJx) off.

Turn ABAUD Front-Panel
Switch off when using
multi-tasking.NOTE

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

73

MULTI

If you want to disable Alarm C, the variable input
routine, and background, type:

MULTI OFF

For example, if you have a time-critical section of code,
you may turn MULTI off at the beginning of the section
and back on at the end of the section.

END Command

Tasks are normally terminated with the END command.
END signifies the end of the task, whereas Break (B)
implies that all tasks stop executing. For example, if
you end an alarm with the Break command, the entire
program stops running and the BJx returns to the
Interactive mode. However, if you end an alarm with
the END command, the alarm stops, but the other tasks
continue running.

Enabling and Disabling Multi-tasking

Multi-tasking is always enabled when a program is
running. For example, if you have a program that starts
at 55$ and has 2 alarms, then the alarms will be active if
you type

RUN 55

If your program ends with a Break command, then the
program will stop executing and multi-tasking will be
disabled; that is, the BJx will return to the Interactive
mode. If your program ends with an END command,
then only the task level that executed the END will stop
executing; other tasks will continue executing. If there
are no other tasks executing, then the BJx does not
return to the Interactive mode but instead becomes
dormant. In this case, multi-tasking remains enabled.
For example, alarms will continue to be serviced.

If you want to enable multi-tasking without running a
particular program, type

RUN

without entering a label.

Tables 5.6 and 5.7 show how to turn multi-tasking on
and off:

Table 5.6 How to Enable Multi-Tasking

1. Run any label (Type “RUN <label>”).

2. Run multi-tasking (Type “RUN”).

3. Include a POWER-UP$ label and power-up.

Table 5.7 How to Disable Multi-Tasking

1. Execute a Break from your program.

2. Enter a Break from the Monitor mode.

3. Cause an error that breaks execution.

Idling

Idling is a necessary part of multi-tasking. So far in our
discussion, higher priority tasks run until they are
complete. Actually, commands from the highest
priority task that is not idle execute. For example, if an
alarm cannot run because it is waiting for some
condition (such as waiting for motion to stop), it is idle.
If a task is running and becomes idle, then a lower
priority task can run until the higher priority task is no
longer idle. A task can be idled with pre-execution
idling and post-execution idling.

Pre-Execution Idle
A task can be idled by waiting for a condition before
executing a command. This is called a "pre-execution
idle" because the task is idled before executing the
command that causes the idle. There are two conditions
that can cause a pre-execution idle. A task about to
execute a motion command (MI, MA) will be idled if
the motion buffer is full. Also, a task about to execute a
printing command (P, PS, R, RS, or INPUT) will be
idled until the previous printing command is finished.

For example, the BJx can store up to two MI or MA
commands. This was called buffering in Chapter 3.
This means that if you wrote a task with three MI
commands in a row, then the third MI command could
not be executed until the first move was complete.
Thus, the task would be idled until the first move
finished. If there was another, lower-priority task, it
would not execute until the first move finished. When
the first move finished, the first task would no longer be
idled and thus would proceed.

CHAPTER 5 - USER PROGRAMS BJX USER'S MANUAL

74

Table 5.5 Multi-Tasking Overview

Task Level Task Name Task Labels
How to

Start Task
Typical Uses

of Task

1
(Highest Priority)

ALARM A A$ Hardware or
Software Switch

2 ALARM B B$ Hardware or
Software Switch

Monitor Inputs

3 ALARM C C$ Hardware or
Software Switch

4 VARIABLE
INPUT

VARIABLE$
”ATTN” from
DEP-01 or ^V
from a PC or a

Terminal

Prompt Operator
for Input

POWER-UP
PROGRAM POWER-UP$

Power-up BJx and
Establish

Communication

Initialize BJx for
Application

5

AUTO
PROGRAM

AUTO$
Manual Switch Off

and Positive
Transition Of
Cycle Input

Run One Cycle of
Auto Program

MANUAL
PROGRAM MANUAL$

Manual Switch On Run Manual
Program

Continuously

GENERAL
PURPOSE

PROGRAM
0$ - 500$

Run <LABEL> General Purpose
Programs

USER ERROR
HANDLER

ERROR$ Any Error That
Breaks Execution

Gracefully Exit on
Error Condition

6
(Lowest Priority)

BACKGROUND
PRINT AND
MONITOR

BACKGROUND$
All Other Tasks

Idle
Print Messages to

the Screen

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

75

Consider the following program. It has two tasks: a
routine starting at 1$ (Task Level 5) and a
background task starting at BACKGROUND$ (Task
Level 6). The background task is the lowest priority
task and will only execute when the general purpose
task is idle. In the following example, the task is idle
between the second and third motion command. Use
the BJx Editor to enter this program.

;TASK LEVEL 5

1$;MAIN PROGRAM
EN
MI 10000 10 ;FIRST MOVE
P "FIRST MOVE PROCESSED"
MI 10000 10 ;SECOND MOVE
P "SECOND MOVE PROCESSED"
MI 10000 10 ;THIRD MOVE
P "THIRD MOVE PROCESSED"
B
........................

;TASK LEVEL 6

BACKGROUND$
P "UPPER TASK IDLED"
D 250 ;DWELL 0.25 SEC.
END

Now type:

RUN 1

The result should be:

FIRST MOVE PROCESSED
SECOND MOVE PROCESSED
UPPER TASK IDLED
UPPER TASK IDLED
. . .
UPPER TASK IDLED
UPPER TASK IDLED
THIRD MOVE PROCESSED

The first and second moves are processed
immediately, then Task Level 5 is idled while the first
move finishes. While Task Level 5 is idle, the
background task executes over and over, printing the
simple message on the screen.

Post-Execution Idle
A task also can be idled by waiting for a condition
after executing a command. This is called a "post-

execution idle" because the task is idled after
executing the command that causes the idle.
Commands that cause post-execution idling are called
idling commands. As discussed earlier in this
chapter, there are four idling commands:

Wait (W)
Dwell (D)
Hold (H)
Input (INPUT)

For example, you can modify the above program to
make one move, then run the background routine
until motion has stopped. Enter this program:

;TASK LEVEL 5
1$;MAIN PROGRAM
EN
MI 10000 10 ;START MOVE
P "MOVE PROCESSED"
W 0 ;WAIT FOR MOVE
P "ALL MOTION STOPPED"
B
........................
;TASK LEVEL 6
BACKGROUND$
P "UPPER TASK IDLED"
D 250 ;DWELL 0.25 SEC.
END

Type:

RUN 1

The result should be:

MOVE PROCESSED
UPPER TASK IDLED
UPPER TASK IDLED
. . .
UPPER TASK IDLED
UPPER TASK IDLED
ALL MOTION STOPPED

Note that Task Level 5 immediately processes the
move and then is idled by the Wait command until
motion stops. While task 5 is idled, the lower level,
background task executes continuously.

Avoiding Idling
You can avoid idling the BJx by using the TIL
command in place of Dwell, Wait, or Hold. For
example,

CHAPTER 5 - USER PROGRAMS BJX USER'S MANUAL

76

TIL SEG EQ 0

is the same as:

W 0

except the TIL command locks out lower priority
tasks since it is not an idling command. The Wait
command allows lower level tasks to execute since it
is an idling command.

Alarms (Task Levels 1-3)

Alarms are the highest priority tasks. There are three
alarms: A, B, and C. A is the highest priority.
Normally, alarms are used to monitor hardware
inputs, but they can monitor any user switches (XS1 -
XS50) and MANUAL. Using an alarm relieves you
of having to write your program so that it checks
switches. After you define an alarm, the BJx will
watch the switch and automatically execute the code
that you specify, should the alarm "fire."

Alarms are specified on one line, along with the
switch that triggers the alarm and the transition. For
example, the A alarm can be defined to fire when
input I1 transitions from off to on with this command:

A$ I1 ON

You can follow the alarm definition with the code
that you want to execute when the alarm fires. For
example, if I1 turned on, it might indicate an error
condition. In this case you might disable the BJx,
turn off all outputs, and break execution. The
following program would accomplish this using the A
alarm.

A$ I1 ON ;DEFINE THE
;ALARM

DIS ;DISABLE THE
;BJX

OUT = 0 ;TURN OFF ALL
;OUTPUTS

B ;BREAK EXECUTION

Restrictions of Alarms
Alarms have many restrictions. 1) You cannot
execute GOTO, GOSUB, or RET commands from an
alarm. 2) You cannot execute a label. 3) Alarms
must be self-contained programs--they cannot "mix"

with your program. 4) They must be terminated with
an END, Kill (K), or Break (B) command. 5) Also, if
all three alarms are present, the execution time of
your program increases by about 3%. Most other
commands are allowed for alarms, including motion
commands and Block-IFs.

Printing with Alarms
You must be careful when executing print commands
from alarms. If you need to print from an alarm task,
always print after the critical commands have been
executed. This is necessary because the input
command from a lower task will stop any task, even a
higher priority task, from printing. The input
command stops all printing until the operator
responds with a new value. For example, write your
program like this:

B$ HOME ON ;FIRE ALARM
O1 = 0 ;TURN OFF OUTPUT
DIS ;DISABLE DRIVE
P "MESSAGE" ;NOW, PRINT A

;MESSAGE
B

Do not print before you turn outputs off or disable the
BJx. Otherwise, an INPUT command from another
task may idle the alarm indefinitely.

CAUTION
!

Printing can incur large
delays.

Do not print before critical
commands can execute.

Variable Input (Task Level 4)

The variable input task is the next highest priority.
Normally, this task is used to prompt the operator for
input, while still allowing the main section of the
program to continue. For example, the operator
could be entering a new distance while the main
program continues executing the program using the
old distance. The variable input task is similar to an
alarm, except that it is fired upon receiving a special
character from the terminal or computer, which is ^V
(control-V), or ASCII 16H. The "ATTN" button on
the DEP-01 Data Entry Panel from Kollmorgen also
transmits a ^V to fire the variable input task.

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

77

The variable input task begins with VARIABLE$.
You can follow that label with various statements,
usually printing and input commands. For example,
the following program shows Task Level 5 continuing
to increment X1 during an INPUT command:

;TASK LEVEL 4
VARIABLE$
P "X1 IS" X1
INPUT "INPUT NEW VALUE OF X2" X2
P "X1 IS NOW " X1
B ;END EXECUTION
........................
;TASK LEVEL 5
10$
X1 = 0
11$
X1 = X1+1
GOTO 11

Now you can enable multi-tasking by typing:

RUN 10

This program resets X1, then begins to count up.
Now enter ^V from your PC or terminal, or ATTN
from your DEP-01. The BJx should print the value of
X1, which has been continuously incrementing since
you typed RUN 10. Next, enter a new value for X2
and notice that the program prints out a new value for
X1, which is larger than the value it printed at the
beginning of the variable input task. This is because
the variable input task was idle while you were
entering the new value. Since the higher priority task
is idle, the lower priority (11$) will run and
continuously increment X1.

Using Variable Input with Profiles
You can use the variable input routine while the BJx
is executing motion profiles. However, you must be
careful if you are changing parameters of motion.
Specifically, if you are changing two or more
parameters that you want to take effect at the same
time, you must write your program to store those
values away. For example, suppose you are using the
variable input routine to prompt for speed and
distance. You might use a program like this:

;TASK LEVEL 4
VARIABLE$
INPUT "INPUT NEW DISTANCE" X1
INPUT "INPUT NEW SPEED" X2
END ;END VARIABLE$
........................
;TASK LEVEL 5
20$
MI X1 X2
GOTO 20

If you type:

RUN 20

this program will continuously move the motor X1
distance at X2 speed, even after you press ^V to start
the variable input routine. However, after you have
entered a new value for X1, the variable input routine
will be idled, waiting for you to enter X2. In this
case, the next MI command will be executed with the
new X1 and the old X2. You can correct this
problem by temporarily storing the input values in
user variables and loading them all together. For
example:

;TASK LEVEL 4
VARIABLE$
INPUT "INPUT NEW DISTANCE" X11
INPUT "INPUT NEW SPEED" X12
X1 = X11 ;LOAD X1 AND X2

;WITH
X2 = X12 ; INPUT VALUES
END ;END VARIABLE$
........................
;TASK LEVEL 5
20$
MI X1 X2
GOTO 20

Temporarily storing the input values in X11 and X12
guarantees that the MI command will execute with
either all new or all old values. Since there are no
idling commands between the commands that load X1
and X2, there is no possibility for Task Level 5 to run
until X1 and X2 are both loaded or neither is loaded.

In addition, if the variable input routine changes
variables that are used in different lines of Task Level
5, you probably should turn MULTI off at the
beginning of the block of lines and back on at the
end. This prevents the variable input routine from

CHAPTER 5 - USER PROGRAMS BJX USER'S MANUAL

78

reloading the variables in the middle of a block of
lines.

Restrictions of Variable Input
Like alarms, variable input has many restrictions.
1) You cannot execute GOTO, GOSUB, or RET
commands from the variable input task. 2) You
cannot execute a label. 3) The variable input must be
self-contained--it cannot "mix" with other tasks. It
must be terminated with an END, Kill (K), or Break
(B) command. Again, most other commands are
allowed for the variable input task, including motion
commands and Block-IFs. If the variable input task
is present, the execution time of your program
increases by about 1%.

Main Program Level (Task Level 5)

Most of the time, your program will run at Task Level
5. All the program examples given earlier in this
chapter executed at Task Level 5. Notice from
"Multi-Tasking Overview" that all general purpose
labels (0$ - 500$) and many dedicated labels
(POWER-UP$, AUTO$, MANUAL$, and ERROR$)
share Task Level 5. The routines that follow these
labels share one task level and cannot run
concurrently. For example, you cannot run AUTO$
and MANUAL$ concurrently. In other words, only
one Task Level 5 routine can run at a time.

Alarms and the variable input task are higher priority
than Task Level 5. For example, if an alarm fires
while your program is running a task that begins at a
general purpose label (Task Level 5), Task Level 5
will be suspended until the alarm is complete. The
background program (BACKGROUND$) runs at the
lowest level. Generally, alarms respond to conditions
that are more urgent than most other sections of the
program. Similarly, background is for tasks that are
not critical, such as printing. Multi-tasking controls
which task runs by executing commands from the
highest priority task that is not idle.

The rest of this section will discuss the dedicated
labels in Task Level 5: POWER-UP$, ERROR$,
AUTO$, and MANUAL$.

Power-Up Routine (POWER-UP$)
On power-up, the BJx checks your program to see if
you entered POWER-UP$. If you did, the power-up
routine is executed. For example, enter the following
program:

POWER-UP$
X1 = X1+1 ;SAMPLE COMMAND
B

Power-down your BJx for a few seconds and power-
up again. After establishing communication, the BJx
should display the sign-on message followed by:

EXECUTING POWER-UP LABEL
-->

indicating that the power-up routine was executed.

The POWER-UP program
will not run during
autobauding.

If you want your program to start automatically on
power-up, begin it with POWER-UP$. If POWER-
UP$ is not found in the program, then the BJx
powers-up in the Interactive mode. If the BJx is set
to autobaud, then it will not execute the power-up
label until communication has been established.

If you want to leave multi-tasking active after your
power-up routine is done, end the power-up routine
with the END command instead of the Break
command. If your routine ends with the END
command, then multi-tasking will be enabled, and the
Alarms, Background, and other multi-tasking
functions will be working. If you want to return to
the Interactive mode after power-up, then end the
power-up routine with the Break command.

Error Handler (ERROR$)
When a serious error occurs, the BJx breaks
execution of your program and checks your program
to see if you entered ERROR$. If you did, the error
handler (that is, the routine that follows the ERROR$)
is executed. All multi-tasking is suspended, including
alarms, when the error handler is being executed.

Auto Routine (AUTO$)
If you want to start a program from an external
switch, use the auto routine. You can use the auto
routine to interface to simple operator panels or to
programmable logic controllers (PLCs).

CYCLE (Connector J11) is a hardware input that,
under the proper conditions, will cause the BJx to

NOTE

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

79

begin executing one cycle of the auto program. The
AUTO program begins at AUTO$.

The following conditions must be met for the BJx to
execute the AUTO program.

Table 5.8 To Execute AUTO$...

1. Multi-tasking must be enabled.

2. AUTO$ must be present in the user program.

3. No routines can be executing at Task
 Level 5.

4. The MANUAL (I1) input must be off.

5. The CYCLE input must be low.

If these conditions are met, the CYCLE READY
output will turn on. Then, when CYCLE turns on, the
BJx will begin executing the user program at
AUTO$.

Manual Program (MANUAL $)
MANUAL$ is based on the MANUAL input, which
is shared with I1. The following conditions must be
met for the BJx to execute the MANUAL program.
When these conditions are met, the BJx will begin
executing label MANUAL$.

Table 5.9 To Execute MANUAL$...

1. Multi-tasking must be enabled.

2. MANUAL$ must be present in the user
program.

3. No routines can be executing at Task
 Level 5.

4. The MANUAL (I1) input must be on.

If these conditions are met, the BJx will execute the
user program at MANUAL$. You may have noticed
that AUTO and MANUAL are very similar. The
important difference is that while the AUTO program
begins when CYCLE START turns on, the
MANUAL program runs continuously.

Typical AUTO/MANUAL Programs
Figure 5.1 shows typical AUTO and MANUAL
programs. This flowchart shows the effects of the
MANUAL and CYCLE switches. The sample AUTO
program causes the motor to rotate one revolution
each time the CYCLE switch transitions from off to
on. The sample MANUAL program is written so that

I2 and I3 are JOG+ and JOG- switches. So when the
MANUAL switch (I1) is on, the BJx monitors the jog
buttons; when MANUAL is off, the CYCLE button
causes the motor to rotate one revolution. Note that
both the AUTO and MANUAL programs end with
the END command; this is the normal way to
conclude these programs.

Background (Task Level 6)

The background task is the lowest priority.
Normally, this task is used for non-critical tasks such
as refreshing the display and checking low priority
inputs. The background task runs continuously, as
long as no other task is active.

The background task begins with BACKGROUND$.
You can then follow that label with various
statements, usually printing commands. For example,
enter the following program:

BACKGROUND$
P "EXECUTING BACKGROUND"
D 500

;DWELL
END

Now you can enable multi-tasking by typing:

RUN

Notice that you did not need to specify a label. If you
type RUN without a label, you will enable multi-
tasking without executing a specific label. When you
are done with this example, press ^X (control X) to
break the program and return to the Interactive mode.

Restrictions of Background
Like alarms, background has many restrictions.
1) You cannot execute GOTO, GOSUB, or RET
commands from background. 2) You cannot execute
a label. 3) The background task must be self-
contained--it cannot "mix" with other tasks. It must
be terminated with an END, Kill (K), or Break (B)
command. Again, most other commands are allowed
for the background task, including Block-IFs. If the
background task is present, the execution time of your
program increases by about 1%.

Transmit/Receive Programs

The BJx provides two commands that allow programs
to be transmitted directly to and from the BJx. These

CHAPTER 5 - USER PROGRAMS BJX USER'S MANUAL

80

commands are intended for applications requiring that
a computer transmit and receive programs without
Motion Link.

<BDS Command Receiving from the
BJx
The <BDS command is used to send the BJx user
program through the serial port to the terminal or
computer. The transmission can be stopped by
sending an escape character. You should not rely on
the BJx to store all your programs. Keep back-up
copies elsewhere. The <BDS command will cause
the BJx to transmit the entire user program to your
computer. It cannot be issued in the Program mode.
For example, from the terminal type:

<BDS

and the BJx will respond by printing out the entire
user program.

The >BDS Command Transmitting to
the BJx
The >BDS command is used to send a new user
program through the serial port to the BJx. The
transmission is ended by sending an escape character.
Note that this command writes over the contents of
the user program stored in the BJx. This command
allows the program to be directly entered, presumably
by a computer, to the BJx. It cannot be issued in the
program mode.

CAUTION
! The >BDS command

writes over the entire
user program.

The BJx issues the "l->" prompt to indicate that it is
ready to load a new program line. If you are loading
from a computer, you must wait for the prompt before
beginning to transmit a new line. The >BDS
command is password protected. If a password is set
(see Chapter 2), then it must be given in the >BDS
command.

Typing in these examples
will erase the user program
in the BJx. Do not type them
in unless your program is
backed up.

For example, if a password is not set, type:

>BDS

and begin transmitting the new program. If you press
the escape key before typing anything else, the
process will be aborted without changing the program
in the BJx.

If a password is set, then that password must follow
the command. For example, if the password was set
as SECRET, type:

>BDS SECRET

and the BJx will accept programs directly from the
terminal.

The user program is stored in battery backed-up
memory. If the program changes because of a
hardware problem, the BJx issues a "USER
PROGRAM CORRUPT" error. The >BDS
command resets the user program memory, which
eliminates this condition.

PROGRAM EXAMPLES

This section lists a typical application program as
well as a sample velocity drive program. Use these
programs as models for your own. This format uses
extensive comments. The assumption is that you are
using Motion Link so that these comments will not be
transmitted to the BJx, as they would normally take
an unacceptable amount of space. You are
encouraged to use comments because they make the
program easier to understand and correct.
For the velocity drive program, first you must select
whether the input will be analog or digital (encoder
equivalent). Be sure to set GEARI and GEARO for
your application.

NOTE

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

81

Figure 5.1 Auto/Manual Mode Flowchart

*MANUAL SWITCH IS SHARED WITH I1.

BREAK COMMAND
OR

ERROR

CYCLE
SWITCH

 POSITIVE
TRANSITION?

GO TO
INTERACTIVE

MODE
- - >

MANUAL
SWITCH

*

EXECUTE
MANUAL
ROUTINE

 SAMPLE
 AUTO
 ROUTINE

AUTO$
MI 4096 100
END

EXECUTE
AUTO
ROUTINE

TYPE " RUN "

YES

YES

NO

NO

ON

OFF

 SAMPLE
 MANUAL
 ROUTINE

 MANUAL$
 IF I2 EQ 1
 J 1000
 ELIF I3 EQ 1
 J - 1000
 ELSE
 J 0
 ENDIF
 END

CHAPTER 5 - DEBUGGING BJX USER'S MANUAL

82

;
;NAME OF APPLICATION: PRETZEL MACHINE
;
;DATE A.E. NEUMAN
;
;REVISION HISTORY:
; 8-9-95 ADDED JOG BUTTONS
; 7-17-95 CORRECTED TEACH BUG
;
;
;---
;ALARM DESCRIPTION
;
; A$ WATCH THERMOSTAT
; B$,C$ NOT USED
; VARIABLE$ FILL X1 WITH SPEED
; BACKGROUND$ BACKGROUND PRINTING
;
;---
;
;I/O DESCRIPTIONS
;
;GENERAL PURPOSE INPUTS
; I2 JOG+ PUSH BUTTON
; I3 JOG- PUSH BUTTON
; I4 TEACH POSITION PUSH BUTTON
; I5 CONTACTOR INTERLOCK SWITCH
; I6 PLC INTERFACE
; I7 HOME REQUEST PUSH BUTTON
; I8 THERMOSTAT
;
;GENERAL PURPOSE OUTPUT
; O1 COOLING FLUID PUMP
; O2 SPINDLE MOTOR CONTACTOR
; O3 PLC INTERFACE
;
;DEDICATED I/O
; CYCLE CONNECTED TO PLC
; GATE NOT USED
; HOME CONNECTED TO HOME LIMIT SWITCH
; LIMIT CONNECTED TO OVERTRAVEL LIMIT SWITCH
; MANUAL (SHARED WITH I1)
; MOTION CONNECTED TO STOP PUSH BUTTON
; STATUS NOT USED
;
;---
;
;USER VARIABLES
; X1 STORE NUMBER OF CYCLES RUN
; X2 STORE LAST POSITION RUN TO
; X3 INTERMEDIATE CALCULATION
; X4 LOOP COUNTER
; X5 LOOP COUNTER
; X6-X250 NOT USED
; ;

BJX USER'S MANUAL CHAPTER 5 - USER PROGRAMS

83

;USER SWITCHES
; XS1-XS50 NOT USED
;
;---
;
;APPLICATION PROGRAM
;
POWER-UP$;POWER-UP LABEL
PLIM OFF ;SOFTWARE LIMITS NOT USED HERE
;CONTINUE YOUR POWER-UP PROGRAM HERE
END
;
;
A$ I8 OFF
P "THERMOSTAT (INPUT I8) OPENED"
P "PROCESS BEING CLOSED DOWN"
DIS ;DISABLE THE BJX
B ;BREAK PROGRAM EXECUTION
;
;
VARIABLE$
INPUT "ENTER NEW SPEED" X1
END
;
;
AUTO$;AUTO LABEL
;WRITE YOUR AUTO PROGRAM HERE
END
;
;
MANUAL$;MANUAL LABEL
;WRITE YOUR MANUAL PROGRAM HERE
END
;

;WRITE MORE OF YOUR PROGRAMS HERE
END
;
BACKGROUND$
;WRITE YOUR BACKGROUND PRINTING ROUTINE HERE
END
;
;
ERROR$;ERROR HANDLER
;WRITE YOUR ERROR HANDLER HERE
B ;END OF SAMPLE PROGRAM

CHAPTER 5 - DEBUGGING BJX USER'S MANUAL

84

;VELOCITY DRIVE SAMPLE PROGRAM
;DATE NAME
;---

POWER-UP$;EXECUTE ON POWER UP
PL OFF ;DISABLE THE POSITION LOOP

VNUM=447392 ;SETS VELOCITY UNITS TO RPM.
VDEN=100

ANUM=447392 ;SETS ACC UNITS TO RPM/SEC
ADEN=100000
;
AMAX=100000 ;SET THE MAX ACCEL RATE (RPM/SEC)
ACC=1000 ;SET THE NORMAL ACCEL LIMIT
DEC=1000 ;SET THE NORMAL DECEL LIMIT
;ACC AND DEC ARE RAMP LIMITS FOR GEAR MODE,
;ASSUMING THAT PL IS OFF.
;
;
GEARI=10 ;THIS SETS THE GEAR MODE FOR 25%,
GEARO=40 ;APPROX. 10 V = 3000 RPM FOR AN

;ANALOG INPUT. THE PROPER LEVEL OF
;GEARI AND GEARO DEPENDS ON THE
;SYSTEM AND THE INPUT FORMAT. THE
;ADJUSTMENT OF GEARI AND GEARO IS
;EQUIVALENT TO A DC GAIN ADJUSTMENT OR
;SCALE FACTOR POT FOUND ON MANY
;ANALOG DRIVES.

;NOTE THAT ACC/DEC RATES ARE LIMITED BY ACC AND
;DEC ONLY WHEN PL IS OFF.
;
EN ;ENABLE DRIVE
GEAR ON ;ENABLE ELECTRONIC GEARBOX
VOFF=0 ;THIS SETS THE OFFSET VELOCITY.

;VOFF IS SET TO ZERO WHEN GEAR IS
;TURNED ON.

;IF THERE IS NEED TO ADJUST FOR VELOCITY
;DRIFT IN THE INPUT, THEN ADJUST VOFF
;TO THE PROPER LEVEL SO THAT DRIFT STOPS.
;
B ;DRIVE IS NOW IN ELECTRONIC GEARBOX

;END OF SAMPLE PROGRAM

BJX USER'S MANUAL CHAPTER 6 - DEBUGGING

85

CHAPTER 6
DEBUGGING

INTRODUCTION

The information in this chapter will help you rectify
problems you may have while programming the BJx.
When you write programs, you may inadvertently
include a few errors or bugs. The most effective
method of dealing with errors is to prevent their
occurrence by following the programming practices
provided in this manual. Every effort has been made
to make the BJx language as simple as possible with
BASIC-like commands, algebraic math, and a variety
of conditional commands. Still, some bugs are almost
certain to surface in a new program. The BJx
provides two execution modes to help you debug
your program: Trace and Single-Step.

DEBUGGING MODES

Single-Step

If an error occurs in a section of your program that is
not time-critical, you can use single-stepping to help
track down the error. When you execute your
program in the Single-Step mode (SS), each
command is printed out. The BJx waits for you to
press the ENTER key before executing the command.
Use the nested-IF example given in Chapter 5. Enter
the program, set X1 and X2 equal to 1, and turn SS
on by typing SS ON. Begin execution at label 55 by
typing RUN 55. The following line should be
displayed:

55$
S-->

Press the ENTER key and the response should be:

IF X1 GT 0
S-->

You can probe the BJx variables from the Single-Step
mode without stopping your program. For example,
type:

P X1

and the BJx should respond with:

 1
S-->

In this case, the BJx executed the print command and
displayed the single-step prompt, indicating it is
ready for another command. Now press the ENTER
key repeatedly to step through the program.

This example shows several characteristics of the
Single-Step mode:

• All commands are preceded by the single-step
prompt:

S->

CHAPTER 6 - DEBUGGING BJX USER'S MANUAL

86

• Print statements are active in the Single-Step
mode. Notice that the results of the P command
are printed normally.

• Only the executed commands in the IF, ELIF,
ELSE, and ENDIF sets are shown. Notice that
none of the commands following the first print
command are shown.

• You can execute commands from the Single-Step
mode.

You can also enter the Single-Step mode from your
program. To do this, you should include SS ON in
your program. To exit the Single-Step mode, you can
include SS OFF in your program or type it from the
single-step prompt. You can also press the escape
key twice.

Trace

If the error occurs in a section of your program that is
not time-critical, you can use Trace to help track
down the error. When you execute your program in
the Trace mode (TRC), each command is printed out
just before it is executed. Use the nested-IF example
given in Chapter 5. Enter the program, set X1 and
X2 equal to 1, and turn TRC on (TRC ON). Begin
execution at label 55 (RUN 55), and the following
lines should be displayed:

T...55$
T...IF X1 GT 0
T... IF X2 GT 0
T... P "BOTH X1 AND X2 > 0"
BOTH X1 AND X2 > 0
T... ELSE
T... ENDIF
T...ELSE
T...ENDIF
T...B
-->

This example shows several characteristics of the
Trace mode:

• All commands are preceded by the trace prefix:

T...

• Print statements are active in the Trace mode.
Notice that the results of the P command are
printed just below where the print command is
displayed.

• Only the executed commands in IF, ELIF, ELSE,
and ENDIF sets are shown. Notice that none of
the commands following the first print command
are shown. This helps you debug your program
by only showing the commands that are
executing.

• You cannot type in commands from your
terminal while the BJx is executing in the Trace
mode.

You can also enter the Trace mode from your
program. To do this, include TRC ON in your
program. To exit the Trace mode, include TRC OFF
in your program or press the escape key twice.

Motion Link and Trace
Motion Link is the software communications package
provided for the IBM-PC and compatibles. IBM-PC
and compatibles can communicate at 9600 baud only
in that they can receive and transmit a character at
that frequency. However, they cannot receive an
indefinite number of characters at that rate because
the computers are not fast enough to process the
characters. This leads to a problem in the Trace
mode because the BJx can transmit characters much
faster than most PCs can process them. This can lead
to a delay of minutes from when the BJx transmits a
character to when the computer displays it. The best
way to cure this problem is to reduce the baud rate
from Motion Link (use the ^U command), and power
the BJx down and then up to cause a second autobaud
(make sure ABAUD is on before powering down).
Start with 1200 baud and see if the problem is cured.

DEBUGGING AND MULTI-TASKING

If your program uses multi-tasking, the Trace and
Single-Step modes show you which level is currently
being executed. For example, enter the program
given on page 75. Turn on the Trace mode and type:

RUN 1

The result should be something like this:

BJX USER'S MANUAL CHAPTER 6 - DEBUGGING

87

T...1$;MAIN
;PROGRAM

T...EN
T...MI 10000 10 ;START MOVE
T...P "MOVE PROCESSED"
MOVE PROCESSED
T...W 0 ;WAIT FOR

;MOVE
T.*.BACKGROUND$
T.*.P "UPPER TASK IDLED"
UPPER TASK IDLED
T.*.D 250 ;DWELL 0.25

;SEC.
T.*.END

...

T.*.BACKGROUND$
T.*.P "UPPER TASK IDLED"
UPPER TASK IDLED
T.*.D 250 ;DWELL 0.25

;SEC.
T.*.END

(AT THIS POINT, ASSUME MOTION
STOPS AND TASK 5 IS NOT IDLED)

T...P "ALL MOTION STOPPED"
ALL MOTION STOPPED
T...B

Notice that when the example is executing the
background level task, an asterisk (*) is printed.
Each task level prints out a different prompt in the
Trace and Single-Step modes, as the following table
shows:

Table 6.1 Multi-Tasking Debug Prompts

TASK LEVEL
PROMPT

SINGLE-STEP
PROMPT

TRACE
PROMPT

Alarm A s-A> t.A.

Alarm B s-B> t.B.

Alarm C s-C> t.C.

Variable Input s-V> t.V.

Main Program s--> t...

Background s-*> t.*.

Removing Code

If you cannot find the bug in your program with
Single-Step or trace, then remove sections of your
code that you do not think are causing the problem a
few lines at a time. (Save the original program on
your computer for later use.) Removing lines you
suspect are causing the problem can provide false
leads. For example, the problem may be interaction
between a section you removed (which was operating
properly) and another, unsuspected section of your
program (that was the actual source of the problem).

The best situation is when you can make a short
(< 20 line) program demonstrate the problem, and
then it is usually easy to determine the problem. You
can call Kollmorgen for help. However, in order to
make efficient use of your time and ours, you must
trim down your program to a few lines that are not
working. It is difficult for even a skilled person to
help debug a large program over the telephone.

HINTS

The following section offers some hints concerning
the most common problems. Most problems arise
from a minor misuse or misunderstanding of a BJx
function.

If you change your program in the Motion Link
Editor and the program function does not change, you
may have forgotten to transmit your updated program
to the BJx.

If you command motion with MI, MA, J, JT, or JF
and the motor does not move...

...make sure GATEMODE is not preventing motion
(turn GATEMODE off if you are not
certain).

...make sure CLAMP is not preventing motion (turn
CLAMP off if you are not certain). If it is
CLAMP, try raising the clamp limit,
PECLAMP, somewhat. If that does not
help, turn CLAMP off. If you now get
PE OVERFLOW errors, it may be because
the motor is undersized. See the hints for
PE OVERFLOW errors below.

...make sure REG is not preventing motion (turn REG
off if you are not certain). If REG is on, you
may not be feeding in the master encoder
signal properly. Remember, it must always
count up. Check VEXT. It should be

CHAPTER 6 - DEBUGGING BJX USER'S MANUAL

88

greater than zero for profile regulation to
work.

...make sure all tuning constants are well above zero.
Check KP, KV, KVI, and KPROP. Each
should be at least 100; generally, they are
above 1000.

...make sure ILIM is not too small. If ILIM is below
10%, the motor may not be able to overcome
frictional load.

...make sure you are commanding a visible speed.
The BJx can command speeds as low as
.0004 RPM or about one revolution every
three days, depending on how you program
velocity units. If you have changed VNUM
or VDEN from the factory setting,
temporarily restore them to see if the
problem goes away.

If the motor moves and you get "PE OVERFLOW"
error (ERROR 25)...

...if the error occurs occasionally, it may be because
you have the limit (PEMAX) set too low.
Raise it by 20% and see if the problem is
corrected.

...use the BJx RECORD function to record ICMD
when a PE overflow occurs. If ICMD is
saturating (that is, equal to ILIM for more
than a few milliseconds), you are
commanding motion that your motor cannot
perform. See hints on motor loading, ILIM,
ACC, DEC, and PEMAX below. If the
overflow occurs at high speeds and with low
ICMD (below ILIM), see the hint about
overspeed errors.

...make sure the load does not exceed the capability of
the motor.

...make sure ILIM is set high enough.

...if the error occurs during acceleration or
deceleration, make sure ACC and DEC are
not set too high. If they are too high, the
commanded profile will exceed the
capability of the motor.

If overspeed errors occur (ERROR 13)...

...if the error occurs occasionally, it may be because
you have the limit (VOSPD) set too low.

Raise it by 20% (or as high as 120% of
VMAX) and see if the problem is corrected.

...if it happens on acceleration, the motor may be
tuned improperly. Is your motor
overshooting or ringing? Retuning the
motor should correct the problem.

If the system works differently on power-up than it
does after your program starts running, remember that
many switches are reset on power-up. Your program
may set a switch that is cleared, or clear one that is set
during the initial cycle, causing the program to
operate differently. You may also be setting or
clearing switches in your power-up routine that may
have the same effect.

ERROR LOG
The BJx responds to a variety of conditions, both
internal and external, hardware and software, which
are grouped in a single broad category: errors. An
error indicates a problem somewhere. More serious
errors are grouped as faults.

Error Levels
BJx response to an error depends on that error's
severity. There are four levels of severity, listed
below in increasing order.

Table 6.2 Error Severity Levels and
Actions

1.

2.

3.

4.

Errors that cause warnings.

Errors that cause a program break and stop
motion, in addition to Level 1 Actions.

Errors that disable the system, set the
FAULT LED, and clear the OK LED/
Output, in addition to Level 2 Actions.

Errors that disable almost all BJx functions
(including communications) and flash the
FAULT LED to indicate the error number.
These are called firmware errors.

When any error except a firmware error occurs, a
message is displayed on the screen. The following
items are printed: the error number, the offending
entry, and an abbreviated error message. For
example, disable the drive and type in a jog:

DIS
J 100

The BJx will respond with:

BJX USER'S MANUAL CHAPTER 6 - DEBUGGING

89

ERR 50 'J 100' BJX INHIBITED

The error number (50), the offending entry (the whole
line), and the error message (you cannot command a
jog when the drive is inhibited) are given on one 80-
character line. The error message starts at character
40 so that if a 40-character display is used, the error
message will not be printed. You can display the line
directly, either with the Motion Link Editor (GOTO
A LINE NUMBER selection or ^Q^I), or with the
BJx Editor (P command).

Sometimes only an entry is bad and not the whole
line. In this case only the bad entry is printed. For
example,

PROP 2

generates:

ERR 83 '2' ;BAD OR OUT OF
;RANGE

since PROP is a switch and cannot be set to 2. If the
error comes from the program, the line number of the
offending entry is also printed. Use the Editor to
enter these lines at the top of the user program:

11$
PROP 2
B

Exit the Editor and type:

RUN 11

and the response should be:

ERR 83 LINE 2 '2' ;BAD OR OUT
;OF RANGE

This message shows that the error occurred on line 2.
You can enter the Editor and type:

P 2

and the response will be:

PROP 2

DEP

If your BJx prints to a Data Entry Panel (DEP-01) or
any other 40-character wide display, the standard
error messages will not print properly, because error
messages are based on an 80-character wide display .
To correct this problem, the BJx provides the DEP
switch which, when turned on, cuts all error messages
down to 40 characters. If your BJx prints to a DEP-
01, type:

DEP ON

Error History

The BJx stores the twenty most recent errors in the
Error History. To display the entire Error History,
type:

ERR HIST

This causes the Error History to be sent to the
terminal, with the most recent error sent first. When
the BJx is powered-up, a "DRIVE POWERED UP"
message is inserted into Error History even though
this is not an actual error.

To clear the Error History, type:

ERR CLR

Error History remains intact even through power-
down.

Displaying Error Messages

The ERR command can also be used to display an
abbreviated description of the error. For example,
type:

ERR 50

The BJx responds with:

ERR 50 BJX INHIBITED

You may display messages for errors from 1 through
999. If you type in an error number that the BJx does
not recognize, it will respond with:

ERROR NOT FOUND

CHAPTER 6 - DEBUGGING BJX USER'S MANUAL

90

A description of all errors is given in Appendix D.

Firmware Errors

Firmware errors are an indication of a serious
problem with the BJx. These errors stop
communications, disable the drive, and flash the
FAULT LED. The FAULT LED flashes several
times, then turns off and pauses. The number of
flashes represents the error number. These error
numbers range from 2 to 9. See Appendix D for
information on these errors. Contact the factory
should one of these errors occur.

 BJX USER'S MANUAL APPENDIX A - WARRANTY INFORMATION

91

APPENDIX A
WARRANTY INFORMATION

Kollmorgen Corporation warrants that equipment
delivered by it to the Purchaser will be of the kind
and quality described in the sales agreement and/or
catalog and that the equipment will be free of defects
in design, workmanship, and material.

The terms and conditions of this Warranty are
provided with the product at the time of shipping or
in advance upon request.

The items described in this manual are offered for
sale at prices to be established by Kollmorgen and its
authorized dealers.

 APPENDIX A - WARRANTY INFORMATION BJX USER'S MANUAL

92

BJX USER'S MANUAL APPENDIX B- ASCII TABLE

93

APPENDIX B
ASCII TABLE

The chart on the following pages is an ASCII Code and Hexadecimal conversion chart. The BJx does not support
extended ASCII (128-255).

BJX USER'S MANUAL APPENDIX B- ASCII TABLE

94

ASCII CODE AND HEX CONVERSION CHART
00 NUL

0

10 DLE

^ P
16

20

SP
32

30

0
48

40

@
64

50

P
80

60

`
96

70

p
112

01 SOH

^ A
1

11 DC1

^ Q
17

21

!
33

31

1
49

41

A
65

51

Q
81

61

a
97

71

q
113

02 STX

^ B
2

12 DC2

^ R
18

22

“
34

32

2
50

42

B
66

52

R
82

62

b
98

72

r
114

03 ETX

^ C
3

13 DC3

^ S
19

23

#
35

33

3
51

43

C
67

53

S
83

63

c
99

73

s
115

04 EOT

^ D
4

14 DC4

^ T
20

24

$
36

34

4
52

44

D
68

54

T
84

64

d
100

74

t
116

05 ENQ

^ E
5

15 NAK

^ U
21

25

%
37

35

5
53

45

E
69

55

U
85

65

e
101

75

u
117

06 ACK

^ F
6

16 SYN

^ V
22

26

&
38

36

6
54

46

F
70

56

V
86

66

f
102

76

v
118

07 BEL

^ G
7

17 ETB

^ W
23

27

‘
39

37

7
55

47

G
71

57

W
87

67

g
103

77

w
119

08 BS

^ H
8

18 CAN

^ X
24

28

(
40

38

8
56

48

H
72

58

X
88

68

h
104

78

x
120

09 HT

^ I
9

19 EM

^ Y
25

29

)
41

39

9
57

49

I
73

59

Y
89

69

i
105

79

y
121

0A LF

^ J
10

1A SUB

^ Z
26

2A

*
42

3A

:
58

4A

J
74

5A

Z
90

6A

j
106

7A

z
122

0B VT

^ K
11

1B ESC

^ [
27

2B

+
43

3B

;
59

4B

K
75

5B

[
91

6B

k
107

7B

{
123

0C FF

^ L
12

1C FS

^ \
28

2C

,
44

3C

<
60

4C

L
76

5C

\
92

6C

l
108

7C

|
124

0D CR

^ M
13

1D GS

^]
29

2D

-
45

3D

=
61

4D

M
77

5D

]
93

6D

m
109

7D

}
125

0E SO

^ N
14

1E RS

^ ^
30

2E

.
46

3E

>
62

4E

N
78

5E

^
94

6E

n
110

7E

~
126

0F SI

^ O
15

1F US

^ _
31

2F

/
47

3F

?
63

4F

O
79

5F

_
95

6F

o
111

7F

DEL
127

BJX USER'S MANUAL APPENDIX B- ASCII TABLE

95

ASCII CODE AND HEX CONVERSION CHART (CONTD)
80

128

90

144

A0

160

B0

176

C0

192

D0

208

E0

224

F0

240

81

129

91

145

A1

161

B1

177

C1

193

D1

209

E1

225

F1

241

82

130

92

146

A2

162

B2

178

C2

194

D2

210

E2

226

F2

242

83

131

93

147

A3

163

B3

179

C3

195

D3

211

E3

227

F3

243

84

132

94

148

A4

164

B4

180

C4

196

D4

212

E4

228

F4

244

85

133

95

149

A5

165

B5

181

C5

197

D5

213

E5

229

F5

245

86

134

96

150

A6

166

B6

182

C6

198

D6

214

E6

230

F6

246

87

135

97

151

A7

167

B7

183

C7

199

D7

215

E7

231

F7

247

88

136

98

152

A8

168

B8

184

C8

200

D8

216

E8

232

F8

248

89

137

99

153

A9

169

B9

185

C9

201

D9

217

E9

233

F9

249

8A

138

9A

154

AA

170

BA

186

CA

202

DA

218

EA

234

FA

250

8B

139

9B

155

AB

171

BB

187

CB

203

DB

219

EB

235

FB

251

8C

140

9C

156

AC

172

BC

188

CC

204

DC

220

EC

236

FC

252

8D

141

9D

157

AD

173

BD

189

CD

205

DD

221

ED

237

FD

253

8E

142

9E

158

AE

174

BE

190

CE

206

DE

222

EE

238

FE

254

8F

143

9F

159

AF

175

BF

191

CF

207

DF

223

EF

239

FF

255

This side of the table is provided for Decimal to Hex Conversion.
The BJx does not support extended ASCII (128-255) Decimal to Hex Conversion.

96

SMART DRIVE APPENDIX C - REGIONAL SALES OFFICES

127

APPENDIX F

Customer Support

Kollmorgen is committed to quality customer service. Our goal is to provide the customer with information and
resources as soon as they are needed. In order to serve in the most effective way, Kollmorgen offers a one-stop
service center to answer all our customer’s product needs. This one number provides order status and delivery
information, product information and literature, and application and field technical assistance:

Kollmorgen Customer Support Network
203 Rock Road Suite A

Radford, VA 24141
Phone: (888) 774-KCSN (5276)
Fax: (540) 639-1640 Inside Sales

Fax: (540) 639-1574 Technical Support
Email: servo@Kollmorgen.com

Http://www.Kollmorgen.com

Note! If you are unaware of your local sales representative, please contact us at the number above. Visit our web site
for MotionLink® software upgrades, technical articles, and the most resent version of our product manuals

128

BJX USER'S MANUAL GLOSSARY

131

GLOSSARY

Absolute Position

Position referenced to a fixed zero position.

Absolute Positioning

Refers to a motion control system employing position
feedback devices (absolute encoders) to maintain a
given mechanical location.

Absolute Programming

A positioning coordinate reference wherein all
positions are specified relative to some reference, or
"home" position. This is different from incremental
programming, where distances are specified relative
to the current position.

AC Adjustable-Speed Drive

All equipment required to adjust the speed or torque
of an AC electric motor by controlling both frequency
and voltage applied to the motor.

AC Servo Drive

A servo drive used to control either or both
synchronous or induction AC motors.

Acceleration

The change in velocity as a function of time, usually
referring to an increase in velocity.

Accuracy

A measure of the difference between expected
position and actual position of a motor or mechanical
system. Motor accuracy is usually specified as an

angle representing the maximum deviation from
expected position.

Actuator

A device that creates mechanical motion by
converting various forms of energy to mechanical
energy.

Adaptive Control

A technique to allow the control to automatically
compensate for changes in system parameters such as
load variations.

Ambient Temperature

The temperature of the cooling medium, usually air,
immediately surrounding the motor or another device.

Amplifier

Electronics that convert low level command signals to
high power voltages and currents to operate a
servomotor.

ASCII

American Standard Code for Information
Interchange. This code assigns a number to each
numeral, letter, or character on the keyboard. In this
manner, information can be transmitted between
machines as a series of binary numbers.

Back EMF

The voltage generated when a permanent magnet
motor is rotated. This voltage is proportional to
motor speed and is present regardless of whether the
motor windings are energized or un-energized.

GLOSSARY BJx USER'S MANUAL

132

Bandwidth

The frequency range in which the magnitude of the
system gain expressed in dB is greater than -3 dB.

Baud Rate

The number of binary bits transmitted per second on
a serial communications link (such as RS-232).

Bit (Binary Digit)

A unit of information equal to 1 binary decision or
having only a value 0 or 1.

Block Diagram

A simplified schematic representing components and
signal flow through a system.

Bode Plot

A plot of the magnitude of system gain in dB and the
phase of system gain in degrees versus the sinusoidal
input signal frequency in logarithmic scale.

Brownout

Low-line voltage at which the device no longer
functions properly.

Brush

Conducting material that passes current from the DC
motor terminals to the rotating commutator.

Brushless Servo Drive

A servo drive used to control a permanent magnet
synchronous AC motor. May also be referred to as an
AC Servo Drive.

Bus

A group of parallel connections carrying pre-assigned
digital signals. Buses usually consist of address and
data information and miscellaneous control signals
for the interconnection of microprocessors, memories,
and other computing elements.

Byte

A group of 8 bits treated as a whole with 256
possible combinations of ones and zeros, each
combination representing a unique piece of
information.

CAM Profile

A technique used to perform nonlinear motion
electronically, similar to that achieved with
mechanical cams.

Characteristic Equation

1+GH = 0, where G is the transfer function of the
forward signal path and H is the transfer function of
the feedback signal path.

Circular Coordinated Move

A coordinated move where the path between
endpoints is the arc of a circle.

Class B Insulation

A NEMA insulation specification. Class B insulation
is rated to an operating temperature of 130 degrees
centigrade.

Class H Insulation

A NEMA insulation specification. Class H insulation
is rated to an operating temperature of 180 degrees
centigrade.

Closed Loop

A broadly applied term relating to any system where
the output is measured and compared to the input.
The output is then adjusted to reach the desired
condition. In motion control, the term is used to
describe a system wherein a velocity or position (or
both) transducer is used to generate correction signals
by comparison to desired parameters.

Cogging

A term used to describe non-uniform, angular
velocity. Cogging appears as a jerkiness, especially
at low speeds.

BJx USER'S MANUAL GLOSSARY

133

Command Position

The desired angular or linear position of an actuator.

Commutation

Refers to the action of directing currents or voltage to
the proper motor phases so as to produce optimum
motor torque. In brush type motors, commutation is
done electromechanically via the brushes and
commutator. In brushless motors, commutation is
done by the switching electronics using rotor position
information typically obtained by hall sensors, a
tachsyn, a resolver, or an encoder.

Commutator

A mechanical cylinder consisting of alternating
segments of conductive and insulating material. This
cylinder used in DC motors passes currents from the
brushes into the rotor windings and performs motor
commutation as the motor rotates.

Compensation

The corrective or control action in a feedback loop
system which is used to improve system performance
characteristics such as accuracy and response time.

Compensation, Feedforward

A control action that depends on the command only
and not the error to improve system response time.

Compensation, Integral

A control action that is proportional to the integral or
accumulative time error value product of the feedback
loop error signal. It is usually used to reduce static
error.

Compensation, Lag

A control action that causes the lag at low frequencies
and tends to increase the delay between the input and
output of a system while decreasing static error.

Compensation, Lead

A control action that causes the phase to lead at high
frequencies and tends to decrease the delay between
the input and output of a system.

Compensation, Lead Lag

A control action that combines the characteristics of
lead and lag compensations.

Compensation, Proportional

A control action that is directly proportional to the
error signal of a feedback loop. It is used to improve
system accuracy and response time.

Compliance

The amount of displacement per unit of applied force.

Computer Numerical Control (CNC)

A computer-based motion control device
programmable in a numerical word address format.
A CNC product typically includes a CPU section,
operator interface devices, input/output signal and
data devices, software and related peripheral
apparatus.

Control Systems or Automatic Control
Systems

An engineering or scientific field that deals with
controlling or determining the performance of
dynamic systems such as servo systems.

Coordinated Motion

Multi-axis motion where the position of each axis is
dependent on the other axis such that the path and
velocity of a move can be accurately controlled.
(Requires coordination between axes.)

Coupling Ratio

The ratio of motor velocity to load velocity for a load
coupled to motor through a gear or similar
mechanical device.

GLOSSARY BJx USER'S MANUAL

134

Critical Damping

A system is critically damped when the response to a
step change in desired velocity or position is achieved
in the minimum possible time with little or no
overshoot.

Daisy Chain

A term used to describe the linking of several
RS232C devices in sequence such that a single data
stream flows through one device and on to the next.
Daisy-chained devices usually are distinguished by
device addresses which serve to indicate the desired
destination for data in the stream.

Damping

An indication of the rate of decay of a signal to its
steady state value. Related to setting time.

Damping Ratio

Ratio of actual damping to critical damping. Less
than one is an underdamped system and greater than
one is an overdamped system.

DC Adjustable-Speed Drive

All equipment required to adjust the speed or torque
of a DC motor by controlling the voltages applied to
the armature and/or field of the motor.

DC Drive

An electronic control unit for running a DC motor.
The DC drive converts AC line current to a variable
DC current to control a DC motor. The DC drive has
a signal input that controls the torque and speed of the
motor.

Dead Band

A range of input signals for which there is no system
response.

Deceleration

A change in velocity as a function of time, referring
to a decrease in velocity.

Decibel (dB)

A logarithmic measurement of gain. If G is a systems
gain (ratio of output to input), then 20 log G = gain in
decibels (dB).

Demag Current

The current level at which the motor magnets will be
demagnetized. This is an irreversible effect which
will alter the motor characteristics and degrade
performance.

Detent Torque

The maximum torque that can be applied to an un-
energized stepper motor without causing continuous
rotating motion.

Dielectric Test

A high voltage breakdown test of insulation's ability
to withstand an AC voltage. Test criterion limits the
leakage current to a specified magnitude and
frequency applied between specified test points.

Differential

An electrical input or output signal that uses two lines
of opposite polarity referenced to the local signal
ground.

Direct Numerical Control, DNC

Technique of transferring part program data to a
numerical control system via direct electrical
connection in place of paper tapes.

Distributed Processing

A technique to gain increased performance and
modularity in control systems utilizing multiple
computers or processors.

Drive

This is the electronics portion of the system that
controls power to the motor.

Drive, Analog

Usually referring to any type of motor drive in which
the input is an analog signal.

BJx USER'S MANUAL GLOSSARY

135

Drive, Digital

A motor drive in which the tuning or compensation is
done digitally. Input may be an analog or digital
signal.

Drive, Linear

A motor drive in which the output is directly
proportional to either a voltage or current input.
Normally, both inputs and outputs are analog signals.
This is a relatively inefficient drive type.

Drive, PWM

A motor drive that uses Pulse-Width Modulation
techniques to control power to the motor. Typically a
high efficiency drive that can be used for high
response application.

Drive, SCR

A DC motor drive that utilizes internal silicon
controlled rectifiers as the power control elements.
Usually used for low bandwidths, high power
applications.

Drive, Servo

A motor drive that utilizes internal feedback loops for
accurate control of motor current and/or velocity.

Drive, Stepper

Electronic controller that converts step and direction
inputs to high power currents and voltages to drive a
stepper motor. The stepprt motor driver is analogous
to the servo motor amplifier.

Duty Cycle

For a repetitive cycle, the ratio of on time to total
cycle time.

()
()Duty Cycle =

On Time

On Time + Off Time

×100%

Dynamic Braking

A passive technique for stopping a permanent magnet
brush or brushless motor. The motor windings are
shorted together through a resistor resulting in motor
braking with an exponential decrease in speed.

Efficiency

The ratio of power output to power input.

Electrical Time Constant

The ratio of armature inductance to armature
resistance.

Electronic Gearing

A technique used to electrically simulate mechanical
gearing. Causes one closed loop axis to be slaved to
another open or closed loop axis with a variable ratio.

EMI: Electro-Magnetic Interference

Noise produced by one device which can degrade
operation of other electronic circuits.

Encoder

A type of feedback device that converts mechanical
motion into electrical signals to indicate actuator
position. Typical encoders are designed with a
printed disc and a light source. As the disc turns with
the actuator shaft, the light source shines through the
printed pattern onto a sensor. The light transmission
is interrupted by the patterns on the disc. These
interruptions are sensed and converted to electrical
pulses. By counting these pulses, actuator shaft
position is determined.

Encoder, Absolute

A digital position transducer in which the output is
representative of the absolute position of the input
shaft within one (or more) revolutions. Output is
usually a parallel digital word.

Encoder, Incremental

A position encoding device in which the output
represents incremental changes in position.

GLOSSARY BJx USER'S MANUAL

136

Encoder, Linear

A digital position transducer that directly measures
linear position.

Encoder Marker

An ounce-per-revolution signal provided by some
incremental encoders to specify a reference point
within that revolution. Also known as Zero
Reference signal or index pulse.

Encoder Resolution

A measure of the smallest positional change that can
be detected by the encoder.

Explosion-proof

A motor classification that indicates a motor is
capable of withstanding internal explosions without
bursting or allowing ignition to reach beyond the
confines of the motor frame.

Fall Time

The time for the amplitude of system response to
decay to 37% of its steady-state value after the
removal of a steady-state step input signal.

Feed Forward

A technique used to pre-compensate control a loop
for known errors due to motor, drive, or lead
characteristics. Provides improved response.

Feedback

A signal that is transferred from the output back to
the input for use in a closed loop system.

Field Weakening

A method of increasing the speed of a wound field
DC motor; reducing stator magnetic field instantly by
reducing magnet winding current.

Filter (Control Systems)

A transfer function used to modify the frequency or
time response of a control system.

Flutter

Flutter is an error of the basic cycle of an encoder per
one revolution.

Following Error

The positional error during motion resulting from use
of a position control loop with proportional gain only.

Form Factor

The ratio of RMS current to average current. This
number is a measure of the current ripple in a PWM
or other switch mode type of controller. Since motor
heating is a function of RMS current while motor
torque is a function of average current, a form factor
greater than 1.00 means some fraction of motor
current is producing heat but not torque.

Four Quadrant

Refers to a motion system that can operate in all four
quadrants i.e. velocity in either direction and torque
in either direction. This means that the motor can
accelerate, run, and decelerate in either direction.

Friction

A resistance to motion caused by surfaces rubbing
together. Friction can be constant with varying speed
(coulomb friction) or proportional to speed (viscous
friction) or present at rest (static friction).

Full Load Current

The armature current of a motor operated at its full
load torque and speed with rated voltage applied.

Full Load Speed

The speed of a motor operated with rated voltage and
full load torque.

BJx USER'S MANUAL GLOSSARY

137

Gain

The ratio of system output signal to system input
signal.

Hall Sensors

A feedback device used in a brushless servo system to
provide information for the amplifier to electronically
commutate the motor. The device uses a magnetized
wheel and hall-effect sensors to generate the
commutation signals.

Holding Torque

Sometimes called torque, it specifies the maximum
external force or torque that can be applied to a
stopped, energized motor without causing the rotor to
rotate continuously.

Home Position

A reference position for all absolute positioning
movements. Usually defined by a home limit switch
and/or encoder marker. Normally set at power-up
and retained for as long as the control system is
operational.

Host Computer

An auxiliary computer system connected to a
controller or controllers. The host computer in
distributed control systems is frequently involved
with controlling many remote and distributed motion
control devices. It may also be used for off-line tasks
such as program preparation, storage, and supervisory
control and evaluation.

HP: Horsepower

One horsepower is equal to 746 watts. Since Power =
Torque x Speed, horsepower is a measure of a
motor's torque and speed capability (e.g. a 1 HP
motor will produce 35 lb.-in. at 1800 rpm).

Hunting

The oscillation of the system response about a
theoretical steady-state value.

Hybrid Stepper Motor

A motor designed to move in discrete increments or
steps. The motor has a permanent magnet rotor and
wound stator. These motors are brushless, and phase
currents are commutated as a function of time to
produce motion.

Hysteresis

The difference in response of a system to an
increasing or decreasing input signal.

I/O: Input/Output

The reception and transmission of information
between control devices. In modern control systems,
I/O has two distinct forms: switches, relays, etc., in
either an on or off state, or analog signals that are
continuous in nature, such as speed, temperature,
flow, etc.

Idle Current Reduction

A stepper motor driver feature that reduces the phase
current to the motor when no motor motion (idle) is
commanded for a specified period of time. This
reduces motor heating and allows high machine
throughput to be obtained from a given motor.

Incremental Motion

A motion control term that is used to describe a
device that produces one step of motion for each step
command (usually a pulse) received.

Indexer

Electronics that convert high-level motion commands
from a host computer, programmable controller, or
operator panel into step direction pulse streams for
use by a stepper motor driver.

Inertia

The property of an object to resist changes in velocity
unless acted upon by an outside force. Higher inertia
objects require larger torques to accelerate and
decelerate. Inertia is dependent upon the mass and
shape of the object.

GLOSSARY BJx USER'S MANUAL

138

Inertial Match

An inertial match between motor and load is obtained
by selecting the coupling ratio such that the load
moment of inertia referred to the motor shaft is equal
to the motor moment of inertia.

Inrush Current

The current surge generated when a piece of
equipment, such as a servoamplifier, is connected to
an AC line. This surge is typically due to the impulse
charging of a large capacitor located in the
equipment.

Instability

Undesirable motion of an actuator that is different
from the command motion. Instability can take the
form of irregular speed or hunting of the final rest
position.

Lead Ball Screw

A lead screw that has its threads formed as a ball-
bearing race; the carriage contains a circulating
supply of balls for increased efficiency.

Lead Screw

A device for translating rotary motion into linear
motion, consisting of an externally threaded screw
and an internally threaded carriage (nut).

Least Significant Bit

The bit in a binary number that is the least important,
or having the least weight.

Limits

Properly designed motion control systems have
sensors called limits which alert the control
electronics that the physical end of travel is being
approached and that motion should stop.

Linear Coordinated Move

A coordinated move where the path between
endpoints is a line.

Linearity

For a speed control system, linearity is the maximum
deviation between actual and set speed expressed as a
percentage of set speed.

Logic Ground

An electrical potential to which all control signals in a
particular system are referenced.

Loop, Feedback Control

A control method that compares the input from a
measurement device, such as an encoder or
tachometer, to a desired parameter, such as a position
or velocity and causes action to correct any detected
error. Several types of loops can be used in
combination (i.e. velocity and position together) for
high performance requirements.

Loop Gain, Open

The product of the forward path and feedback path
gains.

Loop, PID: Proportional, Integral, and
Derivative Loop

Specialized very high performance control loop that
gives superior response.

Loop, Position

A feedback control loop in which the controlled
parameter is motor position.

Loop, Velocity

A feedback control loop in which the controlled
parameter is mechanical velocity.

Master Slave Motion Control

A type of coordinated motion control where the
master axis position is used to generate one or more
slave axis position commands.

BJx USER'S MANUAL GLOSSARY

139

Mechanical Time Constant

The time for an unloaded motor to reach 63.2% of its
final velocity after the application of a DC armature
voltage.

Microstepping

An electronic control technique that proportions the
current in a stepper motor's windings to provide
additional intermediate positions between poles.
Produces smooth rotation over a wide speed range
and high positional resolution.

Mid-Range Instability

A phenomenon in which a stepping motor can fall out
of synchronism due to loss of torque at mid-range
speeds. The loss of torque is due to interaction
between the motor's electrical characteristics and the
driver electronics. Some drivers have circuitry to
eliminate or reduce this phenomenon.

Most Significant Bit

The bit in a binary number that is the most important
or that has the most weight.

Motor, AC

A device that converts electrical alternating current
into mechanical energy. Requires no commutation
devices such as brushes. Normally operated off
commercial AC power. Can be single- or multiple-
phase.

Motor, AC Asynchronous or Induction

An AC motor in which speed is proportional to the
frequency of the applied AC. Requires no magnets or
field coil. Usually used for non-precise constant
speed applications.

Motor, AC Synchronous

Another term for brushless DC motor.

Motor Constant

The ratio of the motor torque to motor input power.

Motor, DC

A device that converts electrical direct current into
mechanical energy. It requires a commutating device,
either brushes or electronic. Usually requires a
source of DC power.

Motor, DC Brushless

A type of direct current motor that utilizes electronic
commutation rather than brushes to transfer current.

Motor, DC Permanent Magnet

A motor utilizing permanent magnets to produce a
magnetic field. Has linear torque speed
characteristics.

Motor, DC Wound Field

A direct current utilizing a coil to produce a magnetic
field. Usually used in high power applications where
constant horsepower operation is desired.

Motor, Stepping

A specialized AC motor that allows discrete
positioning without feedback. Normally used for
non-critical, low power applications, since positional
information is easily lost if acceleration or velocity
limits are exceeded. Load variations can also cause
loss of position. If encoders are used, these
limitations can be overcome.

NC, Numerical Control

Usually refers to any type of automated equipment or
process used for contouring or positioning.

Negative Feedback

The type of feedbacks used in a closed loop system
where the output value is inverted and combined with
the input to be used to stabilize or improve system
characteristics.

No Load Speed

Motor speed with no external load.

GLOSSARY BJx USER'S MANUAL

140

Open Collector

A term used to describe a signal output that is
performed with a transistor. An open collector output
acts like a switch closure with one end of the switch
at ground potential and the other end of the switch
accessible.

Open-Loop System

A system where the command signal results in
actuator movement but, because the movement is not
sensed, there is no way to correct for error. Open
loop means no feedback.

Operator Interface

A device that allows the operator to communicate
with a machine. This device typically has a keyboard
or thumbwheel to enter instructions into the machine.
It also has a display device that allows the machine to
display messages.

Optically Isolated

A system or circuit that transmits signals with no
direct electrical connection. Used to protectively
isolate electrically noisy machine signals from low
level control logic.

Oscillation

An effect that varies periodically between two values.

Overshoot

The amount of the parameter being controlled
exceeds the desired value for a step input.

Phase-Locked Servo System

A hybrid control system in which the output of an
optical tachometer is compared to a reference square
wave signal to generate a system error signal
proportional to both shaft velocity and position
errors.

Phase Margin

The difference between 180 degrees and the phase
angle of a system at the frequency where the open
loop gain is unity.

PID

Proportional-Integral-Derivative. An acronym that
describes the compensation structure that can be used
in a closed-loop system.

PLC

Programmable Logic Controller. An industrial
control device that turns on and off outputs based
upon responses to inputs.

PMDC Motor

A motor consisting of a permanent magnet stator and
a wound iron-core rotor. These are brush type motors
and are operated by application of DC current.

Point to Point Move

A multi-axis move from one point to another where
each axis is controlled independently. (No
coordination between axes is required.)

Pole

A frequency at which the transfer function of a system
goes to infinity.

Pole Pair, Electromechanical

The number of cycles of magnetic flux distribution in
the air gap of a rotary electromechanical device.

Position Error

The difference between the present actuator
(feedback) value and the desired position command
for a position loop.

Position Feedback

Present actuator position as measured by a position
transducer.

BJx USER'S MANUAL GLOSSARY

141

Power

The rate at which work is done. In motion control,
Power = Torque x Speed.

Process Control

A term used to describe the control of machine or
manufacturing processes, especially in continuous
production environments.

Pull-In Torque

The maximum torque at which an energized stepping
motor or synchronous motor will start and run in
synchronism.

Pull-Out Torque

The maximum torque that can be applied to a
stepping motor or synchronous motor running at
constant speed without causing a loss of synchronism.

Pulse Rate

The frequency of the step pulses applied to a stepper
motor driver. The pulse rate divided by the
resolution of the motor/drive combination (in steps
per revolution) yields the rotational speed in
revolutions per second.

PWM

Pulse Width Modulation. An acronym that describes
a switch-mode control technique used in amplifiers
and drivers to control motor voltage and current.
This control technique is used in contrast to linear
control and offers the advantages of greatly improved
efficiency.

Quadrature

Refers to signal characteristics of two-channel
encoders. Using quadrature, 4 counts are given for
each line of encoder resolution. For example, a 1000-
line encoder provides 4000 counts per revolution.

Ramping

The acceleration and deceleration of a motor. May
also refer to the change in frequency of the applied
step pulse train.

Rated Torque

The torque producing capacity of a motor at a given
speed. This is the maximum continuous torque the
motor can deliver to a load and is usually specified
with a torque/speed curve.

Regeneration

The action during motor braking, in which the motor
acts as a generator and takes kinetic energy from the
load, converts it to electrical energy, and returns it to
the amplifier.

Repeatability

The degree to which the positioning accuracy for a
given move performed repetitively can be duplicated.

Resolution

The smallest positioning increment that can be
achieved. Frequently defined as the number of steps
or feedback units required for a motor's shaft to rotate
one complete revolution.

Resolver

A position transducer utilizing magnetic coupling to
measure absolute shaft position over one revolution.

Resonance

The effect of a periodic driving force that causes
large amplitude increases at a particular frequency.
(Resonance frequency.)

RFI

Radio Frequency Interference.

Ringing

Oscillation of a system following sudden change in
state.

GLOSSARY BJx USER'S MANUAL

142

Rise Time

The time required for a signal to rise from 10% of its
final value to 90% of its final value.

RMS Current

Root mean square current. In an intermittent duty
cycle application, the RMS current is equal to the
value of steady state current which would produce the
equivalent resistive heating over a long period of
time.

RMS Torque

Root Mean Square Torque. For an intermittent duty
cycle application, the RMS torque is equal to the
steady state torque which would produce the same
amount of motor heating over long periods of time.

Robot

A reprogrammable multifunctional manipulator
designed to move material, parts, tools, or specialized
devices through variable programmed motions for the
performance of a variety of tasks.

Robot Control

A computer-based motion control device to control
the servo-axis motion of a robot.

Rotor

The rotating part of a magnetic structure. In a motor,
the rotor is connected to the motor shaft.

Serial Port

A digital data communications port configured with a
minimum number of signal lines. This is achieved by
passing binary information signals as a time series of
"1"s and "0"s on a single line.

Servo Amplifier/Servo Drive

An electronic device that produces the winding
current for a servo motor. The amplifier converts a

low level control signal into high voltage and current
levels top produce torque in the motor.

Servo System

An automatic feedback control system for mechanical
motion in which the controlled or output quantity is
position, velocity, or acceleration. Servo systems are
closed loop systems.

Settling Time

The time required for a step response of a system
parameter to stop oscillating or ringing and reach its
final value.

Shunt Resistor

A device located in a servoamplifier for controlling
regenerative energy generated when braking a motor.
This device dissipates or "dumps" the kinetic energy
as heat.

Single Point Ground

The common connection point for signal grounds in a
control wiring environment.

Slew

In motion control the portion of a move made at a
constant non-zero velocity.

Slew Speed

The maximum velocity at which an encoder will be
required to perform.

Speed

In motion control, the concept used to describe the
linear or rotational velocity of a motor or other object
in motion.

Speed Regulation

For a speed control system, speed regulation is the
variation in actual speed expressed as a percentage of
set speed.

BJx USER'S MANUAL GLOSSARY

143

SPS

Steps-Per-Second. A measure of velocity used with
stepping motors.

Stall Torque

The torque available from a motor at stall or zero
rpm.

Static Torque

The angle the shaft rotates upon receipt of a single
step command.

Stator

The non-rotating part of a magnetic structure. In a
motor the stator usually contains the mounting
surface, bearings, and non-rotating windings or
permanent magnets.

Stiffness

The ability to resist movement induced by an applied
torque. It is often specified as a displacement curve,
indicating the amount a motor shaft will rotate upon
application of a known external force when stopped.

Synchronism

A motor rotating at a speed correctly corresponding
to the applied step pulse frequency is said to be in
synchronism. Load torques in excess of the motor's
capacity (rated torque) will cause a loss of
synchronism.

Tachometer

An electromagnetic feedback transducer that
produces an analog voltage signal proportional to
rotational velocity. Tachometers can be either brush
or brushless.

Tachsyn

A brushless, electromagnetic feedback transducer that
produces an analog velocity feedback signal and
commutation signals for a brushless servo motor.
The tachsyn is functionally equivalent to hall sensors
and a tachometer.

Torque

The rotary equivalent to force. Equal to the product
of the force perpendicular to the radius of motion and
distance from the center of rotation to the point where
the force is applied.

Torque Constant

A number representing the relationship between
motor input current and motor output torque.
Typically expressed in units of torque/amp.

Torque Ripple

The cyclical variation of generated torque given by
the product of motor angular velocity and number of
commutator segments.

Torque-to-Inertia Ratio

Defined as a motor's torque divided by the inertia of
its rotor, the higher the ratio the higher the
acceleration will be.

Transducer

Any device that translates a physical parameter into
an electrical parameter. Tachometers and encoders
are examples of transducers.

Transfer Function

The ratio of the Laplace transforms of system output
signal and system input signal.

Trapezoidal Profile

A motion profile in which the velocity vs. time profile
resembles a trapezoid. Characterized by constant
acceleration, constant velocity, and constant
deceleration.

TTL

Transistor-Transistor Logic.

GLOSSARY BJx USER'S MANUAL

144

Variable Frequency Drive

An electronic device used to control the speed of a
standard AC induction motor. The device controls
the speed by varying the frequency of the winding
current used to drive the motor.

Vector Control

A method of obtaining servo type performance from
an AC motor by controlling two components of motor
current.

Velocity

The change in position as a function of time.
Velocity has both a magnitude and a direction.

Voltage Constant (or Back EMF Constant)

A number representing the relationship between Back
EMF voltage and angular velocity. Typically
expressed as V/Krpm.

Zero

A frequency at which the transfer function of a system
goes to zero.

BJx USER'S MANUAL INDEX

145

INDEX

<BDS Command, 84

>BDS Command, 84, 130

? Command, 66

^V, 81
^X, 27

A$, 80
ABAUD, 42, 129
ACC, 26, 28, 30, 33, 52, 122
Acceleration, 28

Limit, 26
Acceleration Units, 41
ACK, 45
ACTIVE, 21, 25
ADDR, 43, 46, 129
AIN1-3, 21
Alarms, 80

and Printing, 81
Algebraic Functions, 19
AMAX, 26, 27
Analog I/O, 21
AND, 19
AOUT, 21
Application Software, 85
ASCII, 74
Assignment, 16
AUTO$, 83
Autobaud, 43
Autobauding, 12, 42, 77, 82

Disabling, 42

B$, 80
Background, 84

Restrictions, 84
BAUD, 42, 43
Binary, 73
BLOCK-IF, 67
Break (B) Command, 12, 65, 77

Broadcast, 47
Buffering, 30, 79, 122

C$, 80
Cam, 49, 56
CAP, 32
CAPDIR, 32
CAPSRC, 32
Capture, 8
Capturing Position, 32
Changing Profiles During Motion, 35
COM1, 5
COM2, 5
Command, 15
Command Language, 49
Commands

<BDS, 84
>BDS, 84, 130
?, 66
Break (B), 12, 65, 77
CONTINUE, 60
Disable (NOREMOTE), 25
DUMP, 45
Dwell (D), 69, 71
ELIF, 67
ELSE, 67
Enable (EN), 21, 26
Enable (NOREMOTE OFF), 25
END, 77
ENDIF, 67
GOHOME, 31
GOSUB, 69, 130
GOTO, 65, 69
Hold (H), 69
IF, 67, 130
Jog (J), 15, 26, 30, 52
Jog From (JF), 33, 70
Jog To (JT), 33, 70
Kill (K), 21
Labels ($), 65
Move Absolute (MA), 29, 31, 42, 52
Move Incremental (MI), 29, 31, 52

INDEX BJx USER'S MANUAL

146

Normalize (NORM), 30
Password, 8, 85
PLAY, 45
Print (P), 65, 72
Print Status (PS), 75
Quick If (?), 66
RD, 71
RECORD, 45, 58
Refresh (R), 75
Refresh Status (RS), 75
Return(RET), 130
Return (RET), 69
RUN, 12, 65
Stop (S), 26, 65
TIL, 67, 130
Wait (W), 35, 70
Zero PE (ZPE), 31, 33

Comments, 15
Communication

Multidrop, 12, 46
Complement, 71
Conditional Commands, 66
Conditions, 66
CONTINUE, 60
Control Characters, 74
Control Loops

Power-Up, 37
Control Variables, 16
Control-V, 81
Control-X, 27
Count/Direction, 50
Current

Command, 24
Limit, 24
Maximum, 24

Current Units, 39
Cursor, 10
Cursor Addressing, 75
Customer Service, 64
CYCLE, 12, 83
CYCLE READY, 83

Data Files, 11
Debugging, 91
Debugging and Multi-Tasking, 93
DEC, 26, 27, 28, 30, 33, 52, 122
Deceleration, 28

Limit, 26
Decimal Point, 73
Decisions, 66
Dedicated Labels, 65
Delay, 69
DEP-01, 75, 81, 95
DIR, 23, 27, 41
Direction

Feedback Encoder, 23
Master Encoder, 23
Reversing, 23

Disabling LIMIT, 25
Disabling MOTION, 25, 26
Disabling REMOTE, 25
Distance To Go, 30
Downloading, 84
Drive Control, 23
DUMP Command, 45
Dwell (D) Command, 69, 71

Echo, 45, 134
Edit, 10
Editor, 9
Electronic Camming, 49, 56
Electronic Gearbox, 49, 50, 129
ELIF Command, 67
ELSE Command, 67
Emergency Stop, 26, 63
Enable (EN) Command, 21
Enable (EN) Command, 26
Enable Command, 25
Enabling the BJx, 25
ENCDIR, 23, 25
Encoder

Belted, 41
Feedback, 16, 31
Reversed, 25

END Command, 77
ENDIF Command, 67
Error

Display Message, 96
Firmware, 96
From Program, 12, 95
Handler, 12, 124, 126
Hardware, 94
History, 96
Message, 95
Program Corrupt, 65
Severity, 95, 119

Error Levels, 95
ERROR$, 12, 83
Error Log, 94
Establishing Communications, 6
ESTOP, 63
EXTDX, 17
Extended Memory, 56
Extended User Variables, 17
External Inputs, 49
External Units, 41, 49

FAULT LED, 21, 42, 120
Fault Logic, 21
Faults, 94

BJx USER'S MANUAL INDEX

147

Features, 1
Feed To Positive Stop, 32
Feedback Encoder, 31
Feedback Position, 23
Feed-forward, 37
File, 10
Final Position, 30
Firmware Version, 46
Following Error, 23, 122
Formatting, 72

GATE, 31
GATEMODE, 31
Gating Motion, 31
GEAR, 51, 124, 129
GEARI, 51
GEARO, 51
General Purpose I/O, 71
General Purpose Input/Output, 20
General Purpose Timers, 70
Getting Started, 5
GOHOME Command, 31
GOSUB Command, 69, 130
GOTO, 10
GOTO Command, 65, 69

Hardware Errors, 94
Hardware Travel Limit, 27
Help Menu, 9
Hexadecimal, 18, 73
Hold (H) Command, 69
HOME, 32

I1, 83
I1-18, 71
I1-8 DECIMAL VALUES, 21
I1-I8, 20
ICMD, 24
IDEN, 39
Idling, 79
Idling Commands, 69
IF Command, 130
IF Command, 67, 130
ILIM, 24, 39
IMAX, 24
IN, 20, 71
Index, 32
Index Pulse, 31
Indirection, 17
Initial

Settings, 141
Initiation, 82
Input/Output, 20
Inputs

General Purpose, 71

Masking, 72
Insert/Delete, 10
Instruction Format, 15
Instructions, 15
Integrating Velocity loop, 24, 37
Interactive Mode, 12
INUM, 39

Jog (J) Command, 15, 26, 30, 52
Jog From (JF) Command, 33, 70
Jog To (JT) Command, 33, 70
Jogs

Position Dependent, 33, 70

KF, 36, 37, 51, 52, 58
Kill (K) Command, 21
KP, 36
KPROP, 37
KV, 37
KVI, 37

Labels, 65, 126
AUTO$, 83
Dedicated, 65
ERROR$, 83
MANUAL$, 83
POWER-UP$, 82

LED
FAULT, 21, 42, 120
OK, 23

LIMIT, 25
Disable, 25
Disabling, 27

Limiting Motion, 27
Limits

Travel, 27, 28
Logical Math Functions, 19
Logical NOT, 71
Loop

Position, 36
Position Gain, 36
Velocity

Integral, 37
Proportional, 37

Loops
User Program, 66

LSTTUNE, 135

MANUAL, 83
MANUAL$, 83
masking, 71, 72
Master Slave, 41, 49
Math, 18
Maximum Profile Time, 30
Memory

INDEX BJx USER'S MANUAL

148

Extended, 56
MENCDIR, 23, 50
Menus and Windows, 7
Metric Units, 41
MINDEX, 32
Mode, 12

Interactive, 12
Monitor, 12, 124
Run, 12
Single-Step, 14
Trace, 14

Modes of Operation, 11
Modified S-Curve, 29
MONITOR, 12
Monitor Mode, 12, 124
Monitor Variables, 16
MOTION, 25, 26, 30, 42, 43

Disable, 25
Disabling, 26
Enabling, 26
Error, 27
Gating, 31
Limits, 26
Stopping, 26

Motion Link, 45
Motion Commands, 26
Motion Link, 7, 92

Editor, 64
Motion Link Setup Program, 11
Motion Segments, 36
Move Absolute (MA), 29, 42, 52
Move Incremental (MI), 29, 52
Moves

Incremental, 29
Triangular, 29

MSTRMODE, 50
MULTI, 77, 82
Multidrop, 12, 46, 129
Multiple JF/JT Commands, 35
Multiple Profiles, 30
Multitasking, 69
Multi-Tasking, 77

Debugging, 93
Disabling, 77

N, 18
NACK, 45
Nesting, 67, 68
NOLIMIT, 25, 27
NOMOTION, 25, 26
NOREMOTE, 21, 25
Normalize (NORM), 30
Numeric Expression, 74

O1-5, 71

O1-O5, 20
O1-O5 DECIMAL VALUES, 20
OFF, 18
OK LED, 23
ON, 18
Operator Interface, 72
Options, 8
OR, 19
OUT, 20, 71
Outputs

General Purpose, 71
Masking, 72

Overshoot, 28, 37, 51
Overspeed, 24

Parameters, 15
Parentheses, 19, 128, 129
PASSWORD Command, 8, 85
PASSWORD Command, 85
PCAP, 32
PCMD, 23, 36, 41
PC-Scope, 45, 58
PE, 23, 36
PEMAX, 23, 31, 122
PEXT, 23, 49
PEXTCAP, 32
PFB, 16, 23, 27, 36, 41
PFNL, 30, 41
Phase Adjustment, 52
PL, 24, 37, 52
PLAY, 125
PLAY Command, 45
PLC Interface, 83
PLIM, 27, 30
PMAX, 27, 30
PMIN, 27, 30
Position

Capture, 32
Command, 23
Error, 23
Feedback, 23
Resetting, 30

Position Error
Overflow, 122

Position Dependent Jogs, 33, 70
Position Error, 37

Minimized, 37
Overflow, 23
Zeroing, 31, 33

Position Feedback, 16
Position Loop, 24, 36
Position Loop Gain, 36
Position Units, 23, 40

Rotary, 42
Positive Feedback, 25

BJx USER'S MANUAL INDEX

149

Power Up, 131
POWER-UP$, 12, 43, 82
Power-Up Condition, 17, 57
Power-Up Control Loops, 37
Print

ASCII, 74
Binary, 73
Control Characters, 74
Decimal Point, 73
Expressions, 74
Formatting, 72
Hexadecimal, 73
Ignored, 12
Status, 75
Switches, 73

Print (P) Command, 65, 72
Print Status (PS) Command, 75
Printing, 16
Processor Modes, 11
Product Description, 1
Profile Pre-Calculation, 31
Profile Regulation, 49, 52, 71
Profile Regulation and Counting Backwards, 53
Profiles, 28
Profiles and Gearbox, 52
Program, 7
Program Control, 65
Program Corrupt Error, 65
Program Dump, 84
Programming Conditions, 16
Programs, 63
PROMPT, 43, 45
Prompts, 11, 43

List, 12, 46
Rules, 11

PROP, 24, 37
Proportional Velocity Loop, 37
PROTARY, 41
PTRIP1,PTRIP2, 28
PXDEN, 41
PXNUM, 41

Quadrature, 50
Quick If (?) Command, 66

RAMP, 52
RD Command, 71
READY, 21
RECORD, 125
RECORD Command, 45, 58
Refresh (R) Command, 75
Refresh Status (RS), 75
REG, 53, 71, 125
Regional Sales Offices, 139
Registration, 34

REGKHZ, 53, 71
REMOTE, 25, 120

Disable, 25
Disabling, 21

Removing Code, 93
Return(RET) Command, 130
Return (RET) Command, 69
Reversed Encoder, 25
ROTARY, 41
Rotary Mode, 122
RS-485, 46
RUN Command, 12, 65
Run Mode, 12

Saftey Functions, 63
SATTIME, 24
SCKSUM, 44, 136
Scope, 8
SCRV, 29, 30, 33
S-curve, 28
SEG, 32, 36
Segments, 29, 36
SERIAL, 76
Serial Checksum, 44
serial busy, 76
Serial Port, 5
Serial Watchdog, 43
Single-Step, 14, 91
Software Gearbox, 49, 50, 129
Software Installation, 5
Software Travel Limits, 27
Software Watchdog, 120
Special Constants, 18
SS, 14, 91
Standard Value, 141
Stepper Motor Emulation, 49
Stop (S) Command, 26, 65
SW1, 43
Switch SW1, 43
Switches, 16
Synchronizing, 70
SYNCHRONIZING YOUR PROGRAM, 69
System Description, 1
System Dump, 45

Tasks, 77
TIL Command, 130
TIL Command, 67
Timers

General Purpose, 70
TMR1-4, 70
Torque Command, 36
Torque Command Mode, 37
TPLAY, 116
TQ, 37

INDEX BJx USER'S MANUAL

150

Trace, 14, 92
Travel Limits, 27
Traverse, 28
TRC, 92
TRECORD, 116
Triangular Moves, 29
TRIP, 28
Trip Points, 28
TRIP1,TRIP2, 28
TUNE, 116
Tuning, 45
Typical Application, 85

Units, 39
Acceleration, 41
Current, 39
Example, 41
External, 41, 49
for Rotary, 42
Introduction, 15
Metric, 41
Position, 40
Velocity, 40

Up/Down, 50
Uploading, 84
User Error Handler, 83
User Program Loops, 66
User Programs, 63
User Switches, 17
User Trip Points, 28
User Units, 39
User Variables, 16, 17, 56

Power-up, 17, 57
Utilities, 9

Variable
Settings, 141

Variable Units, 15
VARIABLE$, 81
Variables, 7, 15, 133

Control, 16
Indirect User, 17

Limits, 16
Monitor, 16
Printing, 16
User, 16

VAVG, 24
VCMD, 24, 36, 37
VE, 24, 36
Velocity

Command, 24
Error, 24
Feedback, 24
Maximum, 24
Offset, 52

Velocity Command, 36
velocity drive, 85
Velocity Loop, 24, 37
Velocity Units, 40
Version, 46
VEXT, 23, 49
VFB, 24
VMAX, 24
VOFF, 52, 58
VOSPD, 24, 120
VXAVG, 49
VXDEN, 41
VXNUM, 41

Wait (W) Command, 35, 70
WATCH, 43
Watchdog

Serial, 43
Whole Word I/O, 20
WTIME, 43

X(X1)-X(X250), 17
X1-X250, 17
XS1-XS50, 17

Y, 18

Zero PE (ZPE), 31, 33

	BJx Users Manual
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 System Description
	Chapter 2 �Getting Started
	Chapter 3 �Command Language
	Chapter 4 �Master Slaving
	Chapter 5 �User Programs
	Chapter 6 �Debugging
	Appendix A �Warranty Information
	Appendix B �ASCII Table
	00 - 7F
	80 - FF

	Appendix C Software Commands
	Appendix D �Error Codes
	Appendix E �Variable Quick Reference
	Appendix F Customer Support
	Appendix G Initial Settings
	Glossary
	INDEX

