
KAS IDE – PLC Library
Reference Manual

Valid for Software Revision 2.5

Keep all manuals as a product component
during the life span of the product.
Pass all manuals to future users / owners
of the product.

KAS Reference Manual - PLC Library | Trademarks and Copyrights

Trademarks and Copyrights

Copyrights
Copyright © 2009-12 Kollmorgen™
Information in this document is subject to change without notice. The software
package described in this document is furnished under a license agreement or non-
disclosure agreement. The software may be used or copied only in accordance with
the terms of those agreements.

This document is the intellectual property of Kollmorgen™ and contains proprietary
and confidential information. The reproduction, modification, translation or disclosure
to third parties of this document (in whole or in part) is strictly prohibited without the
prior written permission of Kollmorgen™.

Trademarks
KAS and AKD are registered trademarks of Kollmorgen™.
SERVOSTAR is a registered trademark of Kollmorgen™.
Kollmorgen™ is part of the Danaher Motion company.
Windows® is a registered trademark of Microsoft Corporation
EnDat is a registered trademark of Dr. Johannes Heidenhain GmbH.
EtherCAT® is registered trademark of Ethercat Technology Group.
PLCopen is an independent association providing efficiency in industrial automation.
INtime® is a registered trademark of TenAsys® Corporation.
Codemeter is a registered trademark of WIBU-Systems AG.
SyCon® is a registered trademark of Hilscher GmbH.

Kollmorgen Automation Suite is based on the work of:

l Qwt project (distributed under the terms of the GNU Lesser General Public License -
see also GPL terms)

l Zlib software library
l Curl software library
l Mongoose software (distributed under the MIT License - see terms)
l JsonCpp software (distributed under the MIT License – see terms)
l U-Boot, a universal boot loader is used by the AKD-PDMM (distributed under the

terms of the GNU General Public License). The U-Boot source files, copyright notice,
and readme are available on the distribution disk that is included with the AKD-
PDMM.

All other product and brand names listed in this document may be trademarks or
registered trademarks of their respective owners.

Disclaimer
The information in this document (Version 2.5 published on 5/7/2012) is believed to
be accurate and reliable at the time of its release. Notwithstanding the foregoing,
Kollmorgen assumes no responsibility for any damage or loss resulting from the use
of this help, and expressly disclaims any liability or damages for loss of data, loss of
use, and property damage of any kind, direct, incidental or consequential, in regard
to or arising out of the performance or form of the materials presented herein or in
any software programs that accompany this document.

All timing diagrams, whether produced by Kollmorgen or included by courtesy of the
PLCopen organization, are provided with accuracy on a best-effort basis with no
warranty, explicit or implied, by Kollmorgen. The user releases Kollmorgen from any
liability arising out of the use of these timing diagrams.

2 Kollmorgen™ | May 2012

http://www.kollmorgen.com/
http://www.kollmorgen.com/
http://http//www.danahermotion.com
http://http//www.danahermotion.com
http://www.heidenhain.de/
http://www.heidenhain.de/
http://www.heidenhain.de/
http://www.heidenhain.de/
http://www.ethercat.org/en/ethercat.html
http://www.ethercat.org/
http://www.ethercat.org/
http://www.ethercat.org/
http://www.plcopen.org/
http://www.tenasys.com/
http://www.tenasys.com/
http://www.wibu.com/
http://www.wibu.com/
http://www.wibu.com/
http://www.hilscher.com/
http://www.hilscher.com/
http://qwt.sourceforge.net/
http://www.zlib.net/
http://curl.haxx.se/docs/copyright.html
http://code.google.com/p/mongoose/
http://jsoncpp.sourceforge.net/LICENSE
http://jsoncpp.sourceforge.net/LICENSE
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.gnu.org/licenses/gpl-2.0.html

KAS Reference Manual - PLC Library | Table of Contents

Table of Contents
Trademarks and Copyrights 2
Copyrights 2

Trademarks 2

Disclaimer 2

Table of Contents 3

1 Programming languages 17
1.1 Sequential Function Chart (SFC) 17

1.1.1 SFC Steps 17

1.1.2 SFC Transitions 18

1.1.3 SFC parallel branches 19

1.1.4 SFC macro steps 20

1.1.5 Jump to an SFC step 21

1.1.6 Actions in an SFC step 22

1.1.7 Check timeout on an SFC step 23

1.1.8 Condition of an SFC transition 24

1.1.9 SFC execution at run time 24

1.1.10 Hierarchy of SFC programs 25

1.1.11 Controlling a SFC child program 25

1.1.12 User-Defined Function Blocks programmed in SFC 26

1.2 Function Block Diagram (FBD) 27

1.2.1 Data flow 27

1.2.2 FFLD symbols 28

1.3 Structured Text (ST) 28

1.3.1 Comments 28

1.3.2 Expressions 28

1.3.3 Statements 29

1.4 Instruction List (IL) 31

1.4.1 Comments 31

1.4.2 Data flow 31

1.4.3 Evaluation of expressions 31

1.4.4 Actions 32

1.5 Use of ST expressions in graphic language 32

1.6 Free Form Ladder Diagram (FFLD) 33

1.6.1 Contacts and coils 34

1.6.2 Power Rails 37

Kollmorgen™ | May 2012 3

KAS Reference Manual - PLC Library | Table of Contents

2 Programming features and standard blocks 39
2.1 Basic Operations 39

2.1.1 := FFLD FFLDN ST STN 40

2.1.2 Access to bits of an integer 41

2.1.3 Calling a function 41

2.1.4 Calling a function block CAL CALC CALNC CALCN 42

2.1.5 Calling a sub-program 43

2.1.6 CASE OF ELSE END_CASE 44

2.1.7 COUNTOF 45

2.1.8 DEC 46

2.1.9 EXIT 47

2.1.10 FOR TO BY END_FOR 48

2.1.11 IF THEN ELSE ELSIF END_IF 48

2.1.12 INC 49

2.1.13 Jumps JMP JMPC JMPNC JMPCN 50

2.1.14 LABELS 52

2.1.15 MOVEBLOCK 53

2.1.16 NEG - 54

2.1.17 ON 55

2.1.18 () 56

2.1.19 REPEAT UNTIL END_REPEAT 57

2.1.20 RETURN RET RETC RETNC RETCN 57

2.1.21 WHILE DO END_WHILE 59

2.2 Boolean operations 60

2.2.1 AND ANDN & 60

2.2.2 FLIPFLOP 61

2.2.3 F_TRIG 62

2.2.4 NOT 63

2.2.5 OR ORN 64

2.2.6 R 66

2.2.7 RS 66

2.2.8 R_TRIG 67

2.2.9 S 69

2.2.10 SEMA 69

2.2.11 SR 70

2.2.12 XOR XORN 71

4 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | Table of Contents

2.3 Arithmetic operations 73

2.3.1 + ADD 73

2.3.2 / DIV 74

2.3.3 NEG - 75

2.3.4 LIMIT 76

2.3.5 MAX 77

2.3.6 MIN 78

2.3.7 MOD / MODR / MODLR 79

2.3.8 * MUL 80

2.3.9 ODD 80

2.3.10 - SUB 81

2.4 Comparison operations 82

2.4.1 CMP 82

2.4.2 >= GE 83

2.4.3 > GT 84

2.4.4 = EQ 85

2.4.5 <> NE 86

2.4.6 <= LE 87

2.4.7 < LT 88

2.5 Type conversion functions 89

2.5.1 ANY_TO_BOOL 89

2.5.2 ANY_TO_DINT / ANY_TO_UDINT 90

2.5.3 ANY_TO_INT / ANY_TO_UINT 91

2.5.4 ANY_TO_LINT / ANY_TO_ULINT 92

2.5.5 ANY_TO_LREAL 93

2.5.6 ANY_TO_REAL 94

2.5.7 ANY_TO_TIME 94

2.5.8 ANY_TO_SINT / ANY_TO_USINT 95

2.5.9 ANY_TO_STRING 96

2.5.10 NUM_TO_STRING 97

2.5.11 BCD_TO_BIN 98

2.5.12 BIN_TO_BCD 99

2.6 Selectors 100

2.6.1 MUX4 100

2.6.2 MUX8 101

2.6.3 SEL 103

Kollmorgen™ | May 2012 5

KAS Reference Manual - PLC Library | Table of Contents

2.7 Registers 104

2.7.1 AND_MASK 104

2.7.2 HIBYTE 105

2.7.3 LOBYTE 106

2.7.4 HIWORD 107

2.7.5 LOWORD 108

2.7.6 MAKEDWORD 109

2.7.7 MAKEWORD 109

2.7.8 MBSHIFT 110

2.7.9 NOT_MASK 111

2.7.10 OR_MASK 112

2.7.11 PACK8 113

2.7.12 ROL 114

2.7.13 ROR 115

2.7.14 RORb / ROR_SINT / ROR_USINT / ROR_BYTE 116

2.7.15 RORw / ROR_INT / ROR_UINT / ROR_WORD 117

2.7.16 SETBIT 118

2.7.17 SHL 119

2.7.18 SHR 120

2.7.19 TESTBIT 121

2.7.20 UNPACK8 122

2.7.21 XOR_MASK 123

2.8 Counters 124

2.8.1 CTD / CTDr 124

2.8.2 CTU / CTUr 125

2.8.3 CTUD / CTUDr 126

2.9 Timers 128

2.9.1 BLINK 128

2.9.2 BLINKA 129

2.9.3 PLS 130

2.9.4 Sig_Gen 131

2.9.5 TMD 132

2.9.6 TMU / TMUsec 134

2.9.7 TOF / TOFR 135

2.9.8 TON 136

2.9.9 TP / TPR 137

6 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | Table of Contents

2.10 Mathematic operations 139

2.10.1 ABS / ABSL 139

2.10.2 EXPT 140

2.10.3 LOG 140

2.10.4 POW ** POWL 141

2.10.5 ScaleLin 142

2.10.6 SQRT / SQRTL 143

2.10.7 TRUNC / TRUNCL 144

2.11 Trigonometric functions 145

2.11.1 ACOS / ACOSL 145

2.11.2 ASIN / ASINL 146

2.11.3 ATAN / ATANL 147

2.11.4 ATAN2 / ATAN2L 147

2.11.5 COS / COSL 148

2.11.6 SIN / SINL 149

2.11.7 TAN / TANL 150

2.11.8 UseDegrees 151

2.12 String operations 151

2.12.1 ArrayToString / ArrayToStringU 152

2.12.2 ASCII 153

2.12.3 ATOH 154

2.12.4 CHAR 155

2.12.5 CONCAT 155

2.12.6 CRC16 156

2.12.7 DELETE 157

2.12.8 FIND 158

2.12.9 HTOA 159

2.12.10 INSERT 160

2.12.11 LEFT 161

2.12.12 LoadString 162

2.12.13 MID 163

2.12.14 MLEN 164

2.12.15 REPLACE 164

2.12.16 RIGHT 165

2.12.17 StringTable 166

2.12.18 StringToArray / StringToArrayU 167

Kollmorgen™ | May 2012 7

KAS Reference Manual - PLC Library | Table of Contents

3 Advanced operations 169
3.1 ALARM_A 170

3.1.1 Inputs 170

3.1.2 Outputs 170

3.1.3 Sequence 170

3.1.4 Remarks 170

3.1.5 ST Language 170

3.1.6 FBD Language 170

3.1.7 FFLD Language 171

3.1.8 IL Language 171

3.2 ALARM_M 171

3.2.1 Inputs 171

3.2.2 Outputs 171

3.2.3 Sequence 171

3.2.4 Remarks 171

3.2.5 ST Language 172

3.2.6 FBD Language 172

3.2.7 FFLD Language 172

3.2.8 IL Language 172

3.3 ApplyRecipeColumn 172

3.3.1 Inputs 172

3.3.2 Outputs 174

3.3.3 Remarks 174

3.3.4 ST Language 174

3.3.5 FBD Language 174

3.3.6 FFLD Language 174

3.3.7 IL Language 175

3.4 AS-interface functions 175

3.5 AVERAGE / AVERAGEL 175

3.5.1 Inputs 175

3.5.2 Outputs 176

3.5.3 Remarks 176

3.5.4 ST Language 176

3.5.5 FBD Language 176

3.5.6 FFLD Language 176

3.5.7 IL Language: 176

8 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | Table of Contents

3.6 CurveLin 176

3.6.1 Inputs 176

3.6.2 Outputs 177

3.6.3 Remarks 177

3.7 CycleStop 177

3.7.1 Inputs 177

3.7.2 Outputs 177

3.7.3 Remarks 177

3.8 DERIVATE 177

3.8.1 Inputs 178

3.8.2 Outputs 178

3.8.3 Remarks 178

3.8.4 ST Language 178

3.8.5 FBD Language 178

3.8.6 FFLD Language 178

3.8.7 IL Language: 178

3.9 Dynamic memory allocation functions 178

3.10 EnableEvents 179

3.10.1 Inputs 179

3.10.2 Outputs 180

3.10.3 Remarks 180

3.10.4 ST Language 180

3.10.5 FBD Language 180

3.10.6 FFLD Language 180

3.10.7 IL Language: 180

3.11 FatalStop 180

3.11.1 Inputs 180

3.11.2 Outputs 180

3.11.3 Remarks 180

3.12 FIFO 181

3.12.1 Inputs 181

3.12.2 Outputs 181

3.12.3 Remarks 181

3.12.4 ST Language 181

3.12.5 FBD Language 182

3.12.6 FFLD Language 182

Kollmorgen™ | May 2012 9

KAS Reference Manual - PLC Library | Table of Contents

3.12.7 IL Language 182

3.13 File management functions 182

3.13.1 SD Card Access 183

3.13.2 System Conventions 184

3.13.3 F_AOPEN 185

3.13.4 F_CLOSE 185

3.13.5 F_COPY 185

3.13.6 F_DELETE 185

3.13.7 F_EOF 186

3.13.8 F_EXIST 186

3.13.9 F_GETSIZE 186

3.13.10 F_RENAME 186

3.13.11 F_ROPEN 186

3.13.12 F_WOPEN 187

3.13.13 FA_READ 187

3.13.14 FA_WRITE 187

3.13.15 FB_READ 187

3.13.16 FB_WRITE 187

3.13.17 FM_READ 188

3.13.18 FM_WRITE 188

3.13.19 SD_MOUNT 188

3.13.20 SD_UNMOUNT 188

3.13.21 SD_ISREADY 189

3.14 GETSYSINFO 189

3.14.1 Inputs 189

3.14.2 Outputs 189

3.14.3 Remarks 189

3.14.4 ST Language 189

3.14.5 FBD Language 189

3.14.6 FFLD Language 189

3.14.7 IL Language: 190

3.15 HYSTER 190

3.15.1 Inputs 190

3.15.2 Outputs 190

3.15.3 Remarks 190

3.15.4 ST Language 190

10 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | Table of Contents

3.15.5 FBD Language 190

3.15.6 FFLD Language 190

3.15.7 IL Language: 191

3.16 INTEGRAL 191

3.16.1 Inputs 191

3.16.2 Outputs 191

3.16.3 Remarks 191

3.16.4 ST Language 191

3.16.5 FBD Language 191

3.16.6 FFLD Language 192

3.16.7 IL Language: 192

3.17 LIFO 192

3.17.1 Inputs 192

3.17.2 Outputs 192

3.17.3 Remarks 192

3.17.4 ST Language 193

3.17.5 FBD Language 193

3.17.6 FFLD Language 193

3.17.7 IL Language 193

3.18 LIM_ALRM 194

3.18.1 Inputs 194

3.18.2 Outputs 194

3.18.3 Remarks 194

3.18.4 ST Language 194

3.18.5 FBD Language 194

3.18.6 FFLD Language 194

3.18.7 IL Language: 195

3.19 LogFileCSV 195

3.19.1 Inputs 195

3.19.2 Outputs 195

3.19.3 Remarks 195

3.19.4 ST Language 196

3.19.5 FBD Language 196

3.19.6 FFLD Language 196

3.19.7 IL Language 197

3.20 MBSlaveRTU 197

Kollmorgen™ | May 2012 11

KAS Reference Manual - PLC Library | Table of Contents

3.20.1 Inputs 197

3.20.2 Outputs 197

3.20.3 Remarks 197

3.20.4 ST Language 197

3.20.5 FBD Language 197

3.20.6 FFLD Language 198

3.20.7 IL Language: 198

3.21 MBSlaveUDP 198

3.21.1 Inputs 198

3.21.2 Outputs 198

3.21.3 Remarks 198

3.21.4 ST Language 198

3.21.5 FBD Language 199

3.21.6 FFLD Language 199

3.21.7 IL Language: 199

3.22 PID 199

3.22.1 Inputs 200

3.22.2 Outputs 200

3.22.3 Diagram 201

3.22.4 Remarks 201

3.22.5 ST Language 201

3.22.6 FBD Language 202

3.22.7 FFLD Language 202

3.22.8 IL Language 202

3.23 PID Functions 203

3.23.1 JS_DeadTime - analog delay 203

3.23.2 JS_LeadLag - signal lead / lag 203

3.23.3 JS_PID - PID loop setpoint balance 204

3.23.4 JS_Ramp - Limit variation speed 204

3.24 printf 205

3.24.1 Inputs 205

3.24.2 Outputs 205

3.24.3 Remarks 205

3.24.4 Example 205

3.25 RAMP 205

3.25.1 Inputs 205

12 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | Table of Contents

3.25.2 Outputs 206

3.25.3 Time diagram 206

3.25.4 Remarks 206

3.25.5 ST Language 206

3.25.6 FBD Language 206

3.25.7 FFLD Language 207

3.25.8 IL Language 207

3.26 Real Time clock management functions 207

3.26.1 DAY_TIME 208

3.26.2 DTFORMAT 209

3.26.3 DTAT 210

3.26.4 DTEVERY 212

3.27 SERIALIZEIN 213

3.27.1 Inputs 213

3.27.2 Outputs 213

3.27.3 Remarks 213

3.27.4 ST Language 213

3.27.5 FBD Language 214

3.27.6 FFLD Language 214

3.27.7 IL Language: 214

3.28 SERIALIZEOUT 214

3.28.1 Inputs 214

3.28.2 Outputs 214

3.28.3 Remarks 214

3.28.4 ST Language 215

3.28.5 FBD Language 215

3.28.6 FFLD Language 215

3.28.7 IL Language: 215

3.29 SerGetString 215

3.29.1 Inputs 215

3.29.2 Outputs 216

3.29.3 Remarks 216

3.29.4 ST Language 216

3.29.5 FBD Language 216

3.29.6 FFLD Language 216

3.29.7 IL Language 217

Kollmorgen™ | May 2012 13

KAS Reference Manual - PLC Library | Table of Contents

3.30 SerPutString 217

3.30.1 Inputs 217

3.30.2 Outputs 217

3.30.3 Remarks 217

3.30.4 ST Language 217

3.30.5 FBD Language 218

3.30.6 FFLD Language 218

3.30.7 IL Language: 218

3.31 SERIO 218

3.31.1 Inputs 218

3.31.2 Outputs 218

3.31.3 Remarks 218

3.31.4 ST Language 219

3.31.5 FBD Language 219

3.31.6 FFLD Language 219

3.31.7 IL Language: 219

3.32 SigID 219

3.32.1 Inputs 220

3.32.2 Outputs 220

3.32.3 Remarks 220

3.32.4 ST Language 220

3.32.5 FBD Language 220

3.32.6 FFLD Language 220

3.32.7 IL Language 220

3.33 SigPlay 220

3.33.1 Inputs 220

3.33.2 Outputs 221

3.33.3 Remarks 221

3.33.4 ST Language 221

3.33.5 FBD Language 221

3.33.6 FFLD Language 221

3.33.7 IL Language 221

3.34 SigScale 222

3.34.1 Inputs 222

3.34.2 Outputs 222

3.34.3 Remarks 222

14 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | Table of Contents

3.34.4 ST Language 222

3.34.5 FBD Language 222

3.34.6 FFLD Language 222

3.34.7 IL Language 222

3.35 STACKINT 222

3.35.1 Inputs 223

3.35.2 Outputs 223

3.35.3 Remarks 223

3.35.4 ST Language 223

3.35.5 FBD Language 223

3.35.6 FFLD Language 223

3.35.7 IL Language 224

3.36 SurfLin 224

3.36.1 Inputs 224

3.36.2 Outputs 224

3.36.3 Remarks 224

3.37 TCP-IP management functions 225

3.38 Text buffers manipulation 227

3.38.1 TxbManager 228

3.39 UDP management functions 241

3.40 VLID 242

3.40.1 Inputs 242

3.40.2 Outputs 242

3.40.3 Remarks 242

3.40.4 ST Language 242

3.40.5 FBD Language 242

3.40.6 FFLD Language 243

3.40.7 IL Language 243

Global Support Contacts 245
Danaher Motion Assistance Center 245

Europe Product Support 245

Kollmorgen™ | May 2012 15

This page intentionally left blank.

16 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 1 Programming languages

1 Programming languages
This chapter presents details on the syntax, structure and use of the declarations and
statements supported by the KAS IDE application language.

Below are the available programming languages of the IEC 61131-3 standard:

SFC: Sequential Function Chart
FBD: Function Block Diagram
FFLD: Free Form Ladder Diagram
ST: Structured Text
IL: Instruction List

Use of ST instructions in graphic languages

You have to select a language for each program or User-Defined Function Block of
the application.

1.1 Sequential Function Chart (SFC)
The SFC language is a state diagram. Graphical steps are used to represent stable
states, and transitions describe the conditions and events that lead to a change of
state. Using SFC highly simplifies the programming of sequential operations as it
saves a lot of variables and tests just for maintaining the program context.

Warning
You must not use SFC as a decision diagram. Using a step as a point of
decision and transitions as conditions in an algorithm must never appear in an
SFC chart. Using SFC as a decision language leads to poor performance and
complicate charts. ST must be preferred when programming a decision algorithm
that has no sense in term of "program state"

Below are basic components of an SFC chart:

Chart: Programming:

Steps and initial steps
Transitions and divergences
Parallel branches
Macro-steps
Jump to a step

Actions within a step
Timeout on a step
Programming a transition condition

How SFC is executed

UDFBs programmed in SFC

The KAS IDE fully supports SFC programming with several hierarchical levels of
charts: i.e. a chart that controls another chart. Working with a hierarchy of SFC charts
is an easy and powerful way for managing complex sequences and saves
performances at run time. Refer to the following sections for further details:

Defining a hierarchy of SFC programs
How to control an SFC child?

1.1.1 SFC Steps
A step represents a stable state. It is drawn as a square box in the SFC chart. Each
step of a program is identified with a unique number. At run time, a step can be
either active or inactive according to the state of the program.

Note
To change the number of a step, transition or jump, select it and hit Ctrl+ENTER
keys.

All actions linked to the steps are executed according to the activity of the step.

Kollmorgen™ | May 2012 17

KAS Reference Manual - PLC Library | 1 Programming languages

Inactive step Active step

In conditions and actions of the SFC program, you can test the step activity by
specifying its name ("GS" plus the step number) followed by ".X".
For example:

GS100.X is TRUE if step 100 is active
(expression has the BOOL data type)

You can also test the activity time of a step, by specifying the step name followed by
".T". It is the time elapsed since the activation of the step. When the step is
deactivated, this time remains unchanged. It will be reset to 0 on the next step
activation. For example:

GS100.T is the time elapsed since step 100 was activated
(expression has the TIME data type)

Initial steps

Initial steps represent the initial situation of the chart when the program is started.
There must be at least one initial step in each SFC chart. An initial step is marked
with a double line:

1.1.2 SFC Transitions
Transitions represent a condition that changes the program activity from a step to
another.

Note
To change the number of a step, transition or jump, select it and hit Ctrl+ENTER
keys.

The transition is marked by a small horizontal line that crosses a link drawn between
the two steps.

The default direction for vertical links is from the top to the bottom

l Each transition is identified by a unique number in the SFC program.
l Each transition must be completed with a boolean condition that indi-

cates if the transition can be crossed. The condition is a BOOL expres-
sion. If no condition is entered, it is assumed as always TRUE.

l In order to simplify the chart and reduce the number of drawn links,
you can specify the activity flag of a step (GSnnn.X) in the condition of
the transition.
Transitions define the dynamic behavior of the SFC chart,
according to the following rules:

l A transition in crossed if:
l its condition is TRUE
l and if all steps linked to the top of the transition (i.e. before) are active

l When a transition is crossed:

18 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 1 Programming languages

l all steps linked to the top of the transition (i.e. before) are deactivated
l all steps linked to the bottom of the transition (i.e. after) are activated

Note
When the same step is linked before and after the transition, it remains active (no
pulse in its activity signal)

Divergences

It is possible to link a step to several transitions and thus create a divergence. The
divergence is represented by a horizontal line. Transitions after the divergence
represent several possible changes in the situation of the program.

All conditions are considered as exclusive, according to a "left to right" priority order.
It means that a transition is considered as FALSE if at least one of the transitions
connected to the same divergence on its left side is TRUE.

Below is an example:

Transition 1 is
crossed if:
step 1 is
active
and Cond1 is
TRUE

Transition 2 is
crossed if:
step 1 is
active
and Cond2 is
TRUE
and Cond1 is
FALSE

Warning
Some run-time systems can support exclusivity of the transitions within a
divergence or not. Please refer to OEM instructions for further information about
SFC support.

1.1.3 SFC parallel branches
Parallel branches are used in SFC charts to represent parallel operations. Parallel
branches occur when more than several steps are connected after the same
transition. Parallel branches are drawn as double horizontal lines:

Kollmorgen™ | May 2012 19

KAS Reference Manual - PLC Library | 1 Programming languages

When the transition before the divergence (1 on
this example) is crossed, all steps beginning the
parallel branches (101 and 201 here) are
activated.

Sequencing of parallel branches can take different
timing according to each branch execution.

The transition after the convergence (2 on this
example) is crossed when all the steps connected
before the convergence line (last step of each
branch) are active. The transition indicates a
synchronization of all parallel branches.

If needed, a branch can be finished with an
"empty" step (with no action). It represents the
state where the branch "waits" for the other ones
to be completed.

You must take care of the following rules when
drawing parallel lines in order to avoid dead locks in the execution of the program:

l All branches must be connected to the divergence and the convergence.
l An element of a branch must not be connected to an element outside the divergence.
How to create parallel branches?

To create double bars for a parallel branch you have to highlight a horizontal line
and click the Spacebar to switch back and forth between single and double lines.

1.1.4 SFC macro steps
A macro step is a special symbol that represents, within an SFC chart, a part of the
chart that begins with a step and ends with a step. The body of the macro-step must
be declared in the same program. The body of a macro-step begins with a special
"begin" step with no link before, and ends with a special "end" step with no link after.
The symbol of the macros step in the main chart has double horizontal lines:

20 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 1 Programming languages

A: Main Chart
B: Body of the macro-step

1: Macro step symbol
2: "Begin" step
3: "End" step

Warning
- The macro-step symbol and the beginning step must have the same number.
- The body of the macro-step must have no link with other parts of the main
diagram (must be connected).
- A macro step is not a "sub program". It is just a drawing features that enables
you to make clearer charts. You must never insert several macro-step symbols
referring to the same macro-step body.

1.1.5 Jump to an SFC step
"Jump" symbols can be used in SFC charts to represent a link from a transition to a
step without actually drawing it. The jump is represented by an arrow identified with
the number of the target step.

Note
To change the number of a step, transition or jump, select it and hit Ctrl+ENTER
keys.

You cannot insert a jump to a transition as it may lead to a non explicit convergence
of parallel branches (several steps leading to the same transition) and generally
leads to mistakes due to a bad understanding of the chart.

All parallel convergences must be explicitly drawn.

Kollmorgen™ | May 2012 21

KAS Reference Manual - PLC Library | 1 Programming languages

1.1.6 Actions in an SFC step
Each step has a list of action blocks, that are instructions to be executed according to
the activity of the step. Actions can be simple boolean or SFC actions, that consists
in assigning a boolean variable or control a child SFC program using the step
activity, or action blocks entered using another language (FBD, FFLD, ST or IL).

Runtime check:

Below are the possible syntaxes you can use within an SFC step to perform runtime
safety checks:

__StepTimeout
(...);

Check for a timeout on the step activity duration.

Simple boolean actions:

Below are the possible syntaxes you can use within an SFC step to perform a simple
boolean action:

BoolVar (N); Forces the variable "BoolVar" to TRUEwhen the step is activated, and to FALSEwhen the step
is deactivated.

BoolVar (S); Sets the variable "BoolVar" to TRUEwhen step is activated
BoolVar (R); Sets the variable "BoolVar" to FALSEwhen step is activated
/ BoolVar; Forces the variable "BoolVar" to FALSEwhen the step is activated, and to TRUEwhen the step

is deactivated.

Alarms:

The following syntax enables you to manage timeout alarm variables:

BoolVar (A-,
duration);

Specifies aMin timeout variable to be associated to the step.
- "BoolVar"must be a simple boolean variable
- "duration" is the timeout, expressed either as a constant or as a single TIME variable
(complex expressions cannot be used for this parameter)
When themin timeout is elapsed, the alarm variable is turned to TRUE.

BoolVar (A+,
duration);

Specifies aMax timeout variable to be associated to the step.
- "BoolVar"must be a simple boolean variable
- "duration" is the timeout, expressed either as a constant or as a single TIME variable
(complex expressions cannot be used for this parameter)
When the timeout is elapsed, the alarm variable is turned to TRUE, and the transition(s) fol-
lowing the step cannot be crossed until the alarm variable is reset to FALSE.

BoolVar (A,
duration);

Another syntax to specify theMax timeout variable.

Simple SFC actions:

Below are the possible syntaxes you can use within an SFC step to control a child
SFC program:

Child (N); Starts the child program when the step is activated and stops (kills) it when the step is deac-
tivated.

Child (S); Starts the child program when the step is activated
Child (R); Stops (kills) the child program when the step is activated

Programmed action blocks:

Programs in other languages (FBD, FFLD, ST or IL) can be entered to describe an
SFC step action. There are three main types of programmed action blocks, that
correspond to the following identifiers:

P1 Executed only once when the step becomes active

N Executed on each cycle while the step is active

P0 Executed only once when the step becomes inactive

22 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 1 Programming languages

Figure 1-1: SFC step action blocks

The KAS IDE provides you templates for entering P1, N and P0 action blocks in
either ST, FFLD or FBD language. Alternatively, you can insert action blocks
programmed in ST language directly in the list of simple actions, using the following
syntax:

ACTION (qualifier) :
statements...
END_ACTION;

Where qualifier is "P1", "N" or "P0".

1.1.7 Check timeout on an SFC step
SFC step implicitly contains a timer, so you do not need to add any timer function.

Figure 1-2: SFC Time Diagram - Timer vs Step Activation

The system can check timeout on any SFC step activity duration. For that, you need
to enter the following instruction in the main "Action" list of the step:

__StepTimeout (timeOut , errString);

Where:

timeout is a time constant or a time variable specifying the timeout duration
errString is a string constant or a string variable specifying the error message to
be output

At runtime, each time the activation time of the step becomes greater than the
specified timeout:

l The error string is sent to the KAS IDEand displayed in the Log window
l The transition is not passed

Note
You can also put this statement within a "#ifdef __DEBUG" test so that
timeout checking is enabled only in debug mode.

Alternatively, if you need to make more specific handling of timeouts, you can enter
the following ST program in the "N" action block of the step:

if GSn.T > timeout then /* 'n' is the number of the step */
...statements...
end_if;

Kollmorgen™ | May 2012 23

KAS Reference Manual - PLC Library | 1 Programming languages

1.1.8 Condition of an SFC transition
Each SFC transitions must have a boolean condition that indicates if the transition
can be crossed. The condition is a boolean expression that can be programmed
either in ST or FFLD language.

In ST language, enter a boolean expression. It can be a complex expression
including function calls and parentheses. For example:

bForce AND (bAlarm OR min (iLevel, 1) <> 1)

In FFLD language, the condition is represented by a single rung. The coil at the end
of the rung represents the transition and must have no symbol attached. For example:

1.1.9 SFC execution at run time
SFC programs are executed sequentially within a target cycle, according to the order
defined when entering programs in the hierarchy tree. A parent SFC program is
executed before its children. This implies that when a parent starts or stops a child,
the corresponding actions in the child program are performed during the same cycle.

Within a chart, all valid transitions are evaluated first, and then actions of active steps
are performed. The chart is evaluated from the left to the right and from the top to the
bottom. Below is an example:

Execution order:

- Evaluate transitions:

1, 101, 2

- Manage steps:

1, 101, 201, 102

In case of a divergence, all conditions are considered as exclusive, according to a
"left to right" priority order. It means that a transition is considered as FALSE if at
least one of the transitions connected to the same divergence on its left side is
TRUE.

The initial steps define the initial status of the program when it is started. All top level
(main) programs are started when the application starts. Child programs are explicitly
started from action blocks within the parent programs.

The evaluation of transitions leads to changes of active steps, according to the
following rules:

24 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 1 Programming languages

l A transition in crossed if:
l its condition is TRUE
l and if all steps linked to the top of the transition (before) are

active
l When a transition is crossed:

l all steps linked to the top of the transition (before) are deactivated
l all steps linked to the bottom of the transition (after) are activated

Warning
Execution of SFC within the IEC 61131 target is sampled according to the target
cycles. When a transition is crossed within a cycle, the following steps are
activated, and the evaluation of the chart will continue on the next cycle. If
several consecutive transitions are TRUE within a branch, only one of them is
crossed within one target cycle.

Warning
• This section describes the execution model of a standard IEC 61131 target.
SFC execution rules can differ for other target systems. Please refer to OEM
instructions for further details about SFC execution at run time.
• Some run-time systems can support exclusivity of the transitions within a
divergence or not. Please refer to OEM instructions for further information about
SFC support.

1.1.10 Hierarchy of SFC programs
Each SFC program can have one or more "child programs". Child programs are
written in SFC and are started (launched) or stopped (killed) in the actions of the
father program. A child program can also have children. The number of hierarchy
levels must not exceed 19.

When a child program is stopped, its children are also implicitly stopped.

When a child program is started, it must explicitly in its actions start its children.

A child program is controlled (started or stopped) from the action blocks of its parent
program. Designing a child program is a simple way to program an action block in
SFC language.

Using child programs is very useful for designing a complex process and separate
operations due to different aspects of the process. For instance, it is common to
manage the execution modes in a parent program and to handle details of the
process operations in child programs.

1.1.11 Controlling a SFC child program
Controlling a child program can be simply achieved by specifying the name of the
child program as an action block in a step of its parent program. Below are possible
qualifiers that can be applied to an action block for handling a child program:

Child (N); Starts the child program when the step is activated and stops (kills) it when the step is deac-
tivated.

Child (S); Starts the child program when the step is activated
(Initial steps of the child program are activated)

Child (R); Stops (kills) the child program when the step is activated
(All active steps of the child program are deactivated)

Alternatively, you can use the following statements in an action block programmed in
ST language. In the following table, "prog" represents the name of the child program:

Kollmorgen™ | May 2012 25

KAS Reference Manual - PLC Library | 1 Programming languages

GSTART (prog); Starts the child program when the step is activated
(Initial steps of the child program are activated)

GKILL (prog); Stops (kills) the child program when the step is activated
(All active steps of the child program are deactivated)

GFREEZE (prog); Suspends the execution of a child program
GRST (prog); Restarts a program suspended by a GFREEZEcommand.

You can also use the "GSTATUS" function in expressions. This function returns the
current state of a child SFC program:

GSTATUS (prog) Returns the current state of a child SFC program:
0: program is inactive
1: program is active
2: program is suspended

Note
When a child program is started by its parent program, it keeps the "inactive" status
until it is executed (further in the cycle). If you start a child program in an SFC chart,
GSTATUS will return 1 (active) on the next cycle.

1.1.12 User-Defined Function Blocks programmed in SFC
The KAS IDE enables you to create User-Defined Function Blocks (UDFBs)
programmed with SFC language. This section details specific features related to such
function blocks.

The execution of UDFBs written in SFC requires a runtime system version SR7-1 or
later.

Declaration

From the Workspace contextual menu, run the "Insert New Program" command. Then
specify a valid name for the function block. Select "SFC" language and "UDFB"
execution style.

Parameters

When a UDFB programmed in SFC is created, the KAS IDEautomatically declares 3
special inputs to the block:

RUN: The SFC state machine is not activated when this input is FALSE.
RESET: The SFC chart is reset to its initial situation when this input is TRUE.
KILL: Any active step of the SFC chart is deactivated when this input is TRUE.

You can freely add other input and output variables to the UDFB. You can also
remove any of the automatically created input if not needed. If the RUN input is
removed, then it is considered as always TRUE. If RESET or KILL inputs are
removed, then they are considered as always FALSE.

Below is the truth table showing priorities among special input:

RUN RESET KILL
FALSE FALSE FALSE do nothing
FALSE FALSE TRUE kill the SFC chart
FALSE TRUE FALSE reset the SFC chart
FALSE TRUE TRUE kill the SFC chart
TRUE FALSE FALSE activate the SFC chart
TRUE FALSE TRUE kill the SFC chart
TRUE TRUE FALSE reset the SFC chart
TRUE TRUE TRUE kill the SFC chart

Steps

All steps inserted in the SFC chart of the UDFB are automatically declared as local
instances of special reserved function blocks with the local variables of the UDFBs.
The following FB types are used:

isfcSTEP : a normal step
isfcINITSTEP : an initial step

26 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 1 Programming languages

The editor takes care of updating the list of declared step instances. You should
never remove, rename or change them in the variable editor. All steps are named
with "GS" followed by their number.

Execution

The SFC chart is operated only when the UDFB is called by its parent program.

If the RESET input is TRUE, the SFC chart is reset to its initial situation. If the KILL
input is TRUE, any active step of the SFC chart is deactivated.

When the RUN input is TRUE and KILL/RESET are FALSE, the SFC chart is
operated in the same way as for other SFC programs:

1- Check valid transitions and evaluate related conditions
2- Cross TRUE valid transitions
3- Execute relevant actions of the active steps

Notes

In a UDFB programmed in SFC, you cannot use SFC actions to pilot a "child SFC
program". This feature is reserved for SFC programs only. Instead, a UDFB
programmed in SFC can pilot from its actions another UDFB programmed in SFC.

1.2 Function Block Diagram (FBD)
A function block Diagram is a data flow between constant expressions or variables
and operations represented by rectangular blocks. Operations can be basic
operations, function calls, or function block calls.

Use of ST instructions in graphic languages

The name of the operation or function, or the type of function block is written within
the block rectangle. In case of a function block call, the name of the called instance
is written in the header of the block rectangle, such as in the example below:

1.2.1 Data flow
The data flow represents values of any data type. All connections must be from input
and outputs points having the same data type.

In case of a boolean connection, you can use a connection link terminated by a
small circle, that indicates a boolean negation of the data flow. .

The data flow must be understood from the left to the right and from the top to the
bottom. It is possible to use labels and jumps to change the default data flow
execution.

Kollmorgen™ | May 2012 27

KAS Reference Manual - PLC Library | 1 Programming languages

1.2.2 FFLD symbols
FFLD symbols can also be entered in FBD diagrams and linked to FBD objects.
Refer to the following sections for further information about components of the FFLD
language:

Contacts
Coils
Power Rails

Special vertical lines are available in FBD language for representing the merging of
FFLD parallel lines. Such vertical lines represent a OR operation between the
connected inputs. Below is an example of an OR vertical line used in a FBD
diagram:

1.3 Structured Text (ST)
ST is a structured literal programming language. A ST program is a list of statements.
Each statement describes an action and must end with a semi-colon (";").

The presentation of the text has no meaning for a ST program. You can insert blank
characters and line breaks where you want in the program text.

1.3.1 Comments
Comment texts can be entered anywhere in a ST program. Comment texts have no
meaning for the execution of the program. A comment text must begin with "(*" and
end with "*)". Comments can be entered on several lines (i.e. a comment text can
include line breaks). Comment texts cannot be nested.

You can also use // to add a comment on a single line as shown below:

//My main comment

(* My comment *)

a := d + e;

(* A comment can also

be on several lines *)

b := d * e;

c := d - e; (* My comment *)

1.3.2 Expressions
Each statement describes an action and can include evaluation of complex
expressions. An expression is evaluated:

28 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 1 Programming languages

- from the left to the right
- according to the default priority order of operators
- the default priority can be changed using parentheses

Arguments of an expression can be:
- declared variables
- constant expressions
- function calls

1.3.3 Statements
Below are available basic statements that can be entered in a ST program:

- assignment
- function block calling

Below are the available conditional statements in ST language:

- IF / THEN / ELSE
 Simple binary switch.
 One or several ELSIF are allowed.

IF a = b THEN

 c := 0;

ELSIF a < b THEN

 c := 1;

ELSE

 c := -1;

END_IF;

- CASE
 Switch between enumerated statements according to an expression.
 The selector can be any integer or a STRING.

CASE iChoice OF

0:

MyString := 'Nothing';

1 .. 2,5:

MyString := 'First case';

3,4:

MyString := 'Second case';

ELSE

MyString := 'Other case';

END_CASE;

Below are the available statements for describing loops in ST language:

Kollmorgen™ | May 2012 29

KAS Reference Manual - PLC Library | 1 Programming languages

Warning
Loop instructions can lead to infinite loops that block the target cycle.
Never test the state of an input in the condition as the input will not be refreshed
before the next cycle.

- WHILE
 Repeat a list of statements.
 Condition is evaluated on loop entry before the statements.

iCount := 0;

WHILE iCount < 100 DO

iCount := iCount +1;

MyVar := MyVar + 1;

END_WHILE;

- REPEAT
 Repeat a list of statements.
 Condition is evaluated on loop exit after the statements.

iCount := 0;

REPEAT

MyVar := MyVar + 1;

iCount := iCount + 1;

UNTIL iCount < 100 END_REPEAT;

- FOR
 Iteration of statement execution.
 The BY statement is optional (default value is 1)

FOR iCount := 0 TO 100 BY 2 DO

MyVar := MyVar + 1;

END_FOR;

Note
Loops with FOR instructions are slow, so you can optimize your code by
replacing such iterations with a WHILE statement.

Below are some other statements in ST language:

- WAIT / WAIT_TIME (suspend the execution)

- ON … DO (conditional execution of statements: provides a simpler syntax for
checking the rising edge of a Boolean condition)

30 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 1 Programming languages

Tip
ST also provides an automatic completion of typed words. See .

1.4 Instruction List (IL)
This language is more appropriate when your algorithm refers to the Boolean
algebra.

A program written in IL language is a list of instructions.
Each instruction is written on one line of text.
An instruction can have one or more operands.
Operands are variables or constant expressions.
Each instruction can begin with a label, followed by the ":" character.
Labels are used as destination for jump instructions.

The KAS IDE allows you to mix ST and IL languages in textual program. ST is the
default language. When you enter IL instructions, the program must be entered
between "BEGIN_IL" and "END_IL" keywords, such as in the following example

BEGIN_IL

FFLD var1

ST var2

END_IL

1.4.1 Comments
Comment texts can be entered at the end of a line containing an instruction.
Comment texts have no meaning for the execution of the program. A comment text
must begin with "(*" and end with "*)". Comments can also be entered on empty lines
(with no instruction), and on several lines (i.e. a comment text can include line
breaks). Comment texts cannot be nested.

(* My comment *)

LD a

ST b (* Store value in d *)

1.4.2 Data flow
An IL complete statement is made of instructions for:
- first: evaluating an expression (called current result)
- then: use the current result for performing actions

1.4.3 Evaluation of expressions
The order of instructions in the program is the one used for evaluating expressions,
unless parentheses are inserted. Below are the available instructions for evaluation of
expressions:

Instruction Operand Meaning
FFLD / FFLDN any type loads the operand in the current result
AND (&) boolean AND between the operand and the current result
OR / ORN boolean OR between the operand and the current result
XOR / XORN boolean XOR between the operand and the current result
ADD numerical adds the operand and the current result
SUB numerical subtract the operand from the current result
MUL numerical multiply the operand and the current result
DIV numerical divide the current result by the operand

Kollmorgen™ | May 2012 31

KAS Reference Manual - PLC Library | 1 Programming languages

Instruction Operand Meaning
GT numerical compares the current result with the operand
GE numerical compares the current result with the operand
LT numerical compares the current result with the operand
LE numerical compares the current result with the operand
EQ numerical compares the current result with the operand
NE numerical compares the current result with the operand
Function call func. arguments calls a function
Parenthesis changes the execution order

Note
Instructions suffixed by N uses the boolean negation of the operand.

1.4.4 Actions
The following instructions perform actions according to the value of current result.
Some of these instructions do not need a current result to be evaluated:

Instruction Operand Meaning
ST / STN any type stores the current result in the operand
JMP label jump to a label - no current result needed
JMPC label jump to a label if the current result is TRUE
JMPNC / JMPCN label jump to a label if the current result is FALSE
RET Jump to the end of the current program - no current result needed
RETC / RETNC / RETCN Jump to the end of the current program if the current result is TRUE / FALSE
S boolean sets the operand to TRUE if the current result is TRUE
R boolean sets the operand to FALSE if the current result is TRUE
CAL f. block calls a function block (no current result needed)
CALC f. block calls a function block if the current result is TRUE
CALNC / CALCN f. block calls a function block if the current result is FALSE

Note
Instructions suffixed by N uses the boolean negation of the operand.

Note
IL program cannot be called if there is no entry variable, or if its type is complex
(e.g. array)

1.5 Use of ST expressions in graphic language
The KAS IDE enables any complex ST expression to be associated with a graphic
element in either FFLD or FBD language. This feature makes possible to simplify
FFLD and FBD diagrams when some trivial calculation has to be entered. It also
enables you to use graphic features for representing a main algorithm as text is used
for details of implementation.

Expression must be written in ST language. An expression is anything you can
imagine between parentheses in a ST program. Obviously the ST expression must fit
the data type required by the diagram (e.g. an expression put on a contact must be
boolean).

FBD language:

A complex ST expression can be entered in any "variable box" of a FBD diagram, if
the box is not connected on its input. Below is an example:

32 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 1 Programming languages

FFLD language:

A complex ST expression can be entered on any kind of contact, and on any input of
a function or function block. Below is an example:

1.6 Free Form Ladder Diagram (FFLD)
A Ladder Diagram is a list of rungs. Each rung represents a boolean data flow from
a power rail on the left. The power rail represents the TRUE state. The data flow
must be understood from the left to the right. Each symbol connected to the rung
either changes the rung state or performs an operation. Below are possible graphic
items to be entered in FFLD diagrams:

Power Rails
Contacts and Coils
Operations, Functions and Function blocks, represented by rectangular blocks
Labels and Jumps
Use of ST instructions in graphic languages

Use of the "EN" input and the "ENO" output for blocks

The rung state in a FFLD diagram is always boolean. Blocks are connected to the
rung with their first input and output. This implies that special "EN" and "ENO" input
and output are added to the block if its first input or output is not boolean.

The "EN" input is a condition. It means that the operation represented by the block is
not performed if the rung state (EN) is FALSE. The "ENO" output always represents
the sane status as the "EN" input: the rung state is not modified by a block having an
ENO output.

Below is the example of the "XOR" block, having boolean inputs and outputs, and
requiring no EN or ENO pin:

(* First input is the rung. The rung is the output *)

Below is the example of the ">" (greater than) block, having non boolean inputs and
a boolean output. This block has an "EN" input in FFLD language:

(* The comparison is executed only if EN is TRUE *)

Below is the example of the "SEL" function, having a first boolean input, but an
integer output. This block has an "ENO" output in FFLD language:

Kollmorgen™ | May 2012 33

KAS Reference Manual - PLC Library | 1 Programming languages

(* the input rung is the selector *)
(* ENO has the same value as SELECT *)

Finally, below is the example of an addition, having only numerical arguments. This
block has both "EN" and "ENO" pins in FFLD language:

(* The addition is executed only if EN is TRUE *)
(* ENO is equal to EN *)

1.6.1 Contacts and coils

The table below contains a list of the contact and coil types available:

Contacts Coils
Normally Open -| |- Energize -()-

Normally Closed -|/|- De-energize -(/)-

Positive Transition -|P|- Set (Latch) -(S)-

Negative Transition -|N|- Reset (Unlatch) -(R)-

Normally closed positive transition -|/P|- Positive transition sensing coil -(P)-

Normally closed negative transition -|/N|- Negative transition sensing coil -(N)-

Contacts are basic graphic elements of the FFLD language. A contact is associated
with a boolean variable which is displayed above the graphic symbol. A contact sets
the state of the rung on its right-hand side, according to the value of the associated
variable and the rung state on its left-hand side.

Below are the six possible contact symbols and how they change the flow:

34 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 1 Programming languages

Contacts Description
boolVariable

-] [-
Normal: the flow on the right is the boolean AND operation between:

(1) the flow on the left and (2) the associated variable.

boolVariable
-]/[-

Negated: the flow on the right is the boolean AND operation
between:

(1) the flow on the left and (2) the negation of the associated
variable.

boolVariable
-]P[-

Positive pulse: the flow on the right is TRUE only when the flow on
the left is TRUE and the associated variable changes from FALSE to
TRUE (rising edge)

boolVariable
-]N[-

Negative pulse: the flow on the right is TRUE only when the flow
on the left is TRUE and the associated variable changes from TRUE
to FALSE (falling edge)

boolVariable
-]/P[-

Normally Closed Positive pulse: the flow on the right is TRUE
only when the flow on the left is TRUE and the negation of the
associated variable changes from FALSE to TRUE (rising edge)

boolVariable
-]/N[-

Normally Closed Negative pulse: the flow on the right is TRUE
only when the flow on the left is TRUE and the negation of the
associated variable changes from TRUE to FALSE (falling edge)

Serialized and Parallel contacts

Two serial normal contacts represent an AND operation.

Two contacts in parallel represent an OR operation.

About Pulse

Each pulse is a single instance having its own memory.

After the pulse has been evaluated, its memory contains the previous value.
Conversely, if a pulse is not evaluated during a scan, its memory is not updated.

Coils are basic graphic elements of the FFLD language. A coil is associated with a
boolean variable which is displayed above the graphic symbol. A coil performs a
change of the associated variable according to the flow on its left-hand side.

Below are the six possible coil symbols:

Kollmorgen™ | May 2012 35

KAS Reference Manual - PLC Library | 1 Programming languages

Coils Description
boolVariable

-()-
Normal: the associated variable is forced to the value of the flow on
the left of the coil.

boolVariable
-(/)-

Negated: the associated variable is forced to the negation of the
flow on the left of the coil.

boolVariable
-(S)-

Set: the associated variable is forced to TRUE if the flow on the left
is TRUE. (no action if the flow is FALSE)

Rules for Set coil animation:
l Power Flow on left is TRUE:

l The horizontal wires on either side of the (S) are red
l The variable and the (S) are red

l Power Flow on left is FALSE and the (S) variable is Energized (ON)
l The horizontal lines on either sided of (S) are black
l The variable and the (S) are red

l In all other cases:
l The horizontal wires are black
l The variable and the (S) are black

boolVariable
-(R)-

Reset: the associated variable is forced to FALSE if the flow on the
left is TRUE. (no action if the rung state is FALSE)

Rules for Reset coil animation:
l Power Flow on left is TRUE:

l The horizontal lines are red
l The variable above (R) is black
l The R and the circle around the R are black

l Power Flow on left is FALSE and variable above reset coil is NOT
Energized (OFF)
l The horizontal lines are black
l The variable above (R) is black
l The R and the circle around the R are black

l Power Flow on left is FALSE and variable above reset coil is Ener-
gized (ON)
l The horizontal lines are black
l The variable above (R) is red
l The R and the circle around the R are red

boolVariable
-(P)-

Positive transition: the associated variable is forced to TRUE if the
flow on the left changes from FALSE to TRUE(and forced to FALSE
in all other cases)

36 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 1 Programming languages

Coils Description
boolVariable

-(N)-
Negative transition: the associated variable is forced to TRUE if
the flow on the left changes from TRUE to FALSE(and forced to
FALSE in all other cases)

Tip
When a contact or coil is selected, you can press the Spacebar to change its
type (normal, negated...)
When your application is running, you can select a contact and press the
Spacebar to swap its value between TRUE and FALSE

Warning
Although coils are commonly put at the end, the rung can be continued after a
coil. The flow is never changed by a coil symbol.

1.6.2 Power Rails
Vertical power rails are used in FFLD language for designing the limits of a rung.

The power rail on the left represents the TRUE value and initiates the rung state. The
power rail on the right receives connections from the coils and has no influence on
the execution of the program.

Power rails can also be used in FBD language. Only boolean objects can be
connected to left and right power rails.

See also

Contacts Coils

Kollmorgen™ | May 2012 37

This page intentionally left blank.

38 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2 Programming features and standard blocks
Refer to the following pages for an overview of the IEC 61131-3 programming
languages:

Program organization units
Data types
Structures
Variables
Arrays
Constant expressions
Conditional compiling
Handling exceptions

SFC: Sequential Function Chart
FBD: Function Block Diagram
FFLD: Free Form Ladder Diagram
ST: Structured Text
IL: Instruction List
Use of ST instructions in graphic languages

The following topics detail the set of programming features and standard blocks:

Basic operations
Boolean operations
Arithmetic operations
Comparisons
Type conversion functions
Selectors
Registers
Counters
Timers
Maths
Trigonometrics
String operations
Advanced

Note: Some other functions not documented here are reserved for diagnostics and
special operations. Please contact your technical support for further information.

2.1 Basic Operations
Below are the language features for basic data manipulation:

l Variable assignment
l Bit access
l Parenthesis
l Calling a function
l Calling a function block
l Calling a sub-program
l MOVEBLOCK: Copying/moving array items
l COUNTOF: Number of items in an array
l INC: Increase a variable
l DEC: decrease a variable
l NEG: integer negation (unary operator)
Below are the language features for controlling the execution of a program:

l Labels
l Jumps

Kollmorgen™ | May 2012 39

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

l RETURN
Below are the structured statements for controlling the execution of a program:

IF Conditional execution of statements.

WHILE Repeat statements while a condition is TRUE.

REPEAT Repeat statements until a condition is TRUE.

FOR Execute iterations of statements.

CASE Switch to one of various possible statements.

EXIT Exit from a loop instruction.

WAIT Delay program execution.

ON Conditional execution.

2.1.1 := FFLD FFLDN ST STN
Operator - variable assignment.

2.1.1.1 Inputs
IN : ANY Any variable or complex expression

2.1.1.2 Outputs
Q : ANY Forced variable

2.1.1.3 Remarks
The output variable and the input expression must have the same type. The forced
variable cannot have the "read only" attribute. In FFLD and FBD languages, the "1"
block is available to perform a "1 gain" data copy (1 copy). In FFLD language, the
input rung (EN) enables the assignment, and the output rung keeps the state of the
input rung. In IL language, the FFLD instruction loads the first operand, and the ST
instruction stores the current result into a variable. The current result and the operand
of ST must have the same type. Both FFLD and ST instructions can be modified by
"N" in case of a boolean operand for performing a boolean negation.

2.1.1.4 ST Language
Q := IN; (* copy IN into variable Q *)
Q := (IN1 + (IN2 / IN 3)) * IN4; (* assign the result of a complex expression *)
result := SIN (angle); (* assign a variable with the result of a function *)
time := MyTon.ET; (* assign a variable with an output parameter of a function block
*)

2.1.1.5 FBD Language

40 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.1.6 FFLD Language
(* The copy is executed only if EN is TRUE *)

2.1.1.7 IL Language:
Op1: FFLD IN (* current result is: IN *)
ST Q (* Q is: IN *)
FFLDN IN1 (* current result is: NOT (IN1) *)
ST Q (* Q is: NOT (IN1) *)
FFLD IN2 (* current result is: IN2 *)
STN Q (* Q is: NOT (IN2) *)

See also:

Parenthesis

2.1.2 Access to bits of an integer
You can directly specify a bit within n integer variable in expressions and diagrams,
using the following notation:

Variable.BitNo

Where:

Variable: is the name of an integer variable
BitNo: is the number of the bit in the integer.

The variable can have one of the following data types:

SINT, USINT, BYTE (8 bits from .0 to .7)
INT, UINT, WORD (16 bits from .0 to .15)
DINT, UDINT, DWORD (32 bits from .0 to 31)
LINT, ULINT, LWORD, (64 bits from 0 to 63)

0 always represents the less significant bit.

2.1.3 Calling a function
A function () calculates a result according to the current value of its inputs. A
function has no internal data and is not linked to declared instances, unlike a
function block. A function has only one output: the result of the function. A function
can be:

l a standard function (SHL, SIN...)
l a function written in "C" language and embedded on the target

2.1.3.1 ST Language
To call a function block in ST, you have to enter its name, followed by the input
parameters written between parentheses and separated by comas. The function call
can be inserted into any complex expression. A function call can be used as an input
parameter of another function. The following example demonstrates a call to "ODD"
and "SEL" functions:

Kollmorgen™ | May 2012 41

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

(* the following statement converts any odd integer value into the
nearest even integer *)
iEvenVal := SEL (ODD(iValue), iValue, iValue+1);

2.1.3.2 FBD and FFLD Languages
To call a function block in FBD or FFLD languages, you just need to insert the
function in the diagram and to connect its inputs and output.

2.1.3.3 IL Language:
To call a function block in IL language, you must load its first input parameter before
the call, and then use the function name as an instruction, followed by the other input
parameters, separated by comas. The result of the function is then the current result.
The following example demonstrates a call to "ODD" and "SEL" functions:

(* the following statement converts any odd integer into "0" *)
Op1: FFLD iValue

ODD
SEL iValue, 0
ST iResult

See also:

Differences Between Functions and Function Blocks

2.1.4 Calling a function block CAL CALC CALNC CALCN
A function block () groups an algorithm and a set of private data. It has inputs
and outputs. A function block can be:

l a standard function block (RS, TON...)
l a block written in "C" language and embedded on the target
l a User-Defined Function Block (UDFB) written in ST, FBD, FFLD or IL
To use a function block, you have to declare an instance of the block as a variable,
identified by a unique name. Each instance of a function block as its own set of
private data and can be called separately. A call to a function block instance
processes the block algorithm on the private data of the instance, using the specified
input parameters.

Tip
Best Practice: It is recommended that function blocks be put in an N step and
not in P0 or P1, as those steps are executed only once. If you must use an FB in
P0 or P1 be sure to call it again in the N state so it may finish.

2.1.4.1 ST Language
To call a function block in ST, you have to specify the name of the instance, followed
by the input parameters written between parentheses and separated by comas. To
have access to an output parameter, use the name of the instance followed by a dot
'.' and the name of the wished parameter. The following example demonstrates a call
to an instance of TON function block:

(* MyTimer is declared as an instance of TON *)
MyTimer (bTrig, t#2s); (* calls the function block *)
TimerOutput := MyTimer.Q;
ElapsedTime := MyTimer.ET;

42 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.4.2 FBD and FFLD Languages
To call a function block in FBD or FFLD languages, you just need to insert the block
in the diagram and to connect its inputs and outputs. The name of the instance must
be specified upon the rectangle of the block.

2.1.4.3 IL Language
To call a function block in IL language, you must use the CAL instruction, and use a
declared instance of the function block. The instance name is the operand of the CAL
instruction, followed by the input parameters written between parentheses and
separated by comas. Alternatively the CALC, CALCN or CALNC conditional
instructions can be used:

CAL calls the function block

CALC calls the function block if the current result is TRUE

CALNC calls the function block if the current result is FALSE

CALCN same as CALNC

The following example demonstrates a call to an instance of TON function block:

(* MyTimer is declared as an instance of TON *)
Op1: CAL MyTimer (bTrig, t#2s)
FFLD MyTimer.Q
ST TimerOutput
FFLD MyTimer.ET
ST ElapsedTimer

Op2: FFLD bCond
CALC MyTimer (bTrig, t#2s) (* called only if bCond is TRUE *)
Op3: FFLD bCond
CALNC MyTimer (bTrig, t#2s) (* called only if bCond is FALSE *)

See also:

Differences Between Functions and Function Blocks

2.1.5 Calling a sub-program
A sub-program is called by another program. Unlike function blocks, local variables of
a sub-program are not instantiated, and thus you do not need to declare instances. A
call to a sub-program processes the block algorithm using the specified input
parameters. Output parameters can then be accessed.

2.1.5.1 ST Language
To call a sub-program in ST, you have to specify its name, followed by the input
parameters written between parentheses and separated by comas. To have access to
an output parameter, use the name of the sub-program followed by a dot '.' and the
name of the wished parameter:

MySubProg (i1, i2); (* calls the sub-program *)
Res1 := MySubProg.Q1;
Res2 := MySubProg.Q2;

Alternatively, if a sub-program has one and only one output parameter, it can be
called as a function in ST language:

Res := MySubProg (i1, i2);

Kollmorgen™ | May 2012 43

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.5.2 FBD and FFLD Languages
To call a sub-program in FBD or FFLD languages, you just need to insert the block
in the diagram and to connect its inputs and outputs.

2.1.5.3 IL Language
To call a sub-program in IL language, you must use the CAL instruction with the
name of the sub-program, followed by the input parameters written between
parentheses and separated by comas. Alternatively the CALC, CALCN or CALNC
conditional instructions can be used:

CAL Calls the sub-program
CALC Calls the sub-program if the current result is TRUE
CALNC Calls the sub-program if the current result is FALSE
CALCN same as CALNC

Here is an example:

Op1: CAL MySubProg (i1, i2)
FFLD MySubProg.Q1
ST Res1
FFLD MySubProg.Q2
ST Res2

2.1.6 CASE OF ELSE END_CASE
Statement - switch between enumerated statements.

2.1.6.1 Syntax

CASE <DINT expression> OF
<value> :
 <statements>
<value> , <value> :
 <statements>;
<value> .. <value> :
 <statements>;
ELSE
 <statements>
END_CASE;

2.1.6.2 Remarks
All enumerated values correspond to the evaluation of the DINT expression and are
possible cases in the execution of the statements. The statements specified after the
ELSE keyword are executed if the expression takes a value which is not enumerated
in the switch. For each case, you must specify either a value, or a list of possible
values separated by comas (",") or a range of values specified by a "min .. max"
interval. You must enter space characters before and after the ".." separator.

44 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.6.3 ST Language
(* this example check first prime numbers *)
CASE iNumber OF
0 :
Alarm := TRUE;
AlarmText := '0 gives no result';

1 .. 3, 5 :
bPrime := TRUE;

4, 6 :
bPrime := FALSE;

ELSE
Alarm := TRUE;
AlarmText := 'I don't know after 6 !';

END_CASE;

2.1.6.4 FBD Language
Not available

2.1.6.5 FFLD Language
Not available

2.1.6.6 IL Language
Not available

See also

IF WHILE REPEAT FOR EXIT

2.1.7 COUNTOF
Function - Returns the number of items in an array

2.1.7.1 Inputs
ARR : ANY Declared array

2.1.7.2 Outputs
Q : DINT Total number of items in the array

2.1.7.3 Remarks
The input must be an array and can have any data type. This function is particularly
useful to avoid writing directly the actual size of an array in a program, and thus
keep the program independent from the declaration. Example:

FOR i := 1 TO CountOf (MyArray) DO
MyArray[i-1] := 0;

END_FOR;

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

Examples

array return
Arr1 [0..9] 10

Arr2 [0..4 , 0..9] 50

Kollmorgen™ | May 2012 45

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.7.4 ST Language
Q := CountOf (ARR);

2.1.7.5 FBD Language

2.1.7.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.1.7.7 IL Language
Not available

2.1.8 DEC
Function - Decrease a numerical variable

2.1.8.1 Inputs
IN : ANY Numerical variable (increased after call).

2.1.8.2 Outputs
Q : ANY Decreased value

2.1.8.3 Remarks
When the function is called, the variable connected to the "IN" input is decreased and
copied to Q. All data types are supported except BOOL and STRING: for these types,
the output is the copy of IN.

For real values, variable is decreased by "1.0". For time values, variable is decreased
by 1 ms.

The IN input must be directly connected to a variable, and cannot be a constant or
complex expression.

This function is particularly designed for ST language. It allows simplified writing as
assigning the result of the function is not mandatory.

2.1.8.4 ST Language

IN := 2;
Q := DEC (IN);
(* now: IN = 1 ; Q = 1 *)

DEC (IN); (* simplified call *)

46 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.8.5 FBD Language

2.1.8.6 FFLD Language

2.1.8.7 IL Language
not available

2.1.9 EXIT
Statement - Exit from a loop statement

2.1.9.1 Remarks
The EXIT statement indicates that the current loop (WHILE, REPEAT or FOR) must be
finished. The execution continues after the END_WHILE, END_REPEAT or END_
FOR keyword or the loop where the EXIT is. EXIT quits only one loop and cannot be
used to exit at the same time several levels of nested loops.

Warning
loop instructions can lead to infinite loops that block the target cycle.

2.1.9.2 ST Language

(* this program searches for the first non null item of an array *)
iFound = -1; (* means: not found *)
FOR iPos := 0 TO (iArrayDim - 1) DO

IF iPos <> 0 THEN
iFound := iPos;
EXIT;

END_IF;
END_FOR;

2.1.9.3 FBD Language
Not available

2.1.9.4 FFLD Language
Not available

2.1.9.5 IL Language
Not available

See also

IF WHILE REPEAT FOR CASE

Kollmorgen™ | May 2012 47

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.10 FOR TO BY END_FOR
Statement - Iteration of statement execution.

2.1.10.1 Syntax
FOR <index> := <minimum> TO <maximum> BY <step> DO
<statements>

END_FOR;

index = DINT internal variable used as index
minimum = DINT expression: initial value for index
maximum = DINT expression: maximum allowed value for index
step = DINT expression: increasing step of index after each iteration (default is 1)

2.1.10.2 Remarks
The "BY <step>" statement can be omitted. The default value for the step is 1.

2.1.10.3 ST Language

iArrayDim := 10;

(* resets all items of the array to 0 *)
FOR iPos := 0 TO (iArrayDim - 1) DO

MyArray[iPos] := 0;
END_FOR;

(* set all items with odd index to 1 *)
FOR iPos := 1 TO 9 BY 2 DO

MyArray[ipos] := 1;
END_FOR;

2.1.10.4 FBD Language
Not available

2.1.10.5 FFLD Language
Not available

2.1.10.6 IL Language
Not available

See also

IF WHILE REPEAT CASE EXIT

2.1.11 IF THEN ELSE ELSIF END_IF
Statement - Conditional execution of statements.

2.1.11.1 Syntax
IF <BOOL expression> THEN
<statements>
ELSIF <BOOL expression> THEN
<statements>
ELSE
<statements>
END_IF;

48 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.11.2 Remarks
The IF statement is available in ST only. The execution of the statements is
conditioned by a boolean expression. ELSIF and ELSE statements are optional.
There can be several ELSIF statements.

2.1.11.3 ST Language

(* simple condition *)
IF bCond THEN

Q1 := IN1;
Q2 := TRUE;
END_IF;

(* binary selection *)
IF bCond THEN

Q1 := IN1;
Q2 := TRUE;
ELSE
Q1 := IN2;
Q2 := FALSE;
END_IF;

(* enumerated conditions *)
IF bCond1 THEN
Q1 := IN1;
ELSIF bCond2 THEN
Q1 := IN2;
ELSIF bCond3 THEN
Q1 := IN3;
ELSE
Q1 := IN4;
END_IF;

2.1.11.4 FBD Language
Not available

2.1.11.5 FFLD Language
Not available

2.1.11.6 IL Language
Not available

See also

WHILE REPEAT FOR CASE EXIT

2.1.12 INC
Function - Increase a numerical variable

2.1.12.1 Inputs
IN : ANY Numerical variable (increased after call).

2.1.12.2 Outputs
Q : ANY Increased value

Kollmorgen™ | May 2012 49

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.12.3 Remarks
When the function is called, the variable connected to the "IN" input is increased and
copied to Q. All data types are supported except BOOL and STRING: for these types,
the output is the copy of IN.

For real values, variable is increased by "1.0". For time values, variable is increased
by 1 ms.

The IN input must be directly connected to a variable, and cannot be a constant or
complex expression.

This function is particularly designed for ST language. It allows simplified writing as
assigning the result of the function is not mandatory.

2.1.12.4 ST Language

IN := 1;
Q := INC (IN);
(* now: IN = 2 ; Q = 2 *)

INC (IN); (* simplified call *)

2.1.12.5 FBD Language

2.1.12.6 FFLD Language

2.1.12.7 IL Language
not available

2.1.13 Jumps JMP JMPC JMPNC JMPCN
Statement - Jump to a label.

2.1.13.1 Remarks
A jump to a label branches the execution of the program after the specified label.

In ST language, labels and jumps cannot be used.

In FBD language, a jump is represented by a signpost containing the label name.
The input of the signpost must be connected to a valid boolean signal. The jump is
performed only if the input is TRUE.

In FFLD language, the "-->>" symbol, followed by the target label name, is used as a
coil at the end of a rung. The jump is performed only if the rung state is TRUE.

In IL language, JMP, JMPC, JMPCN and JMPNC instructions are used to specify a
jump. The destination label is the operand of the jump instruction.

50 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

Warning
Backward jumps can lead to infinite loops that block the target cycle.

2.1.13.2 ST Language
Not available

2.1.13.3 FBD Language
(* In this example the TON block will not be called if bEnable is TRUE *)

2.1.13.4 FFLD Language
Each rung can begin with a label.

Labels are used as destination for jump instructions.

In this example the network #6 is skipped if IN1 is TRUE.

2.1.13.5 IL Language
Below is the meaning of possible jump instructions:
JMP Jump always
JMPC Jump if the current result is TRUE
JMPNC Jump if the current result is FALSE
JMPCN Same as JMPNC

(* My comment *)

Start: FFLD IN1
 JMPC TheRest (* Jump to "TheRest" if IN1 is TRUE *)

Kollmorgen™ | May 2012 51

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

FFLD IN2 (* these three instructions are not
executed *)

ST Q2 (* if IN1 is TRUE *)
JMP TheEnd (* unconditional jump to "TheEnd" *)

TheRest: FFLD IN3
ST Q3

TheEnd:

See also

Labels RETURN

2.1.14 LABELS
Statement - Destination of a Jump instruction.

2.1.14.1 Remarks
Labels are used as a destination of a jump instruction in FDB, FFLD or IL language.
Labels and jumps cannot be used in structured ST language. A label must be
represented by a unique name, followed by a colon (":"). In FBD language, labels
can be inserted anywhere in the diagram, and are connected to nothing. In FFLD
language, a label must identify a rung, and is shown on the left side of the rung. In
IL language, labels are destination for JMP, JMPC, JMPCN and JMPNC instructions.
They must be written before the instruction at the beginning of the line, and must
index the beginning of a valid IL statement: FFLD (load) instruction, or unconditional
instructions such as CAL, JMP or RET. The label can also be written alone on a line
before the indexed instruction. In all languages, it is not mandatory that a label be a
target of a jump instruction. You can also use label for marking parts of the programs
in order to increase its readability.

2.1.14.2 ST Language
Not available

2.1.14.3 FBD Language
(* In this example the DTat block will not be called if bEnable is TRUE *)

2.1.14.4 FFLD Language
In this example the network #6 is skipped if IN1 is TRUE.

52 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.14.5 IL Language

Start: FFLD IN1 (* unused label - just for readability *)
JMPC TheRest (* Jump to "TheRest" if IN1 is TRUE *)

FFLD IN2 (* these two instructions are not executed
*)

ST Q2 (* if IN1 is TRUE *)

TheRest: FFLD IN3 (* label used as the jump destination *)
ST Q3

See also

Jumps RETURN

2.1.15 MOVEBLOCK
Function - Move/Copy items of an array.

2.1.15.1 Inputs

SRC: ANY (*) Array containing the source of the copy
DST : ANY (*) Array containing the destination of the copy
PosSRC: DINT Index of the first character in SRC
PosDST : DINT Index of the destination in DST
NB : DINT Number of items to be copied

(*) SRC and DST cannot be a STRING

2.1.15.2 Outputs

OK : BOOL TRUE if successful

2.1.15.3 Remarks
Arrays of string are not supported by this function.

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
function is not available in IL language.

The function copies a number (NB) of consecutive items starting at the PosSRC index
in SRC array to PosDST position in DST array. SRC and DST can be the same
array. In that case, the function avoids lost items when source and destination areas
overlap.

This function checks array bounds and is always safe. The function returns TRUE if
successful. It returns FALSE if input positions and number do not fit the bounds of
SRC and DST arrays.

Kollmorgen™ | May 2012 53

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.15.4 ST Language

OK := MOVEBLOCK (SRC, DST, PosSRS, PosDST, NB);

2.1.15.5 FBD Language

2.1.15.6 FFLD Language
(* The function is executed only if EN is TRUE *)

2.1.15.7 IL Language
Not available

2.1.16 NEG -
Operator - Performs an integer negation of the input.

2.1.16.1 Inputs

IN : DINT Integer value

2.1.16.2 Outputs

Q : DINT Integer negation of the input

2.1.16.3 Truth table (examples)
IN Q
0 0

1 -1

-123 123

54 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.16.4 Remarks
In FBD and FFLD language, the block "NEG" can be used.

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

This feature is not available in IL language. In ST language, "-" can be followed by a
complex boolean expression between parentheses.

2.1.16.5 ST Language

Q := -IN;
Q := - (IN1 + IN2);

2.1.16.6 FBD Language

2.1.16.7 FFLD Language
(* The negation is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.1.16.8 IL Language
Not available

2.1.17 ON
Statement - Conditional execution of statements.

The ON instruction provides a simpler syntax for checking the rising edge of a
Boolean condition.

2.1.17.1 Syntax

ON <BOOL expression> DO
 <statements>
END_DO;

2.1.17.2 Remarks
Statements within the ON structure are executed only when the boolean expression
rises from FALSE to TRUE. The ON instruction avoids systematic use of the R_TRIG
function block or other "last state" flags.

The ON syntax is available in any program, sub-program or UDFB. It is available in
both T5 p-code or native code compilation modes.

This statement is an extension to the standard and is not IEC61131-3 compliant.

Kollmorgen™ | May 2012 55

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

Warning
This instruction should not be used inside UDFBs. This instruction is not
UDFB safe.

2.1.17.3 ST Language

(* This example counts the rising edges of variable bIN *)
ON bIN DO

diCount := diCount + 1;
END_DO;

2.1.18 ()
Operator - force the evaluation order in a complex expression.

2.1.18.1 Remarks
Parentheses are used in ST and IL language for changing the default evaluation
order of various operations within a complex expression. For instance, the default
evaluation of "2 * 3 + 4" expression in ST language gives a result of 10 as "*"
operator has highest priority. Changing the expression as "2 * (3 + 4)" gives a
result of 14. Parentheses can be nested in a complex expression.

Below is the default evaluation order for ST language operations (1rst is highest
priority):

Unary operators - NOT

Multiply/Divide * /

Add/Subtract + -

Comparisons < > <= >= = <>

Boolean And & AND

Boolean Or OR

Exclusive OR XOR

In IL language, the default order is the sequence of instructions. Each new instruction
modifies the current result sequentially. In IL language, the opening parenthesis "(" is
written between the instruction and its operand. The closing parenthesis ")" must be
written alone as an instruction without operand.

2.1.18.2 ST Language

Q := (IN1 + (IN2 / IN 3)) * IN4;

2.1.18.3 FBD Language
Not available

2.1.18.4 FFLD Language
Not available

2.1.18.5 IL Language

Op1: FFLD(IN1
ADD(IN2
MUL IN3
)
SUB IN4
)
ST Q (* Q is: (IN1 + (IN2 * IN3) - IN4) *)

56 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

See also

Assignment

2.1.19 REPEAT UNTIL END_REPEAT
Statement - Repeat a list of statements.

2.1.19.1 Syntax
REPEAT
<statements>

UNTIL <BOOL expression> END_REPEAT;

2.1.19.2 Remarks
The statements between "REPEAT" and "UNTIL" are executed until the boolean
expression is TRUE. The condition is evaluated after the statements are executed.
Statements are executed at least once.

Warning
Loop instructions can lead to infinite loops that block the target cycle. Never test
the state of an input in the condition as the input will not be refreshed before the
next cycle.

2.1.19.3 ST Language

iPos := 0;
REPEAT

MyArray[iPos] := 0;
iNbCleared := iNbCleared + 1;
iPos := iPos + 1;

UNTIL iPos = iMax END_REPEAT;

2.1.19.4 FBD Language
Not available

2.1.19.5 FFLD Language
Not available

2.1.19.6 IL Language
Not available

See also

IF WHILE FOR CASE EXIT

2.1.20 RETURN RET RETC RETNC RETCN
Statement - Jump to the end of the program.

2.1.20.1 Remarks
The "RETURN" statement jumps to the end of the program. In FBD language, the
return statement is represented by the "<RETURN>" symbol. The input of the symbol
must be connected to a valid boolean signal. The jump is performed only if the input
is TRUE. In FFLD language, the "<RETURN>" symbol is used as a coil at the end of
a rung. The jump is performed only if the rung state is TRUE. In IL language, RET,
RETC, RETCN and RETNC instructions are used.

Kollmorgen™ | May 2012 57

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

When used within an action block of an SFC step, the RETURN statement jumps to
the end of the action block.

2.1.20.2 ST Language

IF NOT bEnable THEN
RETURN;

END_IF;
(* the rest of the program will not be executed if bEnable is FALSE
*)

2.1.20.3 FBD Language
(* In this example the DTat block will not be called if bIgnore is TRUE *)

2.1.20.4 FFLD Language
(* In this example all the networks above 5 are skipped if ENABLE is FALSE *)

58 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.1.20.5 IL Language
Below is the meaning of possible instructions:
RET Jump to the end always
RETC Jump to the end if the current result is TRUE
RETNC Jump to the end if the current result is FALSE
RETCN Same as RETNC

Start: FFLD IN1
RETC (* Jump to the end if IN1 is TRUE *)

FFLD IN2 (* these instructions are not executed *)
ST Q2 (* if IN1 is TRUE *)
RET (* Jump to the end unconditionally *)

FFLD IN3 (* these instructions are never executed *)
ST Q3

See also

Labels Jumps

2.1.21 WHILE DO END_WHILE
Statement - Repeat a list of statements.

2.1.21.1 Syntax
WHILE <BOOL expression> DO
<statements>

END_WHILE ;

2.1.21.2 Remarks
The statements between "DO" and "END_WHILE" are executed while the boolean
expression is TRUE. The condition is evaluated beforethe statements are executed. If
the condition is FALSE when WHILE is first reached, statements are never executed.

Warning
Loop instructions can lead to infinite loops that block the target cycle. Never test
the state of an input in the condition as the input will not be refreshed before the
next cycle.

2.1.21.3 ST Language

iPos := 0;
WHILE iPos < iMax DO

MyArray[iPos] := 0;
iNbCleared := iNbCleared + 1;

END_WHILE;

2.1.21.4 FBD Language
Not available

2.1.21.5 FFLD Language
Not available

2.1.21.6 IL Language
Not available

Kollmorgen™ | May 2012 59

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

See also

IF REPEAT FOR CASE EXIT

2.2 Boolean operations
Below are the standard operators for managing booleans:

AND performs a boolean AND

OR performs a booleanOR

XOR performs an exclusive OR

NOT performs a boolean negation of its input

QOR qualified OR

S force a boolean output to TRUE

R force a boolean output to FALSE

Below are the available blocks for managing boolean signals:

RS reset dominant bistable

SR set dominant bistable

R_TRIG rising pulse detection

F_TRIG falling pulse detection

SEMA semaphore

FLIPFLOP flipflop^bistable

2.2.1 AND ANDN &
Operator - Performs a logical AND of all inputs.

2.2.1.1 Inputs
IN1 : BOOL First boolean input
IN2 : BOOL Second boolean input

2.2.1.2 Outputs
Q : BOOL Boolean AND of all inputs

2.2.1.3 Truth table
IN1 IN2 Q
0 0 0
0 1 0
1 0 0
1 1 1

2.2.1.4 Remarks
In FBD and FFLD languages, the block is called "&" and can have up to 16 inputs.
To select the number, right-click on the block and choose the Set number of inputs
command in the contextual menu.

In IL language, the AND instruction performs a logical AND between the current
result and the operand. The current result must be boolean. The ANDN instruction
performs an AND between the current result and the boolean negation of the
operand. In ST and IL languages, "&" can be used instead of "AND".

2.2.1.5 ST Language
Q := IN1 AND IN2;
Q := IN1 & IN2 & IN3;

60 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.2.1.6 FBD Language
(* the block can have up to 16 inputs *)

2.2.1.7 FFLD Language

2.2.1.8 IL Language:
Op1: FFLD IN1

& IN2 (* "&" or "AND" can be used *)
ST Q (* Q is equal to: IN1 AND IN2 *)

Op2: FFLD IN1
AND IN2
&N IN3 (* "&N" or "ANDN" can be used *)
ST Q (* Q is equal to: IN1 AND IN2 AND (NOT IN3) *)

See also

OR XOR NOT

2.2.2 FLIPFLOP
Function Block - Flipflop bistable.

2.2.2.1 Inputs
IN : BOOL Swap command (on rising edge)
RST : BOOL Reset to FALSE

2.2.2.2 Outputs
Q : BOOL Output

2.2.2.3 Remarks
The output is systematically reset to FALSE if RST is TRUE.
The output changes on each rising edge of the IN input, if RST is FALSE.

Kollmorgen™ | May 2012 61

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.2.2.4 ST Language
(* MyFlipFlop is declared as an instance of FLIPFLOP function block *)
MyFlipFlop (IN, RST);
Q := MyFlipFlop.Q;

2.2.2.5 FBD Language

2.2.2.6 FFLD Language

2.2.2.7 IL Language
(* MyFlipFlop is declared as an instance of FLIPFLOP function block *)
Op1: CAL MyFlipFlop (IN, RST)

FFLD MyFlipFlop.Q
ST Q1

See also

R S SR

2.2.3 F_TRIG
Function Block - Falling pulse detection

2.2.3.1 Inputs
CLK : BOOL Boolean signal

2.2.3.2 Outputs
Q : BOOL TRUE when the input changes from TRUE to FALSE

62 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.2.3.3 Truth table
CLK CLK

prev
Q

0 0 0
0 1 1
1 0 0
1 1 0

2.2.3.4 Remarks
Although]P[and]N[contacts can be used in FFLD language, it is recommended to
use declared instances of R_TRIG or F_TRIG function blocks in order to avoid
contingencies during an Online Change.

2.2.3.5 ST Language
(* MyTrigger is declared as an instance of F_TRIG function block *)
MyTrigger (CLK);
Q := MyTrigger.Q;

2.2.3.6 FBD Language

2.2.3.7 FFLD Language

2.2.3.8 IL Language:
(* MyTrigger is declared as an instance of F_TRIG function block *)
Op1: CAL MyTrigger (CLK)
FFLD MyTrigger.Q
ST Q

See also

R_TRIG

2.2.4 NOT
Operator - Performs a boolean negation of the input.

2.2.4.1 Inputs
IN : BOOL Boolean value

2.2.4.2 Outputs
Q : BOOL Boolean negation of the input

Kollmorgen™ | May 2012 63

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.2.4.3 Truth table
IN Q
0 1
1 0

2.2.4.4 Remarks
In FBD language, the block "NOT" can be used. Alternatively, you can use a link
terminated by a "o" negation. In FFLD language, negated contacts and coils can be
used. In IL language, the "N" modifier can be used with instructions FFLD, AND, OR,
XOR and ST. It represents a negation of the operand. In ST language, NOT can be
followed by a complex boolean expression between parentheses.

2.2.4.5 ST Language
Q := NOT IN;
Q := NOT (IN1 OR IN2);

2.2.4.6 FBD Language
(* explicit use of the "NOT" block *)

(* use of a negated link: Q is IN1 AND NOT IN2 *)

2.2.4.7 FFLD Language
(* Negated contact: Q is: IN1 AND NOT IN2 *)

(* Negated coil: Q is NOT (IN1 AND IN2) *)

2.2.4.8 IL Language:
Op1: FFLDN IN1

OR IN2
ST Q (* Q is equal to: (NOT IN1) OR IN2 *)

Op2: FFLD IN1
AND IN2
STN Q (* Q is equal to: NOT (IN1 AND IN2) *)

See also

AND OR XOR

2.2.5 OR ORN
Operator - Performs a logical OR of all inputs.

64 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.2.5.1 Inputs
IN1 : BOOL First boolean input
IN2 : BOOL Second boolean input

2.2.5.2 Outputs
Q : BOOL Boolean OR of all inputs

2.2.5.3 Truth table
IN1 IN2 Q
0 0 0
0 1 1
1 0 1
1 1 1

2.2.5.4 Remarks
In FBD language, the block can have up to 16 inputs. The block is called ">=1" in
FBD language. In FFLD language, an OR operation is represented by contacts in
parallel. In IL language, the OR instruction performs a logical OR between the current
result and the operand. The current result must be boolean. The ORN instruction
performs an OR between the current result and the boolean negation of the operand.

2.2.5.5 ST Language
Q := IN1 OR IN2;
Q := IN1 OR IN2 OR IN3;

2.2.5.6 FBD Language
(* the block can have up to 16 inputs *)

2.2.5.7 FFLD Language
(* parallel contacts *)

2.2.5.8 IL Language
Op1: FFLD IN1

OR IN2
ST Q (* Q is equal to: IN1 OR IN2 *)

Op2: FFLD IN1
ORN IN2
ST Q (* Q is equal to: IN1 OR (NOT IN2) *)

See also

AND XOR NOT

Kollmorgen™ | May 2012 65

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.2.6 R
Operator - Force a boolean output to FALSE.

2.2.6.1 Inputs
RESET : BOOL Condition

2.2.6.2 Outputs
Q : BOOL Output to be forced

2.2.6.3 Truth table
RESET Q

prev
Q

0 0 0
0 1 1
1 0 0
1 1 0

2.2.6.4 Remarks
S and R operators are available as standard instructions in the IL language. In FFLD
languages they are represented by (S) and (R) coils. In FBD language, you can use
(S) and (R) coils, but you must prefer RS and SR function blocks. Set and reset
operations are not available in ST language.

2.2.6.5 ST Language
Not available.

2.2.6.6 FBD Language
Not available. Use RS or SR function blocks.

2.2.6.7 FFLD Language
(* use of "R" coil *)

2.2.6.8 IL Language:
Op1: FFLD RESET

R Q (* Q is forced to FALSE if RESET is TRUE *)
(* Q is unchanged if RESET is FALSE *)

See also

S RS SR

2.2.7 RS
Function Block - Reset dominant bistable.

2.2.7.1 Inputs
SET : BOOL Condition for forcing to TRUE
RESET1 : BOOL Condition for forcing to FALSE (highest priority command)

66 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.2.7.2 Outputs
Q1 : BOOL Output to be forced

2.2.7.3 Truth table
SET RESET1 Q1

prev
Q1

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

2.2.7.4 Remarks
The output is unchanged when both inputs are FALSE. When both inputs are TRUE,
the output is forced to FALSE (reset dominant).

2.2.7.5 ST Language
(* MyRS is declared as an instance of RS function block *)
MyRS (SET, RESET1);
Q1 := MyRS.Q1;

2.2.7.6 FBD Language

2.2.7.7 FFLD Language

2.2.7.8 IL Language:
(* MyRS is declared as an instance of RS function block *)
Op1: CAL MyRS (SET, RESET1)

FFLD MyRS.Q1
ST Q1

See also

R S SR

2.2.8 R_TRIG
Function Block - Rising pulse detection

Kollmorgen™ | May 2012 67

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.2.8.1 Inputs
CLK : BOOL Boolean signal

2.2.8.2 Outputs
Q : BOOL TRUE when the input changes from FALSE to TRUE

2.2.8.3 Truth table
CLK CLK

prev
Q

0 0 0
0 1 0
1 0 1
1 1 0

2.2.8.4 Remarks
Although]P[and]N[contacts can be used in FFLD language, it is recommended to
use declared instances of R_TRIG or F_TRIG function blocks in order to avoid
contingencies during an Online Change.

2.2.8.5 ST Language
(* MyTrigger is declared as an instance of R_TRIG function block *)
MyTrigger (CLK);
Q := MyTrigger.Q;

2.2.8.6 FBD Language

2.2.8.7 FFLD Language
(* the input signal is the rung - the rung is the output *)

2.2.8.8 IL Language:
(* MyTrigger is declared as an instance of R_TRIG function block *)
Op1: CAL MyTrigger (CLK)
FFLD MyTrigger.Q
ST Q

See also

68 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

F_TRIG

2.2.9 S
Operator - Force a boolean output to TRUE.

2.2.9.1 Inputs
SET : BOOL Condition

2.2.9.2 Outputs
Q : BOOL Output to be forced

2.2.9.3 Truth table
SET Q

prev
Q

0 0 0
0 1 1
1 0 1
1 1 1

2.2.9.4 Remarks
S and R operators are available as standard instructions in the IL language. In FFLD
languages they are represented by (S) and (R) coils In FBD language, you can use
(S) and (R) coils, but you must prefer RS and SR function blocks. Set and reset
operations are not available in ST language.

2.2.9.5 ST Language
Not available.

2.2.9.6 FBD Language
Not available. Use RS or SR function blocks.

2.2.9.7 FFLD Language
(* use of "S" coil *)

2.2.9.8 IL Language:
Op1: FFLD SET

S Q (* Q is forced to TRUE if SET is TRUE *)
(* Q is unchanged if SET is FALSE *)

See also

R RS SR

2.2.10 SEMA
Function Block - Semaphore.

2.2.10.1 Inputs
CLAIM : BOOL Takes the semaphore
RELEASE : BOOL Releases the semaphore

Kollmorgen™ | May 2012 69

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.2.10.2 Outputs
BUSY : BOOL True if semaphore is busy

2.2.10.3 Remarks
The function block implements the following algorithm:

BUSY := mem;
if CLAIM then

mem := TRUE;
else if RELEASE then

BUSY := FALSE;
mem := FALSE;

end_if;

In FFLD language, the input rung is the CLAIM command. The output rung is the
BUSY output signal.

2.2.10.4 ST Language
(* MySema is a declared instance of SEMA function block *)
MySema (CLAIM, RELEASE);
BUSY := MyBlinker.BUSY;

2.2.10.5 FBD Language

2.2.10.6 FFLD Language

2.2.10.7 IL Language:
(* MySema is a declared instance of SEMA function block *)
Op1: CAL MySema (CLAIM, RELEASE)

FFLD MyBlinker.BUSY
ST BUSY

2.2.11 SR
Function Block - Set dominant bistable.

2.2.11.1 Inputs
SET1 : BOOL Condition for forcing to TRUE (highest priority command)
RESET : BOOL Condition for forcing to FALSE

70 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.2.11.2 Outputs
Q1 : BOOL Output to be forced

2.2.11.3 Truth table
SET1 RESET Q1

prev
Q1

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

2.2.11.4 Remarks
The output is unchanged when both inputs are FALSE. When both inputs are TRUE,
the output is forced to TRUE (set dominant).

2.2.11.5 ST Language
(* MySR is declared as an instance of SR function block *)
MySR (SET1, RESET);
Q1 := MySR.Q1;

2.2.11.6 FBD Language

2.2.11.7 FFLD Language
(* the SET1 command is the rung - the rung is the output *)

2.2.11.8 IL Language:
(* MySR is declared as an instance of SR function block *)
Op1: CAL MySR (SET1, RESET)

FFLD MySR.Q1
ST Q1

See also

R S RS

2.2.12 XOR XORN
Operator - Performs an exclusive OR of all inputs.

Kollmorgen™ | May 2012 71

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.2.12.1 Inputs
IN1 : BOOL First boolean input
IN2 : BOOL Second boolean input

2.2.12.2 Outputs
Q : BOOL Exclusive OR of all inputs

2.2.12.3 Truth table
IN1 IN2 Q
0 0 0
0 1 1
1 0 1
1 1 0

2.2.12.4 Remarks
The block is called "=1" in FBD and FFLD languages. In IL language, the XOR
instruction performs an exclusive OR between the current result and the operand. The
current result must be boolean. The XORN instruction performs an exclusive between
the current result and the boolean negation of the operand.

2.2.12.5 ST Language
Q := IN1 XOR IN2;
Q := IN1 XOR IN2 XOR IN3;

2.2.12.6 FBD Language

2.2.12.7 FFLD Language
(* First input is the rung. The rung is the output *)

2.2.12.8 IL Language
Op1: FFLD IN1

XOR IN2
ST Q (* Q is equal to: IN1 XOR IN2 *)

Op2: FFLD IN1
XORN IN2
ST Q (* Q is equal to: IN1 XOR (NOT IN2) *)

See also

AND OR NOT

72 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.3 Arithmetic operations
Below are the standard operators that perform arithmetic operations:

+ addition

- subtraction

* multiplication

/ division

- (NEG) integer negation (unary operator)

Below are the standard functions that perform arithmetic operations:

MIN get theminimum of two integers or an ANY

MAX get themaximum of two integers or an ANY

LIMIT bound an integer to low and high limits or an ANY

MOD modulo

ODD test if an integer is
odd

SetWithin Force a value when within an interval

2.3.1 + ADD
Operator - Performs an addition of all inputs.

2.3.1.1 Inputs
IN1 : ANY First input
IN2 : ANY Second input

2.3.1.2 Outputs
Q : ANY Result: IN1 + IN2

2.3.1.3 Remarks
All inputs and the output must have the same type. In FBD language, the block can
have up to 16 inputs. In FFLD language, the input rung (EN) enables the operation,
and the output rung keeps the same value as the input rung. In IL language, the
ADD instruction performs an addition between the current result and the operand.
The current result and the operand must have the same type.

The addition can be used with strings. The result is the concatenation of the input
strings.

2.3.1.4 ST Language
Q := IN1 + IN2;
MyString := 'He' + 'll ' + 'o'; (* MyString is equal to 'Hello' *)

2.3.1.5 FBD Language
(* the block can have up to 16 inputs *)

Kollmorgen™ | May 2012 73

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.3.1.6 FFLD Language
(* The addition is executed only if EN is TRUE *)
(* ENO is equal to EN *)

2.3.1.7 IL Language:
Op1: FFLD IN1

ADD IN2
ST Q (* Q is equal to: IN1 + IN2 *)

Op2: FFLD IN1
ADD IN2
ADD IN3
ST Q (* Q is equal to: IN1 + IN2 + IN3 *)

See also

- * /

2.3.2 / DIV
Operator - Performs a division of inputs.

2.3.2.1 Inputs
IN1 : ANY_NUM First input
IN2 : ANY_NUM Second input

2.3.2.2 Outputs
Q : ANY_NUM Result: IN1 / IN2

2.3.2.3 Remarks
All inputs and the output must have the same type. In FFLD language, the input rung
(EN) enables the operation, and the output rung keeps the same value as the input
rung. In IL language, the DIV instruction performs a division between the current
result and the operand. The current result and the operand must have the same type.

2.3.2.4 ST Language
Q := IN1 / IN2;

2.3.2.5 FBD Language

2.3.2.6 FFLD Language
(* The division is executed only if EN is TRUE *)
(* ENO is equal to EN *)

74 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.3.2.7 IL Language:
Op1: FFLD IN1

DIV IN2
ST Q (* Q is equal to: IN1 / IN2 *)

Op2: FFLD IN1
DIV IN2
DIV IN3
ST Q (* Q is equal to: IN1 / IN2 / IN3 *)

See also

+ - *

2.3.3 NEG -
Operator - Performs an integer negation of the input.

2.3.3.1 Inputs

IN : DINT Integer value

2.3.3.2 Outputs

Q : DINT Integer negation of the input

2.3.3.3 Truth table (examples)
IN Q
0 0

1 -1

-123 123

2.3.3.4 Remarks
In FBD and FFLD language, the block "NEG" can be used.

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

This feature is not available in IL language. In ST language, "-" can be followed by a
complex boolean expression between parentheses.

2.3.3.5 ST Language

Q := -IN;
Q := - (IN1 + IN2);

2.3.3.6 FBD Language

Kollmorgen™ | May 2012 75

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.3.3.7 FFLD Language
(* The negation is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.3.3.8 IL Language
Not available

2.3.4 LIMIT
Function - Bounds an integer between low and high limits.

2.3.4.1 Inputs
IMIN : DINT Low bound
IN : DINT Inputvalue
IMAX : DINT High bound

2.3.4.2 Outputs
Q : DINT IMIN if IN < IMIN; IMAX if IN > IMAX; IN otherwise

2.3.4.3 Function diagram

2.3.4.4 Remarks
In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the state of the input rung. In IL language, the first input must be loaded
before the function call. Other inputs are operands of the function, separated by a
coma.

2.3.4.5 ST Language
Q := LIMIT (IMIN, IN, IMAX);

76 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.3.4.6 FBD Language

2.3.4.7 FFLD Language
(* The comparison is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

2.3.4.8 IL Language:
Op1: FFLD IMIN

LIMIT IN, IMAX
ST Q

See also

MIN MAX MOD ODD

2.3.5 MAX
Function - Get the maximum of two integers.

2.3.5.1 Inputs
IN1 : DINT First input
IN2 : DINT Second input

2.3.5.2 Outputs
Q : DINT IN1 if IN1 > IN2; IN2 otherwise

2.3.5.3 Remarks
In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the state of the input rung. In IL language, the first input must be loaded
before the function call. The second input is the operand of the function.

2.3.5.4 ST Language
Q := MAX (IN1, IN2);

2.3.5.5 FBD Language

Kollmorgen™ | May 2012 77

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.3.5.6 FFLD Language
(* The comparison is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

2.3.5.7 IL Language:
Op1: FFLD IN1

MAX IN2
ST Q (* Q is the maximum of IN1 and IN2 *)

See also

MIN LIMIT MOD ODD

2.3.6 MIN
Function - Get the minimum of two integers.

2.3.6.1 Inputs
IN1 : DINT First input
IN2 : DINT Second input

2.3.6.2 Outputs
Q : DINT IN1 if IN1 < IN2; IN2 otherwise

2.3.6.3 Remarks
In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the state of the input rung. In IL language, the first input must be loaded
before the function call. The second input is the operand of the function.

2.3.6.4 ST Language
Q := MIN (IN1, IN2);

2.3.6.5 FBD Language

2.3.6.6 FFLD Language
(* The comparison is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

78 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.3.6.7 IL Language:
Op1: FFLD IN1

MIN IN2
ST Q (* Q is the minimum of IN1 and IN2 *)

See also

MAX LIMIT MOD ODD

2.3.7 MOD / MODR / MODLR
Function - Calculation of modulo.

Inputs Function
MOD MODR MODLR

Description

IN DINT REAL LREAL Input value

BASE DINT REAL LREAL Base of the modulo

Output Function
MOD MODR MODLR

Description

Q DINT REAL LREAL Modulo: rest of the integer division (IN / BASE)

2.3.7.1 Remarks
In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the state of the input rung. In IL language, the first input must be loaded
before the function call. The second input is the operand of the function.

2.3.7.2 ST Language
Q := MOD (IN, BASE);

2.3.7.3 FBD Language

2.3.7.4 FFLD Language
(* The comparison is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

2.3.7.5 IL Language:
Op1: FFLD IN

MOD BASE
ST Q (* Q is the rest of integer division: IN / BASE *)

See also

MIN MAX LIMIT ODD

Kollmorgen™ | May 2012 79

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.3.8 * MUL
Operator - Performs a multiplication of all inputs.

2.3.8.1 Inputs
IN1 : ANY_NUM First input
IN2 : ANY_NUM Second input

2.3.8.2 Outputs
Q : ANY_NUM Result: IN1 * IN2

2.3.8.3 Remarks
All inputs and the output must have the same type. In FBD language, the block can
have up to 16 inputs. In FFLD language, the input rung (EN) enables the operation,
and the output rung keeps the same value as the input rung. In IL language, the
MUL instruction performs a multiplication between the current result and the operand.
The current result and the operand must have the same type.

2.3.8.4 ST Language
Q := IN1 * IN2;

2.3.8.5 FBD Language
(* the block can have up to 16 inputs *)

2.3.8.6 FFLD Language
(* The multiplication is executed only if EN is TRUE *)
(* ENO is equal to EN *)

2.3.8.7 IL Language:
Op1: FFLD IN1

MUL IN2
ST Q (* Q is equal to: IN1 * IN2 *)

Op2: FFLD IN1
MUL IN2
MUL IN3
ST Q (* Q is equal to: IN1 * IN2 * IN3 *)

See also

+ - /

2.3.9 ODD
Function - Test if an integer is odd

80 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.3.9.1 Inputs
IN : DINT Input value

2.3.9.2 Outputs
Q : BOOL TRUE if IN is odd. FALSE if IN is even.

2.3.9.3 Remarks
In FFLD language, the input rung (EN) enables the operation, and the output rung is
the result of the function. In IL language, the input must be loaded before the function
call.

2.3.9.4 ST Language
Q := ODD (IN);

2.3.9.5 FBD Language

2.3.9.6 FFLD Language
(* The function is executed only if EN is TRUE *)

2.3.9.7 IL Language:
Op1: FFLD IN

ODD
ST Q (* Q is TRUE if IN is odd *)

See also

MIN MAX LIMIT MOD

2.3.10 - SUB
Operator - Performs a subtraction of inputs.

2.3.10.1 Inputs
IN1 : ANY_NUM / TIME First input
IN2 : ANY_NUM / TIME Second input

2.3.10.2 Outputs
Q : ANY_NUM / TIME Result: IN1 - IN2

2.3.10.3 Remarks
All inputs and the output must have the same type. In FFLD language, the input rung
(EN) enables the operation, and the output rung keeps the same value as the input
rung. In IL language, the SUB instruction performs a subtraction between the current
result and the operand. The current result and the operand must have the same type.

Kollmorgen™ | May 2012 81

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.3.10.4 ST Language
Q := IN1 - IN2;

2.3.10.5 FBD Language

2.3.10.6 FFLD Language
(* The subtraction is executed only if EN is TRUE *)
(* ENO is equal to EN *)

2.3.10.7 IL Language:
Op1: FFLD IN1

SUB IN2
ST Q (* Q is equal to: IN1 - IN2 *)

Op2: FFLD IN1
SUB IN2
SUB IN3
ST Q (* Q is equal to: IN1 - IN2 - IN3 *)

See also

+ * /

2.4 Comparison operations
Below are the standard operators and blocks that perform comparisons:

< less than

> greater than

<= less or equal

>= greater or equal

= is equal

<> is not equal

CMP detailed comparison

2.4.1 CMP
Function Block - Comparison with detailed outputs for integer inputs

2.4.1.1 Inputs
IN1 : DINT First value
IN2 : DINT Second value

82 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.4.1.2 Outputs
LT : BOOL TRUE if IN1 < IN2
EQ : BOOL TRUE if IN1 = IN2
GT : BOOL TRUE if IN1 > IN2

2.4.1.3 Remarks
In FFLD language, the rung input (EN) validates the operation. The rung output is the
result of "LT" (lower than) comparison).

2.4.1.4 ST Language
(* MyCmp is declared as an instance of CMP function block *)
MyCMP (IN1, IN2);
bLT := MyCmp.LT;
bEQ := MyCmp.EQ;
bGT := MyCmp.GT;

2.4.1.5 FBD Language

2.4.1.6 FFLD Language
(* the comparison is performed only if EN is TRUE *)

2.4.1.7 IL Language:
(* MyCmp is declared as an instance of CMP function block *)
Op1: CAL MyCmp (IN1, IN2)

FFLD MyCmp.LT
ST bLT
FFLD MyCmp.EQ
ST bEQ
FFLD MyCmp.GT
ST bGT

See also

> < >= <= = <>

2.4.2 >= GE
Operator - Test if first input is greater than or equal to second input.

2.4.2.1 Inputs
IN1 : ANY First input
IN2 : ANY Second input

Kollmorgen™ | May 2012 83

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.4.2.2 Outputs
Q : BOOL TRUE if IN1 >= IN2

2.4.2.3 Remarks
Both inputs must have the same type. In FFLD language, the input rung (EN) enables
the operation, and the output rung is the result of the comparison. In IL language, the
GE instruction performs the comparison between the current result and the operand.
The current result and the operand must have the same type.

Comparisons can be used with strings. In that case, the lexical order is used for
comparing the input strings. For instance, "ABC" is less than "ZX" ; "ABCD" is greater
than "ABC".

2.4.2.4 ST Language
Q := IN1 >= IN2;

2.4.2.5 FBD Language

2.4.2.6 FFLD Language
(* The comparison is executed only if EN is TRUE *)

2.4.2.7 IL Language:
Op1: FFLD IN1

GE IN2
ST Q (* Q is true if IN1 >= IN2 *)

See also

> < <= = <> CMP

2.4.3 > GT
Operator - Test if first input is greater than second input.

2.4.3.1 Inputs
IN1 : ANY First input
IN2 : ANY Second input

2.4.3.2 Outputs
Q : BOOL TRUE if IN1 > IN2

2.4.3.3 Remarks
Both inputs must have the same type. In FFLD language, the input rung (EN) enables
the operation, and the output rung is the result of the comparison. In IL language, the

84 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

GT instruction performs the comparison between the current result and the operand.
The current result and the operand must have the same type.

Comparisons can be used with strings. In that case, the lexical order is used for
comparing the input strings. For instance, "ABC" is less than "ZX" ; "ABCD" is greater
than "ABC".

2.4.3.4 ST Language
Q := IN1 > IN2;

2.4.3.5 FBD Language

2.4.3.6 FFLD Language
(* The comparison is executed only if EN is TRUE *)

2.4.3.7 IL Language:
Op1: FFLD IN1

GT IN2
ST Q (* Q is true if IN1 > IN2 *)

See also

< >= <= = <> CMP

2.4.4 = EQ
Operator - Test if first input is equal to second input.

2.4.4.1 Inputs
IN1 : ANY First input
IN2 : ANY Second input

2.4.4.2 Outputs
Q : BOOL TRUE if IN1 = IN2

2.4.4.3 Remarks
Both inputs must have the same type. In FFLD language, the input rung (EN) enables
the operation, and the output rung is the result of the comparison. In IL language, the
EQ instruction performs the comparison between the current result and the operand.
The current result and the operand must have the same type.

Comparisons can be used with strings. In that case, the lexical order is used for
comparing the input strings. For instance, "ABC" is less than "ZX" ; "ABCD" is greater
than "ABC".

Kollmorgen™ | May 2012 85

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

Equality comparisons cannot be used with TIME variables. The reason is that the
timer actually has the resolution of the target cycle and test can be unsafe as some
values can never be reached.

2.4.4.4 ST Language
Q := IN1 = IN2;

2.4.4.5 FBD Language

2.4.4.6 FFLD Language
(* The comparison is executed only if EN is TRUE *)

2.4.4.7 IL Language:
Op1: FFLD IN1

EQ IN2
ST Q (* Q is true if IN1 = IN2 *)

See also

> < >= <= <> CMP

2.4.5 <> NE
Operator - Test if first input is not equal to second input.

2.4.5.1 Inputs
IN1 : ANY First input
IN2 : ANY Second input

2.4.5.2 Outputs
Q : BOOL TRUE if IN1 is not equal to IN2

2.4.5.3 Remarks
Both inputs must have the same type. In FFLD language, the input rung (EN) enables
the operation, and the output rung is the result of the comparison. In IL language, the
NE instruction performs the comparison between the current result and the operand.
The current result and the operand must have the same type.

Comparisons can be used with strings. In that case, the lexical order is used for
comparing the input strings. For instance, "ABC" is less than "ZX" ; "ABCD" is greater
than "ABC".

Equality comparisons cannot be used with TIME variables. The reason is that the
timer actually has the resolution of the target cycle and test can be unsafe as some
values can never be reached

86 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.4.5.4 ST Language
Q := IN1 <> IN2;

2.4.5.5 FBD Language

2.4.5.6 FFLD Language
(* The comparison is executed only if EN is TRUE *)

2.4.5.7 IL Language:
Op1: FFLD IN1

NE IN2
ST Q (* Q is true if IN1 is not equal to IN2 *)

See also

> < >= <= = CMP

2.4.6 <= LE
Operator - Test if first input is less than or equal to second input.

2.4.6.1 Inputs
IN1 : ANY First input
IN2 : ANY Second input

2.4.6.2 Outputs
Q : BOOL TRUE if IN1 <= IN2

2.4.6.3 Remarks
Both inputs must have the same type. In FFLD language, the input rung (EN) enables
the operation, and the output rung is the result of the comparison. In IL language, the
LE instruction performs the comparison between the current result and the operand.
The current result and the operand must have the same type.

Comparisons can be used with strings. In that case, the lexical order is used for
comparing the input strings. For instance, "ABC" is less than "ZX" ; "ABCD" is greater
than "ABC".

2.4.6.4 ST Language
Q := IN1 <= IN2;

Kollmorgen™ | May 2012 87

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.4.6.5 FBD Language

2.4.6.6 FFLD Language
(* The comparison is executed only if EN is TRUE *)

2.4.6.7 IL Language:
Op1: FFLD IN1

LE IN2
ST Q (* Q is true if IN1 <= IN2 *)

See also

> < >= = <> CMP

2.4.7 < LT
Operator - Test if first input is less than second input.

2.4.7.1 Inputs
IN1 : ANY First input
IN2 : ANY Second input

2.4.7.2 Outputs
Q : BOOL TRUE if IN1 < IN2

2.4.7.3 Remarks
Both inputs must have the same type. In FFLD language, the input rung (EN) enables
the operation, and the output rung is the result of the comparison. In IL language, the
LT instruction performs the comparison between the current result and the operand.
The current result and the operand must have the same type.

Comparisons can be used with strings. In that case, the lexical order is used for
comparing the input strings. For instance, "ABC" is less than "ZX" ; "ABCD" is greater
than "ABC".

2.4.7.4 ST Language
Q := IN1 < IN2;

2.4.7.5 FBD Language

88 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.4.7.6 FFLD Language
(* The comparison is executed only if EN is TRUE *)

2.4.7.7 IL Language:
Op1: FFLD IN1

LT IN2
ST Q (* Q is true if IN1 < IN2 *)

See also

> >= <= = <> CMP

2.5 Type conversion functions
Below are the standard functions for converting a data into another data type:

ANY_TO_BOOL converts to boolean

ANY_TO_SINT / ANY_TO_USINT converts to small (8 bit) integer

ANY_TO_INT / ANY_TO_UINT converts to 16 bit integer

ANY_TO_DINT / ANY_TO_UDINT converts to integer (32 bit - default)

ANY_TO_LINT / ANY_TO_ULINT converts to long (64 bit) integer

ANY_TO_REAL converts to real

ANY_TO_LREAL converts to double precision real

ANY_TO_TIME converts to time

ANY_TO_STRING converts to character string

Below are the standard functions performing conversions in BCD format (*):

BIN_TO_BCD converts a binary value to a BCD value

BCD_TO_BIN converts a BCD value to a binary value

(*) BCD conversion functions may not be supported by all targets.

2.5.1 ANY_TO_BOOL
Operator - Converts the input into boolean value.

2.5.1.1 Inputs
IN : ANY Input value

2.5.1.2 Outputs
Q : BOOL Value converted to boolean

2.5.1.3 Remarks
For DINT, REAL and TIME input data types, the result is FALSE if the input is 0. The
result is TRUE in all other cases. For STRING inputs, the output is TRUE if the input
string is not empty, and FALSE if the string is empty. In FFLD language, the
conversion is executed only if the input rung (EN) is TRUE. The output rung is the
result of the conversion. In IL Language, the ANY_TO_BOOL function converts the
current result.

Kollmorgen™ | May 2012 89

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.5.1.4 ST Language
Q := ANY_TO_BOOL (IN);

2.5.1.5 FBD Language

2.5.1.6 FFLD Language
(* The conversion is executed only if EN is TRUE *)
(* The output rung is the result of the conversion *)
(* The output rung is FALSE if the EN is FALSE *)

2.5.1.7 IL Language:
Op1: FFLD IN

ANY_TO_BOOL
ST Q

2.5.1.8 See also
ANY_TO_SINT ANY_TO_INT ANY_TO_DINT ANY_TO_LINT ANY_TO_REAL
ANY_TO_LREAL ANY_TO_TIME ANY_TO_STRING

2.5.2 ANY_TO_DINT / ANY_TO_UDINT
Operator - Converts the input into integer value (can be unsigned with ANY_TO_
UDINT).

2.5.2.1 Inputs
IN : ANY Input value

2.5.2.2 Outputs
Q : DINT Value converted to integer

2.5.2.3 Remarks
For BOOL input data types, the output is 0 or 1. For REAL input data type, the output
is the integer part of the input real. For TIME input data types, the result is the
number of milliseconds. For STRING inputs, the output is the number represented by
the string, or 0 if the string does not represent a valid number. In FFLD language, the
conversion is executed only if the input rung (EN) is TRUE. The output rung (ENO)
keeps the same value as the input rung. In IL Language, the ANY_TO_DINT function
converts the current result.

2.5.2.4 ST Language
Q := ANY_TO_DINT (IN);

90 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.5.2.5 FBD Language

2.5.2.6 FFLD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.5.2.7 IL Language:
Op1: FFLD IN

ANY_TO_DINT
ST Q

2.5.2.8 See also
ANY_TO_BOOL ANY_TO_SINT ANY_TO_INT ANY_TO_LINT ANY_TO_REAL
ANY_TO_LREAL ANY_TO_TIME ANY_TO_STRING

2.5.3 ANY_TO_INT / ANY_TO_UINT
Operator - Converts the input into 16 bit integer value (can be unsigned with ANY_
TO_UINT).

2.5.3.1 Inputs
IN : ANY Input value

2.5.3.2 Outputs
Q : INT Value converted to 16 bit integer

2.5.3.3 Remarks
For BOOL input data types, the output is 0 or 1. For REAL input data type, the output
is the integer part of the input real. For TIME input data types, the result is the
number of milliseconds. For STRING inputs, the output is the number represented by
the string, or 0 if the string does not represent a valid number. In FFLD language, the
conversion is executed only if the input rung (EN) is TRUE. The output rung (ENO)
keeps the same value as the input rung. In IL Language, the ANY_TO_INT function
converts the current result.

2.5.3.4 ST Language
Q := ANY_TO_INT (IN);

2.5.3.5 FBD Language

Kollmorgen™ | May 2012 91

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.5.3.6 FFLD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.5.3.7 IL Language:
Op1: FFLD IN

ANY_TO_INT
ST Q

2.5.3.8 See also
ANY_TO_BOOL ANY_TO_SINT ANY_TO_DINT ANY_TO_LINT ANY_TO_REAL
ANY_TO_LREAL ANY_TO_TIME ANY_TO_STRING

2.5.4 ANY_TO_LINT / ANY_TO_ULINT
Operator - Converts the input into long (64 bit) integer value (can be unsigned with
ANY_TO_ULINT).

2.5.4.1 Inputs
IN : ANY Input value

2.5.4.2 Outputs
Q : LINT Value converted to long (64 bit) integer

2.5.4.3 Remarks
For BOOL input data types, the output is 0 or 1. For REAL input data type, the output
is the integer part of the input real. For TIME input data types, the result is the
number of milliseconds. For STRING inputs, the output is the number represented by
the string, or 0 if the string does not represent a valid number. In FFLD language, the
conversion is executed only if the input rung (EN) is TRUE. The output rung (ENO)
keeps the same value as the input rung. In IL Language, the ANY_TO_LINT function
converts the current result.

2.5.4.4 ST Language
Q := ANY_TO_LINT (IN);

2.5.4.5 FBD Language

2.5.4.6 FFLD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

92 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.5.4.7 IL Language:
Op1: FFLD IN

ANY_TO_LINT
ST Q

2.5.4.8 See also
ANY_TO_BOOL ANY_TO_SINT ANY_TO_INT ANY_TO_DINT ANY_TO_REAL
ANY_TO_LREAL ANY_TO_TIME ANY_TO_STRING

2.5.5 ANY_TO_LREAL
Operator - Converts the input into double precision real value.

2.5.5.1 Inputs
IN : ANY Input value

2.5.5.2 Outputs
Q : LREAL Value converted to double precision real

2.5.5.3 Remarks
For BOOL input data types, the output is 0.0 or 1.0. For DINT input data type, the
output is the same number. For TIME input data types, the result is the number of
milliseconds. For STRING inputs, the output is the number represented by the string,
or 0.0 if the string does not represent a valid number. In FFLD language, the
conversion is executed only if the input rung (EN) is TRUE. The output rung (ENO)
keeps the same value as the input rung. In IL Language, the ANY_TO_LREAL
function converts the current result.

2.5.5.4 ST Language
Q := ANY_TO_LREAL (IN);

2.5.5.5 FBD Language

2.5.5.6 FFLD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.5.5.7 IL Language:
Op1: FFLD IN

ANY_TO_LREAL

Kollmorgen™ | May 2012 93

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

ST Q

2.5.5.8 See also
ANY_TO_BOOL ANY_TO_SINT ANY_TO_INT ANY_TO_DINT ANY_TO_LINT
ANY_TO_REAL ANY_TO_TIME ANY_TO_STRING

2.5.6 ANY_TO_REAL
Operator - Converts the input into real value.

2.5.6.1 Inputs
IN : ANY Input value

2.5.6.2 Outputs
Q : REAL Value converted to real

2.5.6.3 Remarks
For BOOL input data types, the output is 0.0 or 1.0. For DINT input data type, the
output is the same number. For TIME input data types, the result is the number of
milliseconds. For STRING inputs, the output is the number represented by the string,
or 0.0 if the string does not represent a valid number. In FFLD language, the
conversion is executed only if the input rung (EN) is TRUE. The output rung (ENO)
keeps the same value as the input rung. In IL Language, the ANY_TO_REAL function
converts the current result.

2.5.6.4 ST Language
Q := ANY_TO_REAL (IN);

2.5.6.5 FBD Language

2.5.6.6 FFLD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.5.6.7 IL Language:
Op1: FFLD IN

ANY_TO_REAL
ST Q

2.5.6.8 See also
ANY_TO_BOOL ANY_TO_SINT ANY_TO_INT ANY_TO_DINT ANY_TO_LINT
ANY_TO_LREAL ANY_TO_TIME ANY_TO_STRING

2.5.7 ANY_TO_TIME
Operator - Converts the input into time value.

94 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.5.7.1 Inputs
IN : ANY Input value

2.5.7.2 Outputs
Q : TIME Value converted to time

2.5.7.3 Remarks
For BOOL input data types, the output is t#0 ms or t#1 ms. For DINT or REAL input
data type, the output is the time represented by the input number as a number of
milliseconds. For STRING inputs, the output is the time represented by the string, or
t#0 ms if the string does not represent a valid time. In FFLD language, the
conversion is executed only if the input rung (EN) is TRUE. The output rung (ENO)
keeps the same value as the input rung. In IL Language, the ANY_TO_TIME function
converts the current result.

2.5.7.4 ST Language
Q := ANY_TO_TIME (IN);

2.5.7.5 FBD Language

2.5.7.6 FFLD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.5.7.7 IL Language:
Op1: FFLD IN
ANY_TO_TIME
ST Q

2.5.7.8 See also
ANY_TO_BOOL ANY_TO_SINT ANY_TO_INT ANY_TO_DINT ANY_TO_LINT
ANY_TO_REAL ANY_TO_LREAL ANY_TO_STRING

2.5.8 ANY_TO_SINT / ANY_TO_USINT
Operator - Converts the input into a small (8 bit) integer value (can be unsigned with
ANY_TO_USINT).

2.5.8.1 Inputs
IN : ANY Input value

2.5.8.2 Outputs
Q : SINT Value converted to a small (8 bit) integer

Kollmorgen™ | May 2012 95

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.5.8.3 Remarks
For BOOL input data types, the output is 0 or 1. For REAL input data type, the output
is the integer part of the input real. For TIME input data types, the result is the
number of milliseconds. For STRING inputs, the output is the number represented by
the string, or 0 if the string does not represent a valid number. In FFLD language, the
conversion is executed only if the input rung (EN) is TRUE. The output rung (ENO)
keeps the same value as the input rung. In IL Language, the ANY_TO_SINT function
converts the current result.

2.5.8.4 ST Language
Q := ANY_TO_SINT (IN);

2.5.8.5 FBD Language

2.5.8.6 FFLD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.5.8.7 IL Language
Op1: FFLD IN

ANY_TO_SINT
ST Q

2.5.8.8 See also
ANY_TO_BOOL ANY_TO_INT ANY_TO_DINT ANY_TO_LINT ANY_TO_REAL
ANY_TO_LREAL ANY_TO_TIME ANY_TO_STRING

2.5.9 ANY_TO_STRING
Operator - Converts the input into string value.

2.5.9.1 Inputs
IN : ANY Input value

2.5.9.2 Outputs
Q : STRING Value converted to string

2.5.9.3 Remarks
For BOOL input data types, the output is '1' or '0' for TRUE and FALSE respectively.
For DINT, REAL or TIME input data types, the output is the string representation of
the input number. It is a number of milliseconds for TIME inputs. In FFLD language,
the conversion is executed only if the input rung (EN) is TRUE. The output rung
(ENO) keeps the same value as the input rung. In IL language, the ANY_TO_STRING
function converts the current result.

96 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.5.9.4 ST Language
Q := ANY_TO_STRING (IN);

2.5.9.5 FBD Language

2.5.9.6 FFLD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.5.9.7 IL Language:
Op1: FFLD IN

ANY_TO_STRING
ST Q

2.5.9.8 See also
ANY_TO_BOOL ANY_TO_SINT ANY_TO_INT ANY_TO_DINT ANY_TO_LINT
ANY_TO_REAL ANY_TO_LREAL ANY_TO_TIME

2.5.10 NUM_TO_STRING
Function- Converts a number into string value.

2.5.10.1 Inputs
IN : ANY Input number.
WIDTH : DINT Wished length for the output string (see remarks)
DIGITS : DINT Number of digits after decimal point

2.5.10.2 Outputs
Q : STRING Value converted to string.

2.5.10.3 Remarks
This function converts any numerical value to a string. Unlike the ANY_TO_STRING
function, it allows you to specify a wished length and a number of digits after the
decimal points.

If WIDTH is 0, the string is formatted with the necessary length.

If WIDTH is greater than 0, the string is completed with heading blank characters in
order to match the value of WIDTH.

If WIDTH is greater than 0, the string is completed with trailing blank characters in
order to match the absolute value of WIDTH.

If DIGITS is 0 then neither decimal part nor point are added.

If DIGITS is greater than 0, the corresponding number of decimal digits are added. '0'
digits are added if necessary

Kollmorgen™ | May 2012 97

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

If the value is too long for the specified width, then the string is filled with '*'
characters.

2.5.10.4 Examples
Q := NUM_TO_STRING (123.4, 8, 2); (* Q is ' 123.40' *)

Q := NUM_TO_STRING (123.4, -8, 2); (* Q is '123.40 ' *)

Q := NUM_TO_STRING (1.333333, 0, 2); (* Q is '1.33' *)

Q := NUM_TO_STRING (1234, 3, 0); (* Q is '***' *)

2.5.11 BCD_TO_BIN
Function - Converts a BCD (Binary Coded Decimal) value to a binary value

2.5.11.1 Inputs
IN : DINT Integer value in BCD

2.5.11.2 Outputs
Q : DINT Value converted to integer

or 0 if IN is not a valid positive BCD value

2.5.11.3 Truth table (examples)
IN Q

-2 0
(invalid)

0 0

16
(16#10)

10

15
(16#0F)

0
(invalid)

2.5.11.4 Remarks
The input must be positive and must represent a valid BCD value. In FFLD language,
the operation is executed only if the input rung (EN) is TRUE. The output rung (ENO)
keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.5.11.5 ST Language
Q := BCD_TO_BIN (IN);

2.5.11.6 FBD Language

2.5.11.7 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

98 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.5.11.8 IL Language:
Op1: FFLD IN

BCD_TO_BIN
ST Q

See also

BIN_TO_BCD

2.5.12 BIN_TO_BCD
Function - Converts a binary value to a BCD (Binary Coded Decimal) value

2.5.12.1 Inputs
IN : DINT Integer value

2.5.12.2 Outputs
Q : DINT Value converted to BCD

or 0 if IN is less than 0

2.5.12.3 Truth table (examples)
IN Q

-2 0
(invalid)

0 0

10 16
(16#10)

22 34
(16#22)

2.5.12.4 Remarks
The input must be positive. In FFLD language, the operation is executed only if the
input rung (EN) is TRUE. The output rung (ENO) keeps the same value as the input
rung.

In IL, the input must be loaded in the current result before calling the function.

2.5.12.5 ST Language
Q := BIN_TO_BCD (IN);

2.5.12.6 FBD Language

2.5.12.7 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

Kollmorgen™ | May 2012 99

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.5.12.8 IL Language:
Op1: FFLD IN

BIN_TO_BCD
ST Q

See also

BCD_TO_BIN

2.6 Selectors
Below are the standard functions that perform data selection:

SEL 2 integer inputs

MUX4 4 integer inputs

MUX8 8 integer inputs

2.6.1 MUX4
Function - Select one of the inputs - 4 inputs.

2.6.1.1 Inputs
SELECT : DINT Selection command
IN1 : ANY First input
IN2 : ANY Second input
... :
IN4 : ANY Last input

2.6.1.2 Outputs
Q : ANY IN1 or IN2 ... or IN4 depending on SELECT (see truth table)

2.6.1.3 Truth table
SELECT Q
0 IN1
1 IN2
2 IN3
3 IN4
other 0

2.6.1.4 Remarks
In FFLD language, the input rung (EN) enables the selection. The output rung keeps
the same state as the input rung. In IL language, the first parameter (selector) must
be loaded in the current result before calling the function. Other inputs are operands
of the function, separated by comas.

2.6.1.5 ST Language
Q := MUX4 (SELECT, IN1, IN2, IN3, IN4);

100 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.6.1.6 FBD Language

2.6.1.7 FFLD Language
(* the selection is performed only if EN is TRUE *)
(* ENO has the same value as EN *)

2.6.1.8 IL Language
Op1: FFLD SELECT

MUX4 IN1, IN2, IN3, IN4
ST Q

See also

SEL MUX8

2.6.2 MUX8
Function - Select one of the inputs - 8 inputs.

2.6.2.1 Inputs
SELECT : DINT Selection command
IN1 : ANY First input
IN2 : ANY Second input
... :
IN8 : ANY Last input

2.6.2.2 Outputs
Q : ANY IN1 or IN2 ... or IN8 depending on SELECT (see truth table)

Kollmorgen™ | May 2012 101

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.6.2.3 Truth table
SELECT Q
0 IN1
1 IN2
2 IN3
3 IN4
4 IN5
5 IN6
6 IN7
7 IN8
other 0

2.6.2.4 Remarks
In FFLD language, the input rung (EN) enables the selection. The output rung keeps
the same state as the input rung. In IL language, the first parameter (selector) must
be loaded in the current result before calling the function. Other inputs are operands
of the function, separated by comas.

2.6.2.5 ST Language
Q := MUX8 (SELECT, IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8);

2.6.2.6 FBD Language

2.6.2.7 FFLD Language
(* the selection is performed only if EN is TRUE *)
(* ENO has the same value as EN *)

2.6.2.8 IL Language
Not available

102 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

Op1: FFLD SELECT
MUX8 IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8
ST Q

See also

SEL MUX4

2.6.3 SEL
Function - Select one of the inputs - 2 inputs.

2.6.3.1 Inputs
SELECT : BOOL Selection command
IN1 : ANY First input
IN2 : ANY Second input

2.6.3.2 Outputs
Q : ANY IN1 if SELECT is FALSE; IN2 if SELECT is TRUE

2.6.3.3 Truth table
SELECT Q
0 IN1
1 IN2

2.6.3.4 Remarks
In FFLD language, the selector command is the input rung. The output rung keeps
the same state as the input rung. In IL language, the first parameter (selector) must
be loaded in the current result before calling the function. Other inputs are operands
of the function, separated by comas.

2.6.3.5 ST Language
Q := SEL (SELECT, IN1, IN2);

2.6.3.6 FBD Language

2.6.3.7 FFLD Language
(* the input rung is the selector *)
(* ENO has the same value as SELECT *)

2.6.3.8 IL Language
Op1: FFLD SELECT

SEL IN1, IN2
ST Q

Kollmorgen™ | May 2012 103

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

See also

MUX4 MUX8

2.7 Registers
Below are the standard functions for managing 8 bit to 32 bit registers:

SHL shift left

SHR shift right

ROL rotation left

ROR rotation right

Below are advanced functions for register manipulation:

MBShift multibyte shift / rotate

The following functions enable bit to bit operations on a 8 bit to 32 bit integers:

AND_MASK boolean AND

OR_MASK booleanOR

XOR_MASK exclusive OR

NOT_MASK boolean negation

The following functions enable to pack/unpack 8, 16 and 32 bit registers

LOBYTE Get the lowest byte of a word

HIBYTE Get the highest byte of a word

LOWORD Get the lowest word of a double word

HIWORD Get the highest word of a double word

MAKEWORD Pack bytes to a word

MAKEDWORD Pack words to a double word

PACK8 Pack bits in a byte

UNPACK8 Extract bits from a byte

The following functions provide bit access in 8 bit to 32 bit integers:

SETBIT Set a bit in a register

TESTBIT Test a bit of a register

The following functions have been deprecated. They are available for backwards
compatibility only. The functions listed above should be used for all current and future
development.

AND_WORD AND_BYTE
OR_WORD OR_BYTE
NOT_WORD NOT_BYTE
XOR_WORD XOR_BYTE
ROLW RORW
ROLB RORB
SHLW SHRW
SHLB SHRB

2.7.1 AND_MASK
Function - Performs a bit to bit AND between two integer values

2.7.1.1 Inputs
IN : ANY First input
MSK : ANY Second input (AND mask)

104 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.1.2 Outputs
Q : ANY AND mask between IN and MSK inputs

2.7.1.3 Remarks
Arguments can be signed or unsigned integers from 8 to 32 bits.

In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the same value as the input rung. In IL language, the first parameter (IN) must
be loaded in the current result before calling the function. The other input is the
operands of the function.

2.7.1.4 ST Language
Q := AND_MASK (IN, MSK);

2.7.1.5 FBD Language

2.7.1.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO is equal to EN *)

2.7.1.7 IL Language:
Op1: FFLD IN

AND_MASK MSK
ST Q

See also

OR_MASK XOR_MASK NOT_MASK

2.7.2 HIBYTE
Function - Get the most significant byte of a word

2.7.2.1 Inputs
IN : UINT 16 bit register

2.7.2.2 Outputs
Q : USINT Most significant byte

2.7.2.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

Kollmorgen™ | May 2012 105

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.2.4 ST Language
Q := HIBYTE (IN);

2.7.2.5 FBD Language

2.7.2.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.7.2.7 IL Language:
Op1: FFLD IN

HIBYTE
ST Q

See also

LOBYTE LOWORD HIWORD MAKEWORD MAKEDWORD

2.7.3 LOBYTE
Function - Get the less significant byte of a word

2.7.3.1 Inputs
IN : UINT 16 bit register

2.7.3.2 Outputs
Q : USINT Lowest significant byte

2.7.3.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.7.3.4 ST Language
Q := LOBYTE (IN);

2.7.3.5 FBD Language

106 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.3.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.7.3.7 IL Language:
Op1: FFLD IN

LOBYTE
ST Q

See also

HIBYTE LOWORD HIWORD MAKEWORD MAKEDWORD

2.7.4 HIWORD
Function - Get the most significant word of a double word

2.7.4.1 Inputs
IN : UDINT 32 bit register

2.7.4.2 Outputs
Q : UINT Most significant word

2.7.4.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.7.4.4 ST Language
Q := HIWORD (IN);

2.7.4.5 FBD Language

2.7.4.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

Kollmorgen™ | May 2012 107

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.4.7 IL Language:
Op1: FFLD IN

HIWORD
ST Q

See also

LOBYTE HIBYTE LOWORD MAKEWORD MAKEDWORD

2.7.5 LOWORD
Function - Get the less significant word of a double word

2.7.5.1 Inputs
IN : UDINT 32 bit register

2.7.5.2 Outputs
Q : UINT Lowest significant word

2.7.5.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.7.5.4 ST Language
Q := LOWORD (IN);

2.7.5.5 FBD Language

2.7.5.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.7.5.7 IL Language:
Op1: FFLD IN

LOWORD
ST Q

See also

LOBYTE HIBYTE HIWORD MAKEWORD MAKEDWORD

108 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.6 MAKEDWORD
Function - Builds a double word as the concatenation of two words

2.7.6.1 Inputs
HI : USINT Highest significant word
LO : USINT Lowest significant word

2.7.6.2 Outputs
Q : UINT 32 bit register

2.7.6.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the first input must be loaded in the current result before calling the function.

2.7.6.4 ST Language
Q := MAKEDWORD (HI, LO);

2.7.6.5 FBD Language

2.7.6.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.7.6.7 IL Language:
Op1: FFLD HI

MAKEDWORD LO
ST Q

See also

LOBYTE HIBYTE LOWORD HIWORD MAKEWORD

2.7.7 MAKEWORD
Function - Builds a word as the concatenation of two bytes

Kollmorgen™ | May 2012 109

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.7.1 Inputs
HI : USINT Highest significant byte
LO : USINT Lowest significant byte

2.7.7.2 Outputs
Q : UINT 16 bit register

2.7.7.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the first input must be loaded in the current result before calling the function.

2.7.7.4 ST Language
Q := MAKEWORD (HI, LO);

2.7.7.5 FBD Language

2.7.7.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.7.7.7 IL Language:
Op1: FFLD HI

MAKEWORD LO
ST Q

See also

LOBYTE HIBYTE LOWORD HIWORD MAKEDWORD

2.7.8 MBSHIFT
Function - Multibyte shift / rotate

110 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.8.1 Inputs
Buffer : SINT/USINT Array of bytes
Pos : DINT Base position in the array
NbByte : DINT Number of bytes to be shifted/rotated
NbShift : DINT Number of shifts or rotations
ToRight : BOOL TRUE for right / FALSE for left
Rotate: BOOL TRUE for rotate / FALSE for shift
InBit : BOOL Bit to be introduced in a shift

2.7.8.2 Outputs
Q : BOOL TRUE if successful

2.7.8.3 Remarks
Use the "ToRight" argument to specify a shift to the left (FALSE) or to the right
(TRUE). Use the "Rotate" argument to specify either a shift (FALSE) or a rotation
(TRUE). In case of a shift, the "InBit" argument specifies the value of the bit that
replaces the last shifted bit.

In FFLD language, the rung input (EN) validates the operation. The rung output is the
result ("Q").

2.7.8.4 ST Language
Q := MBShift (Buffer, Pos, NbByte, NbShift, ToRight, Rotate, InBit);

2.7.8.5 FBD Language

2.7.8.6 FFLD Language
(* the function is called only if EN is TRUE *)

2.7.8.7 IL Language:
Not available

2.7.9 NOT_MASK
Function - Performs a bit to bit negation of an integer value

Kollmorgen™ | May 2012 111

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.9.1 Inputs
IN : ANY Integer input

2.7.9.2 Outputs
Q : ANY Bit to bit negation of the input

2.7.9.3 Remarks
Arguments can be signed or unsigned integers from 8 to 32 bits.

In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the same value as the input rung. In IL language, the parameter (IN) must be
loaded in the current result before calling the function.

2.7.9.4 ST Language
Q := NOT_MASK (IN);

2.7.9.5 FBD Language

2.7.9.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO is equal to EN *)

2.7.9.7 IL Language:
Op1: FFLD IN

NOT_MASK
ST Q

See also

AND_MASK OR_MASK XOR_MASK

2.7.10 OR_MASK
Function - Performs a bit to bit OR between two integer values

2.7.10.1 Inputs
IN : ANY First input
MSK : ANY Second input (OR mask)

2.7.10.2 Outputs
Q : ANY OR mask between IN and MSK inputs

2.7.10.3 Remarks
Arguments can be signed or unsigned integers from 8 to 32 bits.

112 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the same value as the input rung. In IL language, the first parameter (IN) must
be loaded in the current result before calling the function. The other input is the
operands of the function.

2.7.10.4 ST Language
Q := OR_MASK (IN, MSK);

2.7.10.5 FBD Language

2.7.10.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO is equal to EN *)

2.7.10.7 IL Language:
Op1: FFLD IN

OR_MASK MSK
ST Q

See also

AND_MASK XOR_MASK NOT_MASK

2.7.11 PACK8
Function - Builds a byte with bits

2.7.11.1 Inputs
IN0 : BOOL Less significant bit
...
IN7 : BOOL Most significant bit

2.7.11.2 Outputs
Q : USINT Byte built with input bits

2.7.11.3 Remarks
In FFLD language, the input rung is the IN0 input. The output rung (ENO) keeps the
same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.7.11.4 ST Language
Q := PACK8 (IN0, IN1, IN2, IN3, IN4, IN5, IN6, IN7);

Kollmorgen™ | May 2012 113

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.11.5 FBD Language

2.7.11.6 FFLD Language
(* ENO keeps the same value as EN *)

2.7.11.7 IL Language
Op1: FFLD IN0

PACK8 IN1, IN2, IN3, IN4, IN5, IN6, IN7
ST Q

See also

UNPACK8

2.7.12 ROL
Function - Rotate bits of a register to the left.

2.7.12.1 Inputs
IN : ANY register
NBR : DINT Number of rotations (each rotation is 1 bit)

2.7.12.2 Outputs
Q : ANY Rotated register

114 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.12.3 Diagram

2.7.12.4 Remarks
Arguments can be signed or unsigned integers from 8 to 32 bits.

In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the state of the input rung. In IL language, the first input must be loaded
before the function call. The second input is the operand of the function.

2.7.12.5 ST Language
Q := ROL (IN, NBR);

2.7.12.6 FBD Language

2.7.12.7 FFLD Language
(* The rotation is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

2.7.12.8 IL Language:
Op1: FFLD IN

ROL NBR
ST Q

See also

SHL SHR ROR SHLb SHRb ROLb RORb SHLw SHRw ROLw RORw

2.7.13 ROR
Function - Rotate bits of a register to the right.

2.7.13.1 Inputs
IN : ANY register
NBR : ANY Number of rotations (each rotation is 1 bit)

2.7.13.2 Outputs
Q : ANY Rotated register

Kollmorgen™ | May 2012 115

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.13.3 Diagram

2.7.13.4 Remarks
Arguments can be signed or unsigned integers from 8 to 32 bits.

In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the state of the input rung. In IL language, the first input must be loaded
before the function call. The second input is the operand of the function.

2.7.13.5 ST Language
Q := ROR (IN, NBR);

2.7.13.6 FBD Language

2.7.13.7 FFLD Language
(* The rotation is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

2.7.13.8 IL Language:
Op1: FFLD IN

ROR NBR
ST Q

See also

SHL SHR ROL SHLb SHRb ROLb RORb SHLw SHRw ROLw RORw

2.7.14 RORb / ROR_SINT / ROR_USINT / ROR_BYTE
Function - Rotate bits of a register to the right.

2.7.14.1 Inputs
IN : SINT 8 bit register
NBR : SINT Number of rotations (each rotation is 1 bit)

2.7.14.2 Outputs
Q : SINT Rotated register

116 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.14.3 Diagram

2.7.14.4 Remarks
In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the state of the input rung. In IL language, the first input must be loaded
before the function call. The second input is the operand of the function.

2.7.14.5 ST Language
Q := RORb (IN, NBR);

2.7.14.6 FBD Language

2.7.14.7 FFLD Language
(* The rotation is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

2.7.14.8 IL Language:
Op1: FFLD IN

RORb NBR
ST Q

2.7.14.9 See also
SHL SHR ROL ROR SHLb SHRb ROLb SHLw SHRw ROLw RORw

2.7.15 RORw / ROR_INT / ROR_UINT / ROR_WORD
Function - Rotate bits of a register to the right.

2.7.15.1 Inputs
IN : INT 16 bit register
NBR : INT Number of rotations (each rotation is 1 bit)

2.7.15.2 Outputs
Q : INT Rotated register

Kollmorgen™ | May 2012 117

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.15.3 Diagram

2.7.15.4 Remarks
In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the state of the input rung. In IL language, the first input must be loaded
before the function call. The second input is the operand of the function.

2.7.15.5 ST Language
Q := RORw (IN, NBR);

2.7.15.6 FBD Language

2.7.15.7 FFLD Language
(* The rotation is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

2.7.15.8 IL Language:
Op1: FFLD IN

RORw NBR
ST Q

2.7.15.9 See also
SHL SHR ROL ROR SHLb SHRb ROLb RORb SHLw SHRw ROLw

2.7.16 SETBIT
Function - Set a bit in an integer register.

2.7.16.1 Inputs
IN : ANY 8 to 32 bit integer register
BIT : DINT Bit number (0 = less significant bit)
VAL : BOOL Bit value to apply

2.7.16.2 Outputs
Q : ANY Modified register

118 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.16.3 Remarks
Types LINT, REAL, LREAL, TIME and STRING are not supported for IN and Q. IN
and Q must have the same type. In case of invalid arguments (bad bit number or
invalid input type) the function returns the value of IN without modification.

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

2.7.16.4 ST Language
Q := SETBIT (IN, BIT, VAL);

2.7.16.5 FBD Language

2.7.16.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.7.16.7 IL Language
Not available

See also

TESTBIT

2.7.17 SHL
Function - Shift bits of a register to the left.

2.7.17.1 Inputs
IN : ANY register
NBS : ANY Number of shifts (each shift is 1 bit)

2.7.17.2 Outputs
Q : ANY Shifted register

2.7.17.3 Diagram

Kollmorgen™ | May 2012 119

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.17.4 Remarks
Arguments can be signed or unsigned integers from 8 to 32 bits.

In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the state of the input rung. In IL language, the first input must be loaded
before the function call. The second input is the operand of the function.

2.7.17.5 ST Language
Q := SHL (IN, NBS);

2.7.17.6 FBD Language

2.7.17.7 FFLD Language
(* The shift is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

2.7.17.8 IL Language:
Op1: FFLD IN

SHL NBS
ST Q

See also

SHR ROL ROR SHLb SHRb ROLb RORb SHLw SHRw ROLw RORw

2.7.18 SHR
Function - Shift bits of a register to the right.

2.7.18.1 Inputs
IN : ANY register
NBS : ANY Number of shifts (each shift is 1 bit)

2.7.18.2 Outputs
Q : ANY Shifted register

2.7.18.3 Diagram

120 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.18.4 Remarks
Arguments can be signed or unsigned integers from 8 to 32 bits.

In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the state of the input rung. In IL language, the first input must be loaded
before the function call. The second input is the operand of the function.

2.7.18.5 ST Language
Q := SHR (IN, NBS);

2.7.18.6 FBD Language

2.7.18.7 FFLD Language
(* The shift is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

2.7.18.8 IL Language:
Op1: FFLD IN

SHR NBS
ST Q

See also

SHL ROL ROR SHLb SHRb ROLb RORb SHLw SHRw ROLw RORw

2.7.19 TESTBIT
Function - Test a bit of an integer register.

2.7.19.1 Inputs
IN : ANY 8 to 32 bit integer register
BIT : DINT Bit number (0 = less significant bit)

2.7.19.2 Outputs
Q : BOOL Bit value

2.7.19.3 Remarks
Types LINT, REAL, LREAL, TIME and STRING are not supported for IN and Q. IN
and Q must have the same type. In case of invalid arguments (bad bit number or
invalid input type) the function returns FALSE.

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung is the output of the function.

2.7.19.4 ST Language
Q := TESTBIT (IN, BIT);

Kollmorgen™ | May 2012 121

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.19.5 FBD Language

2.7.19.6 FFLD Language
(* The function is executed only if EN is TRUE *)

2.7.19.7 IL Language
Not available

See also

SETBIT

2.7.20 UNPACK8
Function block - Extract bits of a byte

2.7.20.1 Inputs
IN : USINT 8 bit register

2.7.20.2 Outputs
Q0 : BOOL Less significant bit
...
Q7 : BOOL Most significant bit

2.7.20.3 Remarks
In FFLD language, the output rung is the Q0 output. The operation is executed only
in the input rung (EN) is TRUE.

2.7.20.4 ST Language
(* MyUnpack is a declared instance of the UNPACK8 function block *)
MyUnpack (IN);
Q0 := MyUnpack.Q0;
Q1 := MyUnpack.Q1;
Q2 := MyUnpack.Q2;
Q3 := MyUnpack.Q3;
Q4 := MyUnpack.Q4;
Q5 := MyUnpack.Q5;
Q6 := MyUnpack.Q6;
Q7 := MyUnpack.Q7;

122 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.20.5 FBD Language

2.7.20.6 FFLD Language
(* The operation is performed if EN = TRUE *)

2.7.20.7 IL Language:
(* MyUnpack is a declared instance of the UNPACK8 function block *)
Op1: CAL MyUnpack (IN)

FFLD MyUnpack.Q0
ST Q0
(* ... *)
FFLD MyUnpack.Q7
ST Q7

See also

PACK8

2.7.21 XOR_MASK
Function - Performs a bit to bit exclusive OR between two integer values

2.7.21.1 Inputs

IN : ANY First input
MSK : ANY Second input (XOR mask)

2.7.21.2 Outputs
Q : ANY Exclusive OR mask between IN and MSK inputs

Kollmorgen™ | May 2012 123

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.7.21.3 Remarks
Arguments can be signed or unsigned integers from 8 to 32 bits.

In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the same value as the input rung. In IL language, the first parameter (IN) must
be loaded in the current result before calling the function. The other input is the
operands of the function.

2.7.21.4 ST Language
Q := XOR_MASK (IN, MSK);

2.7.21.5 FBD Language

2.7.21.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO is equal to EN *)

2.7.21.7 IL Language:
Op1: FFLD IN

XOR_MASK MSK
ST Q

See also

AND_MASK OR_MASK NOT_MASK

2.8 Counters
Below are the standard blocks for managing counters:

CTU Up counter

CTD Down Counter

CTUD Up / Down Counter

2.8.1 CTD / CTDr
Function Block - Down counter.

2.8.1.1 Inputs
CD : BOOL Enable counting. Counter is decreased on each call when CD is
TRUE
LOAD : BOOL Re-load command. Counter is set to PV when called with LOAD to
TRUE
PV : DINT Programmed maximum value

124 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.8.1.2 Outputs
Q : BOOL TRUE when counter is empty, i.e. when CV = 0
CV : DINT Current value of the counter

2.8.1.3 Remarks
The counter is empty (CV = 0) when the application starts. The counter does not
include a pulse detection for CD input. Use R_TRIG or F_TRIG function block for
counting pulses of CD input signal. In FFLD language, CD is the input rung. The
output rung is the Q output.

CTUr, CTDr, CTUDr function blocks operate exactly as other counters, except that all
boolean inputs (CU, CD, RESET, LOAD) have an implicit rising edge detection
included. Note that these counters can be not supported on some target systems.

2.8.1.4 ST Language
(* MyCounter is a declared instance of CTD function block *)
MyCounter (CD, LOAD, PV);
Q := MyCounter.Q;
CV := MyCounter.CV;

2.8.1.5 FBD Language

2.8.1.6 FFLD Language

2.8.1.7 IL Language:
(* MyCounter is a declared instance of CTD function block *)
Op1: CAL MyCounter (CD, LOAD, PV)
FFLD MyCounter.Q
ST Q
FFLD MyCounter.CV
ST CV

See also

CTU CTUD

2.8.2 CTU / CTUr
Function Block - Up counter.

2.8.2.1 Inputs
CU : BOOL Enable counting. Counter is increased on each call when CU is
TRUE
RESET : BOOL Reset command. Counter is reset to 0 when called with RESET to

Kollmorgen™ | May 2012 125

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

TRUE
PV : DINT Programmed maximum value

2.8.2.2 Outputs
Q : BOOL TRUE when counter is full, i.e. when CV = PV
CV : DINT Current value of the counter

2.8.2.3 Remarks
The counter is empty (CV = 0) when the application starts. The counter does not
include a pulse detection for CU input. Use R_TRIG or F_TRIG function block for
counting pulses of CU input signal. In FFLD language, CU is the input rung. The
output rung is the Q output.

CTUr, CTDr, CTUDr function blocks operate exactly as other counters, except that all
boolean inputs (CU, CD, RESET, LOAD) have an implicit rising edge detection
included. Note that these counters can be not supported on some target systems.

2.8.2.4 ST Language
(* MyCounter is a declared instance of CTU function block *)
MyCounter (CU, RESET, PV);
Q := MyCounter.Q;
CV := MyCounter.CV;

2.8.2.5 FBD Language

2.8.2.6 FFLD Language

2.8.2.7 IL Language:
(* MyCounter is a declared instance of CTU function block *)
Op1: CAL MyCounter (CU, RESET, PV)
FFLD MyCounter.Q
ST Q
FFLD MyCounter.CV
ST CV

See also

CTD CTUD

2.8.3 CTUD / CTUDr
Function Block - Up/down counter.

126 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.8.3.1 Inputs
CU : BOOL Enable counting. Counter is increased on each call when CU is
TRUE
CD : BOOL Enable counting. Counter is decreased on each call when CD is
TRUE
RESET : BOOL Reset command. Counter is reset to 0 called with RESET to TRUE
LOAD : BOOL Re-load command. Counter is set to PV when called with LOAD to
TRUE
PV : DINT Programmed maximum value

2.8.3.2 Outputs
QU : BOOL TRUE when counter is full, i.e. when CV = PV
QD : BOOL TRUE when counter is empty, i.e. when CV = 0
CV : DINT Current value of the counter

2.8.3.3 Remarks
The counter is empty (CV = 0) when the application starts. The counter does not
include a pulse detection for CU and CD inputs. Use R_TRIG or F_TRIG function
blocks for counting pulses of CU or CD input signals. In FFLD language, CU is the
input rung. The output rung is the QU output.

CTUr, CTDr, CTUDr function blocks operate exactly as other counters, except that all
boolean inputs (CU, CD, RESET, LOAD) have an implicit rising edge detection
included. Note that these counters can be not supported on some target systems.

2.8.3.4 ST Language
(* MyCounter is a declared instance of CTUD function block *)
MyCounter (CU, CD, RESET, LOAD, PV);
QU := MyCounter.QU;
QD := MyCounter.QD;
CV := MyCounter.CV;

2.8.3.5 FBD Language

2.8.3.6 FFLD Language

Kollmorgen™ | May 2012 127

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.8.3.7 IL Language:
(* MyCounter is a declared instance of CTUD function block *)
Op1: CAL MyCounter (CU, CD, RESET, LOAD, PV)
FFLD MyCounter.QU
ST QU
FFLD MyCounter.QD
ST QD
FFLD MyCounter.CV
ST CV

See also

CTU CTD

2.9 Timers
Below are the standard functions for managing timers:

TON On timer

TOF Off timer

TP Pulse timer

BLINK Blinker

BLINKA Asymmetric blinker

PLS Pulse signal generator

TMU Up-counting stop watch

TMUsec Up-counting stop watch (seconds)

TMD Down-counting stop watch

2.9.1 BLINK
Function Block - Blinker.

2.9.1.1 Inputs
RUN : BOOL Enabling command
CYCLE : TIME Blinking period

2.9.1.2 Outputs
Q : BOOL Output blinking signal

2.9.1.3 Time diagram

2.9.1.4 Remarks
The output signal is FALSE when the RUN input is FALSE. The CYCLE input is the
complete period of the blinking signal. In FFLD language, the input rung is the IN
command. The output rung is the Q output signal.

128 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.9.1.5 ST Language
(* MyBlinker is a declared instance of BLINK function block *)
MyBlinker (RUN, CYCLE);
Q := MyBlinker.Q;

2.9.1.6 FBD Language

2.9.1.7 FFLD Language

2.9.1.8 IL Language
(* MyBlinker is a declared instance of BLINK function block *)
Op1: CAL MyBlinker (RUN, CYCLE)

FFLD MyBlinker.Q
ST Q

See also

TON TOF TP

2.9.2 BLINKA
Function Block - Asymmetric blinker.

2.9.2.1 Inputs
RUN : BOOL Enabling command
TM0 : TIME Duration of FALSE state on output
TM1 : TIME Duration of TRUE state on output

2.9.2.2 Outputs
Q : BOOL Output blinking signal

2.9.2.3 Time diagram

Kollmorgen™ | May 2012 129

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.9.2.4 Remarks
The output signal is FALSE when the RUN input is FALSE. In FFLD language, the
input rung is the IN command. The output rung is the Q output signal.

2.9.2.5 ST Language
(* MyBlinker is a declared instance of BLINKA function block *)
MyBlinker (RUN, TM0, TM1);
Q := MyBlinker.Q;

2.9.2.6 FBD Language

2.9.2.7 FFLD Language

2.9.2.8 IL Language:
(* MyBlinker is a declared instance of BLINKA function block *)
Op1: CAL MyBlinker (RUN, TM0, TM1)

FFLD MyBlinker.Q
ST Q

See also

TON TOF TP

2.9.3 PLS
Function Block - Pulse signal generator

2.9.3.1 Inputs
RUN : BOOL Enabling command
CYCLE : TIME Signal period

2.9.3.2 Outputs
Q : BOOL Output pulse signal

2.9.3.3 Time diagram

130 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.9.3.4 Remarks
On every period, the output is set to TRUE during one cycle only. In FFLD language,
the input rung is the IN command. The output rung is the Q output signal.

2.9.3.5 ST Language
(* MyPLS is a declared instance of PLS function block *)
MyPLS (RUN, CYCLE);
Q := MyPLS.Q;

2.9.3.6 FBD Language

2.9.3.7 FFLD Language

2.9.3.8 IL Language
(* MyPLS is a declared instance of PLS function block *)
Op1: CAL MyPLS (RUN, CYCLE)

FFLD MyPLS.Q
ST Q

See also

TON TOF TP

2.9.4 Sig_Gen
Function Block - Generator of pseudo-analogical Signal

2.9.4.1 Inputs
RUN : BOOL Enabling command

PERIOD : TIME Signal period

MAXIMUM : DINT Maximum growth during the signal period

2.9.4.2 Outputs
This FB generates signals of the four following types:

l PULSE: blinking at each period
l UP : growing according max * period
l END : pulse after max * period
l SINE : sine curve

Kollmorgen™ | May 2012 131

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.9.4.3 FFLD Language

2.9.5 TMD
Function Block - Down-counting stop watch.

2.9.5.1 Inputs
IN : BOOL The time counts when this input is TRUE
RST : BOOL Timer is reset to PT when this input is TRUE
PT : TIME Programmed time

2.9.5.2 Outputs
Q : BOOL Timer elapsed output signal
ET : TIME Elapsed time

132 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.9.5.3 Time diagram

2.9.5.4 Remarks
The timer counts up when the IN input is TRUE. It stops when the programmed time
is elapsed. The timer is reset when the RST input is TRUE. It is not reset when IN is
false.

2.9.5.5 ST Language
(* MyTimer is a declared instance of TMD function block *)
MyTimer (IN, RST, PT);
Q := MyTimer.Q;
ET := MyTimer.ET;

2.9.5.6 FBD Language

2.9.5.7 FFLD Language

2.9.5.8 IL Language
(* MyTimer is a declared instance of TMD function block *)
Op1: CAL MyTimer (IN, RST, PT)
FFLD: MyTimer.Q
ST: Q
FFLD: MyTimer.ET
ST: ET

Kollmorgen™ | May 2012 133

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

See also

TMU

2.9.6 TMU / TMUsec
Function Block - Up-counting stop watch. TMUsec is identical to TMU except that the
parameter is a number of seconds.

2.9.6.1 Inputs
IN : BOOL The time counts when this input is TRUE
RST : BOOL Timer is reset to 0 when this input is TRUE
PT : TIME Programmed time

2.9.6.2 Outputs
Q : BOOL Timer elapsed output signal
ET : TIME Elapsed time

2.9.6.3 Time diagram

2.9.6.4 Remarks
The timer counts up when the IN input is TRUE. It stops when the programmed time
is elapsed. The timer is reset when the RST input is TRUE. It is not reset when IN is
false.

2.9.6.5 ST Language
(* MyTimer is a declared instance of TMU function block *)

MyTimer (IN, RST, PT);
Q := MyTimer.Q;
ET := MyTimer.ET;

2.9.6.6 FBD Language

134 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.9.6.7 FFLD Language

2.9.6.8 IL Language:
(* MyTimer is a declared instance of TMU function block *)

Op1: CAL MyTimer (IN, RST, PT)
FFLD MyTimer.Q
ST Q
FFLD MyTimer.ET
ST ET

See also

TMD

2.9.7 TOF / TOFR
Function Block - Off timer.

2.9.7.1 Inputs
IN : BOOL Timer command
PT : TIME Programmed time

RST : BOOL Reset (TOFR only)

2.9.7.2 Outputs
Q : BOOL Timer elapsed output signal
ET : TIME Elapsed time

2.9.7.3 Time diagram

2.9.7.4 Remarks
The timer starts on a falling pulse of IN input. It stops when the elapsed time is equal
to the programmed time. A rising pulse of IN input resets the timer to 0. The output
signal is set to TRUE on when the IN input rises to TRUE, reset to FALSE when
programmed time is elapsed..

TOFR is same as TOF but has an extra input for resetting the timer

Kollmorgen™ | May 2012 135

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

In FFLD language, the input rung is the IN command. The output rung is Q the
output signal.

2.9.7.5 ST Language
(* MyTimer is a declared instance of TOF function block *)
MyTimer (IN, PT);
Q := MyTimer.Q;
ET := MyTimer.ET;

2.9.7.6 FBD Language

2.9.7.7 FFLD Language

2.9.7.8 IL Language:
(* MyTimer is a declared instance of TOF function block *)
Op1: CAL MyTimer (IN, PT)

FFLD MyTimer.Q
ST Q
FFLD MyTimer.ET
ST ET

See also

TON TP BLINK

2.9.8 TON
Function Block - On timer.

2.9.8.1 Inputs
IN : BOOL Timer command
PT : TIME Programmed time

2.9.8.2 Outputs
Q : BOOL Timer elapsed output signal
ET : TIME Elapsed time

136 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.9.8.3 Time diagram

2.9.8.4 Remarks
The timer starts on a rising pulse of IN input. It stops when the elapsed time is equal
to the programmed time. A falling pulse of IN input resets the timer to 0. The output
signal is set to TRUE when programmed time is elapsed, and reset to FALSE when
the input command falls.

In FFLD language, the input rung is the IN command. The output rung is Q the
output signal.

2.9.8.5 ST Language
(* Inst_TON is a declared instance of TON function block *)
Inst_TON(FALSE, T#2s);
Q := Inst_TON.Q;
ET := Inst_TON.ET;

2.9.8.6 FBD Language

2.9.8.7 FFLD Language

2.9.8.8 IL Language:
(* MyTimer is a declared instance of TON function block *)
Op1: CAL MyTimer (IN, PT)

FFLD MyTimer.Q
ST Q
FFLD MyTimer.ET
ST ET

See also

TOF TP BLINK

2.9.9 TP / TPR
Function Block - Pulse timer.

Kollmorgen™ | May 2012 137

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.9.9.1 Inputs
IN : BOOL Timer command
PT : TIME Programmed time

RST : BOOL Reset (TPR only)

2.9.9.2 Outputs
Q : BOOL Timer elapsed output signal
ET : TIME Elapsed time

2.9.9.3 Time diagram

2.9.9.4 Remarks
The timer starts on a rising pulse of IN input. It stops when the elapsed time is equal
to the programmed time. A falling pulse of IN input resets the timer to 0, only if the
programmed time is elapsed. All pulses of IN while the timer is running are ignored.
The output signal is set to TRUE while the timer is running.

TPR is same as TP but has an extra input for resetting the timer

In FFLD language, the input rung is the IN command. The output rung is Q the
output signal.

2.9.9.5 ST Language
(* MyTimer is a declared instance of TP function block *)
MyTimer (IN, PT);
Q := MyTimer.Q;
ET := MyTimer.ET;

2.9.9.6 FBD Language

2.9.9.7 FFLD Language

2.9.9.8 IL Language:
(* MyTimer is a declared instance of TP function block *)
Op1: CAL MyTimer (IN, PT)

138 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

FFLD MyTimer.Q
ST Q
FFLD MyTimer.ET
ST ET

See also

TON TOF BLINK

2.10 Mathematic operations
Below are the standard functions that perform mathematic calculation:

ABS absolute value

TRUNC integer part

LOG, LN / LNL logarithm, natural logarithm

POW,EXPT, EXP / EXPL power

SQRT, ROOT square root, root extraction

SCALELIN scaling - linear conversion

2.10.1 ABS / ABSL
Function - Returns the absolute value of the input.

2.10.1.1 Inputs
IN : REAL/LREAL ANY value

2.10.1.2 Outputs
Q : REAL/LREAL Result: absolute value of IN

2.10.1.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung. In IL, the input must be
loaded in the current result before calling the function.

2.10.1.4 ST Language
Q := ABS (IN);

2.10.1.5 FBD Language

2.10.1.6 FFLD Language
The function is executed only if EN is TRUE.
ENO keeps the same value as EN.

2.10.1.7 IL Language
Op1: FFLD IN

ABS

Kollmorgen™ | May 2012 139

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

ST Q (* Q is: ABS (IN) *)

See also

TRUNC LOG POW SQRT

2.10.2 EXPT
Function - Calculates a power.

2.10.2.1 Inputs
IN : REAL Real value
EXP : DINT Exponent

2.10.2.2 Outputs
Q : REAL Result: IN at the 'EXP' power

2.10.2.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function. The
exponent (second input of the function) must be the operand of the function.

2.10.2.4 ST Language
Q := EXPT (IN, EXP);

2.10.2.5 FBD Language

2.10.2.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.10.2.7 IL Language:
Op1: FFLD IN

EXPT EXP
ST Q (* Q is: (IN ** EXP) *)

See also

ABS TRUNC LOG SQRT

2.10.3 LOG
Function - Calculates the logarithm (base 10) of the input.

140 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.10.3.1 Inputs
IN : REAL Real value

2.10.3.2 Outputs
Q : REAL Result: logarithm (base 10) of IN

2.10.3.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.10.3.4 ST Language
Q := LOG (IN);

2.10.3.5 FBD Language

2.10.3.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.10.3.7 IL Language:
Op1: FFLD IN

LOG
ST Q (* Q is: LOG (IN) *)

See also

ABS TRUNC POW SQRT

2.10.4 POW ** POWL
Function - Calculates a power.

2.10.4.1 Inputs
IN : REAL/LREAL Real value
EXP : REAL/LREAL Exponent

2.10.4.2 Outputs
Q : REAL/LREAL Result: IN at the 'EXP' power

2.10.4.3 Remarks
Alternatively, in ST language, the "**" operator can be used. In FFLD language, the
operation is executed only if the input rung (EN) is TRUE. The output rung (ENO)
keeps the same value as the input rung.

Kollmorgen™ | May 2012 141

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

In IL, the input must be loaded in the current result before calling the function. The
exponent (second input of the function) must be the operand of the function.

2.10.4.4 ST Language
Q := POW (IN, EXP);
Q := IN ** EXP;

2.10.4.5 FBD Language

2.10.4.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.10.4.7 IL Language:
Op1: FFLD IN

POW EXP
ST Q (* Q is: (IN ** EXP) *)

See also

ABS TRUNC LOG SQRT

2.10.5 ScaleLin
Function - Scaling - linear conversion.

2.10.5.1 Inputs
IN : REAL Real value
IMIN : REAL Minimum input value
IMAX : REAL Maximum input value
OMIN : REAL Minimum output value
OMAX : REAL Maximum output value

2.10.5.2 Outputs
OUT : REAL Result: OMIN + IN * (OMAX - OMIN) / (IMAX - IMIN)

2.10.5.3 Truth table
inputs OUT
IMIN >= IMAX = IN
IN < IMIN = IMIN
IN > IMAX = IMAX
other = OMIN + IN * (OMAX - OMIN) / (IMAX

- IMIN)

142 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.10.5.4 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.10.5.5 ST Language
OUT := ScaleLin (IN, IMIN, IMAX, OMIN, OMAX);

2.10.5.6 FBD Language

2.10.5.7 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.10.5.8 IL Language
Op1: FFLD IN

ScaleLin IMAX, IMIN, OMAX, OMIN
ST OUT

2.10.6 SQRT / SQRTL
Function - Calculates the square root of the input.

2.10.6.1 Inputs
IN : REAL/LREAL Real value

2.10.6.2 Outputs
Q : REAL/LREAL Result: square root of IN

2.10.6.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.10.6.4 ST Language
Q := SQRT (IN);

Kollmorgen™ | May 2012 143

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.10.6.5 FBD Language

2.10.6.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.10.6.7 IL Language:
Op1: FFLD IN

SQRT
ST Q (* Q is: SQRT (IN) *)

See also

ABS TRUNC LOG POW

2.10.7 TRUNC / TRUNCL
Function - Truncates the decimal part of the input.

2.10.7.1 Inputs
IN : REAL/LREAL Real value

2.10.7.2 Outputs
Q : REAL/LREAL Result: integer part of IN

2.10.7.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.10.7.4 ST Language
Q := TRUNC (IN);

2.10.7.5 FBD Language

2.10.7.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

144 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.10.7.7 IL Language:
Op1: FFLD IN

TRUNC
ST Q (* Q is the integer part of IN *)

See also

ABS LOG POW SQRT

2.11 Trigonometric functions
Below are the standard functions for trigonometric calculation:

SIN sine

COS cosine

TAN tangent

ASIN arc-sine

ACOS arc-cosine

ATAN arc-tangent

ATAN2 arc-tangent of Y / X

See Also:

UseDegrees

2.11.1 ACOS / ACOSL
Function - Calculate an arc-cosine.

2.11.1.1 Inputs
IN : REAL/LREAL Real value

2.11.1.2 Outputs
Q : REAL/LREAL Result: arc-cosine of IN

2.11.1.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.11.1.4 ST Language
Q := ACOS (IN);

2.11.1.5 FBD Language

Kollmorgen™ | May 2012 145

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.11.1.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.11.1.7 IL Language:
Op1: FFLD IN

ACOS
ST Q (* Q is: ACOS (IN) *)

See also

SIN COS TAN ASIN ATAN ATAN2

2.11.2 ASIN / ASINL
Function - Calculate an arc-sine.

2.11.2.1 Inputs
IN : REAL/LREAL Real value

2.11.2.2 Outputs
Q : REAL/LREAL Result: arc-sine of IN

2.11.2.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.11.2.4 ST Language
Q := ASIN (IN);

2.11.2.5 FBD Language

2.11.2.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.11.2.7 IL Language:
Op1: FFLD IN

ASIN

146 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

ST Q (* Q is: ASIN (IN) *)

See also

SIN COS TAN ACOS ATAN ATAN2

2.11.3 ATAN / ATANL
Function - Calculate an arc-tangent.

2.11.3.1 Inputs
IN : REAL/LREAL Real value

2.11.3.2 Outputs
Q : REAL/LREAL Result: arc-tangent of IN

2.11.3.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.11.3.4 ST Language
Q := ATAN (IN);

2.11.3.5 FBD Language

2.11.3.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.11.3.7 IL Language:
Op1: FFLD IN

ATAN
ST Q (* Q is: ATAN (IN) *)

See also

SIN COS TAN ASIN ACOS ATAN2

2.11.4 ATAN2 / ATAN2L
Function - Calculate arc-tangent of Y/X

2.11.4.1 Inputs
Y : REAL/LREAL Real value
X : REAL/LREAL Real value

Kollmorgen™ | May 2012 147

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.11.4.2 Outputs
Q : REAL/LREAL Result: arc-tangent of Y / X

2.11.4.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.11.4.4 ST Language
Q := ATAN2 (IN);

2.11.4.5 FBD Language

2.11.4.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.11.4.7 IL Language
Op1: FFLD Y

ATAN2 X
ST Q (* Q is: ATAN2 (Y / X) *)

See also

SIN COS TAN ASIN ACOS ATAN

2.11.5 COS / COSL
Function - Calculate a cosine.

2.11.5.1 Inputs
IN : REAL/LREAL Real value

2.11.5.2 Outputs
Q : REAL/LREAL Result: cosine of IN

2.11.5.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

148 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.11.5.4 ST Language
Q := COS (IN);

2.11.5.5 FBD Language

2.11.5.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.11.5.7 IL Language:
Op1: FFLD IN

COS
ST Q (* Q is: COS (IN) *)

See also

SIN TAN ASIN ACOS ATAN ATAN2

2.11.6 SIN / SINL
Function - Calculate a sine.

2.11.6.1 Inputs
IN : REAL/LREAL Real value

2.11.6.2 Outputs
Q : REAL/LREAL Result: sine of IN

2.11.6.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.11.6.4 ST Language
Q := SIN (IN);

2.11.6.5 FBD Language

Kollmorgen™ | May 2012 149

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.11.6.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.11.6.7 IL Language:
Op1: FFLD IN

SIN
ST Q (* Q is: SIN (IN) *)

See also

COS TAN ASIN ACOS ATAN ATAN2

2.11.7 TAN / TANL
Function - Calculate a tangent.

2.11.7.1 Inputs
IN : REAL/LREAL Real value

2.11.7.2 Outputs
Q : REAL/LREAL Result: tangent of IN

2.11.7.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.11.7.4 ST Language
Q := TAN (IN);

2.11.7.5 FBD Language

2.11.7.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.11.7.7 IL Language:
Op1: FFLD IN

TAN

150 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

ST Q (* Q is: TAN (IN) *)

See also

SIN COS ASIN ACOS ATAN ATAN2

2.11.8 UseDegrees
Function - Sets the unit for angles in all trigonometric functions.

2.11.8.1 Inputs
IN : BOOL If TRUE, turn all trigonometric functions to use degrees

If FALSE, turn all trigonometric functions to use radians (default)

2.11.8.2 Outputs
Q : BOOL TRUE if functions use degrees before the call

2.11.8.3 Remarks

This function sets the working unit for the following functions:

SIN
COS
TAN
ASIN
ACOS
ATAN
ATAN2

sine
cosine
tangent
arc-sine
arc-cosine
arc-tangent
arc-tangent of Y / X

2.11.8.4 ST Language
Q := UseDegrees (IN);

2.11.8.5 FBD Language

2.11.8.6 FFLD Language
(* Input is the rung. The rung is the output *)

2.11.8.7 IL Language
Op1: FFLD IN

UseDegrees
ST Q

2.12 String operations
Below are the standard operators and functions that manage character strings:

Kollmorgen™ | May 2012 151

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

+
CONCAT
MLEN
DELETE
INSERT
FIND
REPLACE
LEFT
RIGHT
MID
CHAR
ASCII
ATOH
HTOA
CRC16
ArrayToString
StringToArray

concatenation of strings
concatenation of strings
get string length
delete characters in a string
insert characters in a string
find characters in a string
replace characters in a string
extract a part of a string on the left
extract a part of a string on the right
extract a part of a string
build a single character string
get the ASCII code of a character within a string
converts string to integer using hexadecimal basis
converts integer to string using hexadecimal basis
CRC16 calculation
copies elements of an SINT array to a STRING
copies characters of a STRING to an SINT array

Other functions are available for managing string tables as resources:

StringTable
LoadString

Select the active string table resource
Load a string from the active string table

2.12.1 ArrayToString / ArrayToStringU
Function - Copy an array of SINT to a STRING.

2.12.1.1 Inputs
SRC : SINT Source array of SINT small integers (USINT for ArrayToStringU)
DST : STRING Destination STRING
COUNT : DINT Numbers of characters to be copied

2.12.1.2 Outputs
Q : DINT Number of characters copied

2.12.1.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

This function copies the COUNT first elements of the SRC array to the characters of
the DST string. The function checks the maximum size of the destination string and
adjust the COUNT number if necessary.

2.12.1.4 ST Language
Q := ArrayToString (SRC, DST, COUNT);

2.12.1.5 FBD Language

2.12.1.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

152 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.1.7 IL Language
Not available

See also

StringToArray

2.12.2 ASCII
Function - Get the ASCII code of a character within a string

2.12.2.1 Inputs
IN : STRING Input string
POS : DINT Position of the character within the string

(The first valid position is 1)

2.12.2.2 Outputs
CODE : DINT ASCII code of the selected character

or 0 if position is invalid

2.12.2.3 Remarks
In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the same value as the input rung. In IL language, the first parameter (IN) must
be loaded in the current result before calling the function. The other input is the
operand of the function.

2.12.2.4 ST Language
CODE := ASCII (IN, POS);

2.12.2.5 FBD Language

2.12.2.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO is equal to EN *)

Kollmorgen™ | May 2012 153

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.2.7 IL Language:
Op1: FFLD IN

AND_MASK MSK
ST CODE

See also

CHAR

2.12.3 ATOH
Function - Converts string to integer using hexadecimal basis

2.12.3.1 Inputs
IN : STRING String representing an integer in hexadecimal format

2.12.3.2 Outputs
Q : DINT Integer represented by the string

2.12.3.3 Truth table (examples)
IN Q

'' 0

'12' 18

'a0' 160

'A0zzz' 160

2.12.3.4 Remarks
The function is case insensitive. The result is 0 for an empty string. The conversion
stops before the first invalid character. In FFLD language, the operation is executed
only if the input rung (EN) is TRUE. The output rung (ENO) keeps the same value as
the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.12.3.5 ST Language
Q := ATOH (IN);

2.12.3.6 FBD Language

2.12.3.7 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

154 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.3.8 IL Language:
Op1: FFLD IN

ATOH
ST Q

See also

HTOA

2.12.4 CHAR
Function - Builds a single character string

2.12.4.1 Inputs
CODE : DINT ASCII code of the wished character

2.12.4.2 Outputs
Q : STRING STRING containing only the specified character

2.12.4.3 Remarks
In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the same value as the input rung. In IL language, the input parameter (CODE)
must be loaded in the current result before calling the function.

2.12.4.4 ST Language
Q := CHAR (CODE);

2.12.4.5 FBD Language

2.12.4.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO is equal to EN *)

2.12.4.7 IL Language:
Op1: FFLD CODE

CHAR
ST Q

See also

ASCII

2.12.5 CONCAT
Function - Concatenate strings.

Kollmorgen™ | May 2012 155

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.5.1 Inputs
IN_1 : STRING Any string variable or constant expression
...
IN_N : STRING Any string variable or constant expression

2.12.5.2 Outputs
Q : STRING Concatenation of all inputs

2.12.5.3 Remarks
In FBD or FFLD language, the block can have up to 16 inputs. In IL or ST, the
function accepts a variable number of inputs (at least 2).

Note that you also can use the "+" operator to concatenate strings.

2.12.5.4 ST Language
Q := CONCAT ('AB', 'CD', 'E');
(* now Q is 'ABCDE' *)

2.12.5.5 FBD Language

2.12.5.6 FFLD Language

2.12.5.7 IL Language
Op1: FFLD 'AB'

CONCAT 'CD', 'E'
ST Q (* Q is now 'ABCDE' *)

2.12.6 CRC16
Function - calculates a CRC16 on the characters of a string

2.12.6.1 Inputs
IN : STRING character string

2.12.6.2 Outputs
Q : INT CRC16 calculated on all the characters of the string.

156 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.6.3 Remarks
In FFLD language, the input rung (EN) enables the operation, and the output rung
keeps the same value as the input rung. In IL language, the input parameter (IN)
must be loaded in the current result before calling the function.

The function calculates a MODBUS CRC16, initialized at 16#FFFF value.

2.12.6.4 ST Language
Q := CRC16 (IN);

2.12.6.5 FBD Language

2.12.6.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO is equal to EN *)

2.12.6.7 IL Language:
Op1: FFLD IN

CRC16
ST Q

2.12.7 DELETE
Function - Delete characters in a string.

2.12.7.1 Inputs
IN : STRING Character string
NBC : DINT Number of characters to be deleted
POS : DINT Position of the first deleted character (first character position is 1)

2.12.7.2 Outputs
Q : STRING Modified string.

2.12.7.3 Remarks
The first valid character position is 1. In FFLD language, the operation is executed
only if the input rung (EN) is TRUE. The output rung (ENO) keeps the same value as
the input rung.

In IL, the first input (the string) must be loaded in the current result before calling the
function. Other arguments are operands of the function, separated by comas.

2.12.7.4 ST Language
Q := DELETE (IN, NBC, POS);

Kollmorgen™ | May 2012 157

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.7.5 FBD Language

2.12.7.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.12.7.7 IL Language:
Op1: FFLD IN

DELETE NBC, POS
ST Q

See also

+ MLEN INSERT FIND REPLACE LEFT RIGHT MID

2.12.8 FIND
Function - Find position of characters in a string.

2.12.8.1 Inputs
IN : STRING Character string
STR : STRING String containing searched characters

2.12.8.2 Outputs
POS : DINT Position of the first character of STR in IN, or 0 if not found

2.12.8.3 Remarks
The first valid character position is 1. A return value of 0 means that the STR string
has not been found. Search is case sensitive. In FFLD language, the operation is
executed only if the input rung (EN) is TRUE. The output rung (ENO) keeps the same
value as the input rung.

In IL, the first input (the string) must be loaded in the current result before calling the
function. The second argument is the operand of the function.

2.12.8.4 ST Language
POS := FIND (IN, STR);

158 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.8.5 FBD Language

2.12.8.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.12.8.7 IL Language:
Op1: FFLD IN

FIND STR
ST POS

See also

+ MLEN DELETE INSERT REPLACE LEFT RIGHT MID

2.12.9 HTOA
Function - Converts integer to string using hexadecimal basis

2.12.9.1 Inputs
IN : DINT Integer value

2.12.9.2 Outputs
Q : STRING String representing the integer in hexadecimal format

2.12.9.3 Truth table (examples)
IN Q

0 '0'

18 '12'

160 'A0'

2.12.9.4 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.12.9.5 ST Language
Q := HTOA (IN);

Kollmorgen™ | May 2012 159

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.9.6 FBD Language

2.12.9.7 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.12.9.8 IL Language:
Op1: FFLD IN

HTOA
ST Q

See also

ATOH

2.12.10 INSERT
Function - Insert characters in a string.

2.12.10.1 Inputs
IN : STRING Character string
STR : STRING String containing characters to be inserted
POS : DINT Position of the first inserted character (first character position is 1)

2.12.10.2 Outputs
Q : STRING Modified string.

2.12.10.3 Remarks
The first valid character position is 1. In FFLD language, the operation is executed
only if the input rung (EN) is TRUE. The output rung (ENO) keeps the same value as
the input rung.

In IL, the first input (the string) must be loaded in the current result before calling the
function. Other arguments are operands of the function, separated by comas.

2.12.10.4 ST Language
Q := INSERT (IN, STR, POS);

2.12.10.5 FBD Language

160 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.10.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.12.10.7 IL Language:
Op1: FFLD IN

INSERT STR, POS
ST Q

See also

+ MLEN DELETE FIND REPLACE LEFT RIGHT MID

2.12.11 LEFT
Function - Extract characters of a string on the left.

2.12.11.1 Inputs
IN : STRING Character string
NBC : DINT Number of characters to extract

2.12.11.2 Outputs
Q : STRING String containing the first NBC characters of IN.

2.12.11.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the first input (the string) must be loaded in the current result before calling the
function. The second argument is the operand of the function.

2.12.11.4 ST Language
Q := LEFT (IN, NBC);

2.12.11.5 FBD Language

2.12.11.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

Kollmorgen™ | May 2012 161

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.11.7 IL Language:
Op1: FFLD IN

LEFT NBC
ST Q

See also

+ MLEN DELETE INSERT FIND REPLACE RIGHT MID

2.12.12 LoadString
Function - Load a string from the active string table.

2.12.12.1 Inputs
ID: DINT ID of the string as declared in the string table

2.12.12.2 Outputs
Q : STRING Loaded string or empty string in case of error

2.12.12.3 Remarks
This function loads a string from the active string table and stores it into a STRING
variable. The StringTable() function is used for selecting the active string table.

The "ID" input (the string item identifier) is an identifier such as declared within the
string table resource. You don't need to "define" again this identifier. The system does
it for you.

2.12.12.4 ST Language
Q := LoadString (ID);

2.12.12.5 FBD Language

2.12.12.6 FFLD Language

2.12.12.7 IL Language:
Op1: FFLD ID

LoadString
ST Q

See also

162 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

StringTable String tables

2.12.13 MID
Function - Extract characters of a string at any position.

2.12.13.1 Inputs
IN : STRING Character string
NBC : DINT Number of characters to extract
POS : DINT Position of the first character to extract (first character of IN is at
position 1)

2.12.13.2 Outputs
Q : STRING String containing the first NBC characters of IN.

2.12.13.3 Remarks
The first valid position is 1. In FFLD language, the operation is executed only if the
input rung (EN) is TRUE. The output rung (ENO) keeps the same value as the input
rung.

In IL, the first input (the string) must be loaded in the current result before calling the
function. Other arguments are operands of the function, separated by comas.

2.12.13.4 ST Language
Q := MID (IN, NBC, POS);

2.12.13.5 FBD Language

2.12.13.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.12.13.7 IL Language:
Op1: FFLD IN

MID NBC, POS
ST Q

See also

+ MLEN DELETE INSERT FIND REPLACE LEFT RIGHT

Kollmorgen™ | May 2012 163

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.14 MLEN
Function - Get the number of characters in a string.

2.12.14.1 Inputs
IN : STRING Character string

2.12.14.2 Outputs
NBC : DINT Number of characters currently in the string. 0 if string is empty.

2.12.14.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

2.12.14.4 ST Language
NBC := MLEN (IN);

2.12.14.5 FBD Language

2.12.14.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.12.14.7 IL Language:
Op1: FFLD IN

MLEN
ST NBC

See also

+ DELETE INSERT FIND REPLACE LEFT RIGHT MID

2.12.15 REPLACE
Function - Replace characters in a string.

2.12.15.1 Inputs
IN : STRING Character string
STR : STRING String containing the characters to be inserted

in place of NDEL removed characters
NDEL : DINT Number of characters to be deleted before insertion of STR
POS : DINT Position where characters are replaced (first character position is 1)

164 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.15.2 Outputs
Q : STRING Modified string.

2.12.15.3 Remarks
The first valid character position is 1. In FFLD language, the operation is executed
only if the input rung (EN) is TRUE. The output rung (ENO) keeps the same value as
the input rung.

In IL, the first input (the string) must be loaded in the current result before calling the
function. Other arguments are operands of the function, separated by comas.

2.12.15.4 ST Language
Q := REPLACE (IN, STR, NDEL, POS);

2.12.15.5 FBD Language

2.12.15.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.12.15.7 IL Language:
Op1: FFLD IN

REPLACE STR, NDEL, POS
ST Q

See also

+ MLEN DELETE INSERT FIND LEFT RIGHT MID

2.12.16 RIGHT
Function - Extract characters of a string on the right.

2.12.16.1 Inputs
IN : STRING Character string
NBC : DINT Number of characters to extract

2.12.16.2 Outputs
Q : STRING String containing the last NBC characters of IN.

Kollmorgen™ | May 2012 165

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.16.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the first input (the string) must be loaded in the current result before calling the
function. The second argument is the operand of the function.

2.12.16.4 ST Language
Q := RIGHT (IN, NBC);

2.12.16.5 FBD Language

2.12.16.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.12.16.7 IL Language:
Op1: FFLD IN

RIGHT NBC
ST Q

See also

+ MLEN DELETE INSERT FIND REPLACE LEFT MID

2.12.17 StringTable
Function - Selects the active string table.

2.12.17.1 Inputs
TABLE : STRING Name of the Sting Table resource - must be a constant
COL : STRING Name of the column in the table - must be a constant

2.12.17.2 Outputs
OK : BOOL TRUE if OK

2.12.17.3 Remarks
This function selects a column of a valid String Table resource to become the active
string table. The LoadString() function always refers to the active string table.

Arguments must be constant string expressions and must fit to a declared string table
and a valid column name within this table.

166 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

If you have only one string table with only one column defined in your project, you
do not need to call this function as it will be the default string table anyway.

2.12.17.4 ST Language
OK := StringTable ('MyTable', 'FirstColumn");

2.12.17.5 FBD Language

2.12.17.6 FFLD Language

2.12.17.7 IL Language:
Op1: FFLD 'MyTable'
StringTable 'First Column'
ST OK

See also

LoadString String tables

2.12.18 StringToArray / StringToArrayU
Function - Copies the characters of a STRING to an array of SINT.

2.12.18.1 Inputs
SRC : STRING Source STRING
DST : SINT Destination array of SINT small integers (USINT for
StringToArrayU)

2.12.18.2 Outputs
Q : DINT Number of characters copied

2.12.18.3 Remarks
In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

This function copies the characters of the SRC string to the first characters of the
DST array. The function checks the maximum size destination arrays and reduces the
number of copied characters if necessary.

2.12.18.4 ST Language
Q := StringToArray (SRC, DST);

Kollmorgen™ | May 2012 167

KAS Reference Manual - PLC Library | 2 Programming features and standard
blocks

2.12.18.5 FBD Language

2.12.18.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

2.12.18.7 IL Language:
Op1: FFLD SRC
StringToArray DST
ST Q

See also

ArrayToString

168 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3 Advanced operations
Below are the standard blocks that perform advanced operations.

Analog signal processing:

Average / AverageL Calculate the average of signal samples
Integral Calculate the integral of a signal
Derivate Derivate a signal
PID PID loop
Ramp Ramp signal
Rand Give a Random valuemodulo the input value
Lim_Alrm Low / High level detection
Hyster Hysterisis calculation
SigPlay Play an analog signal from a resource
SigScale Get a point from a signal resource
CurveLin Linear interpolation on a curve
SurfLin Linear interpolation on a surface

Alarm management:

Lim_Alrm
Alarm_M
Alarm_A

Low / High level
detection
Alarm with manual reset
Alarm with automatic
reset

Data collections and serialization:

StackInt
FIFO
LIFO
SerializeIn
SerializeOut
SerGetString
SerPutString

Stack of integers
"First in / first out" list
"Last in / first out" stack
Extract data from a binary frame
Write data to a binary frame
Extract a string from a binary frame
Copies a string to a binary frame

Data Logging:

LogFileCSV Log values of variables to a CSV file

Special operations:

GetSysInfo
Printf
CycleStop
FatalStop
EnableEvents
ApplyRecipeColumn
VLID
SigID

Get system information
Trace messages
Sets the application in cycle stepping mode
Breaks the cycle and stop with fatal error
Enable / disable produced events for binding
Apply the values of a column from a recipe file
Get the ID of an embedded list of variables
Get the ID of a signal resource

Communication:

SERIO: serial communication
AS-interface
TCP-IP management functions
UDP management functions
MQTT protocol handling
MBSlaveRTU MBSlaveUDP

Others:

Dynamic memory allocation functions
Real Time Clock
Variable size text buffers manipulation
XML writing and parsing

Kollmorgen™ | May 2012 169

KAS Reference Manual - PLC Library | 3 Advanced operations

3.1 ALARM_A
Function Block - Alarm with automatic reset

3.1.1 Inputs
IN : BOOL Process signal
ACK : BOOL Acknowledge command

3.1.2 Outputs
Q : BOOL TRUE if alarm is active
QACK : BOOL TRUE if alarm is acknowledged

3.1.3 Sequence

3.1.4 Remarks
Combine this block with the LIM_ALRM block for managing analog alarms.

3.1.5 ST Language
(* MyALARM is declared as an instance of ALARM_A function block *)
MyALARM (IN, ACK);
Q := MyALARM.Q;
QACK := MyALARM.QACK;

3.1.6 FBD Language

170 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.1.7 FFLD Language

3.1.8 IL Language
(* MyALARM is declared as an instance of ALARM_A function block *)
Op1: CAL MyALARM (IN, ACK)
FFLD MyALARM.Q
ST Q
FFLD MyALARM.QACK
ST QACK

See also

ALARM_M LIM_ALRM

3.2 ALARM_M
Function Block - Alarm with manual reset

3.2.1 Inputs
IN : BOOL Process signal
ACK : BOOL Acknowledge command
RST : BOOL Reset command

3.2.2 Outputs
Q : BOOL TRUE if alarm is active
QACK : BOOL TRUE if alarm is acknowledged

3.2.3 Sequence

3.2.4 Remarks
Combine this block with the LIM_ALRM block for managing analog alarms.

Kollmorgen™ | May 2012 171

KAS Reference Manual - PLC Library | 3 Advanced operations

3.2.5 ST Language
(* MyALARM is declared as an instance of ALARM_M function block *)
MyALARM (IN, ACK, RST);
Q := MyALARM.Q;
QACK := MyALARM.QACK;

3.2.6 FBD Language

3.2.7 FFLD Language

3.2.8 IL Language
(* MyALARM is declared as an instance of ALARM_M function block *)
Op1: CAL MyALARM (IN, ACK, RST)
FFLD MyALARM.Q
ST Q
FFLD MyALARM.QACK
ST QACK

See also

ALARM_A LIM_ALRM

3.3 ApplyRecipeColumn
Function - Apply the values of a column from a recipe file

3.3.1 Inputs
FILE : STRING Path name of the recipe file (.RCP or .CSV) - must be a
constant value!
COL : DINT Index of the column in the recipe (0 based)

See an example of RCP file
@COLNAME=Col3 Col4

@SIZECOL1=100

@SIZECOL2=100

@SIZECOL3=100

@SIZECOL4=100

172 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

bCommand

tPerio

bFast

Blink1

test_var

bOut

@EXPANDED=Blink1

See an example of CSV file
Example of CSV file with five variables and five set of values

comment lines here

TravelSpeed;100;200;300;400;500

MasterAbsPos;0;45;90;135;180

MasterDeltaPos;0;90;180;270;360

MachineSpeed;50;100;150;200;250

MachineState;0;0;1;1;2

Note
For your CSV file to be valid, ensure the data are separated with semicolons
(and not commas).

Usage in a FFLD program where column 3 is selected

Column 3 corresponds to column E in the Excel sheet because this parameter is 0
based

Result displayed in the Dictionary when the application is running

Kollmorgen™ | May 2012 173

KAS Reference Manual - PLC Library | 3 Advanced operations

3.3.2 Outputs
OK : BOOL TRUE if OK - FALSE if parameters are invalid

3.3.3 Remarks
The 'FILE' input is a constant string expression specifying the path name of a valid
.RCP or .CSV file. If no path is specified, the file is assumed to be located in the
project folder. RCP files are created using an external recipe editor. CSV files can be
created using EXCEL or NOTEPAD.

In CSV files, the first line must contain column headers, and is ignored during
compiling. There is one variable per line. The first column contains the symbol of the
variable. Other columns are values.

If a cell is empty, it is assumed to be the same value as the previous (left side) cell.
If it is the first cell of a row, it is assumed to be null (0 or FALSE or empty string).

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung is the result of the function.

Warning
Recipe files are read at compiling time and are embedded into the downloaded
application code. This implies that a modification performed in the recipe file after
downloading is not taken into account by the application.

3.3.4 ST Language
OK := ApplyRecipeColumn ('MyFile.rcp', COL);

3.3.5 FBD Language

3.3.6 FFLD Language
(* The function is executed only if ApplyRecipe is TRUE *)

174 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.3.7 IL Language
Op1: FFLD 'MyFile.rcp'
ApplyRecipeColumn COL
ST OK

3.4 AS-interface functions
The following functions enable special operation on AS-i networks:

ASiReadPP read permanent parameters of an AS-i slave
ASiWritePP write permanent parameters of an AS-i slave
ASiSendParam send parameters to an AS-i slave
ASiReadPI read actual parameters of an AS-i slave
ASiStorePI store actual parameters as permanent parameters

Warning
AS-i networking may be not available on some targets. Please refer to OEM
instructions for further details about available features.

Interface

Params := ASiReadPP (Master, Slave);
bOK := ASiWritePP (Master, Slave, Params);
bOK := ASiSendParam (Master, Slave, Params);
Params := ASiReadPI (Master, Slave);
bOK := ASiStorePI (Master);

Arguments

Master : DINT Index of the AS-i master (1..N) such as shown in configuration
Slave : DINT Address of the AS-i slave (1..32 / 33..63)
Params : DINT Value of AS-i parameters
bOK : BOOL TRUE if successful

3.5 AVERAGE / AVERAGEL
Function Block - Calculates the average of signal samples.

3.5.1 Inputs
RUN : BOOL Enabling command
XIN : REAL Input signal
N : DINT Number of samples stored for average calculation - Cannot exceed
128

Kollmorgen™ | May 2012 175

KAS Reference Manual - PLC Library | 3 Advanced operations

3.5.2 Outputs
XOUT : REAL Average of the stored samples (*)

(*) AVERAGEL has LREAL arguments.

3.5.3 Remarks
The average is calculated according to the number of stored samples, that can be
less that N when the block is enabled. In FFLD language, the input rung is the RUN
command. The output rung keeps the state of the input rung.

The "N" input is take into account only when the RUN input is FALSE. So the "RUN"
needs to be reset after a change.

3.5.4 ST Language
(* MyAve is a declared instance of AVERAGE function block *)
MyAve (RUN, XIN, N);
XOUT := MyAve.XOUT;

3.5.5 FBD Language

3.5.6 FFLD Language
(* ENO has the same state as RUN *)

3.5.7 IL Language:
(* MyAve is a declared instance of AVERAGE function block *)
Op1: CAL MyAve (RUN, XIN, N)

FFLD MyAve.XOUT
ST XOUT

See also

INTEGRAL DERIVATE LIM_ALRM HYSTER STACKINT

3.6 CurveLin
Function block- Linear interpolation on a curve.

3.6.1 Inputs
X : REAL X coordinate of the point to be interpolated.

XAxis : REAL[] X coordinates of the known points of the X axis.

YVal : REAL[] Y coordinate of the points defined on the X axis.

176 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.6.2 Outputs
Y : REAL Interpolated Y value corresponding to the X input

OK : BOOL TRUE if successful.

ERR : DINT Error code if failed - 0 if OK.

3.6.3 Remarks
This function performs linear interpolation in between a list of points defined in the
XAxis single dimension array. The output Y value is an interpolation of the Y values
of the two rounding points defined in the X axis. Y values of defined points are
passed in the YVal single dimension array.

Values in XAxis must be sorted from the smallest to the biggest. There must be at
least two points defined in the X axis. YVal and XAxis input arrays must have the
same dimension.

In case the X input is less than the smallest defined X point, the Y output takes the
first value defined in YVal and an error is reported. In case the X input is greater
than the biggest defined X point, the Y output takes the last value defined in YVal
and an error is reported.

The ERR output gives the cause of the error if the function fails:

Error Code Meaning
0 OK

1 Invalid dimension of input
arrays

2 Invalid points for the X axis

4 X is out of the defined X axis

3.7 CycleStop
Function - Sets the application in cycle stepping mode.

3.7.1 Inputs
IN : BOOL Condition

3.7.2 Outputs
Q : BOOL TRUE if performed

3.7.3 Remarks
This function turns the Virtual Machine in "Cycle Stepping" mode. Restarting normal
execution will be performed using the debugger.

The VM is set in "cycle stepping" mode only if the IN argument is TRUE.

The current main program and all possibly called sub-programs or UDFBs are
normally performed up the end. Other programs of the cycle are not executed.

3.8 DERIVATE
Function Block - Derivates a signal.

Kollmorgen™ | May 2012 177

KAS Reference Manual - PLC Library | 3 Advanced operations

3.8.1 Inputs
RUN : BOOL Run command: TRUE=derivate / FALSE=hold
XIN : REAL Input signal
CYCLE : TIME Sampling period (must not be less than the target cycle timing)

3.8.2 Outputs
XOUT : REAL Output signal

3.8.3 Remarks
In FFLD language, the input rung is the RUN command. The output rung keeps the
state of the input rung.

3.8.4 ST Language
(* MyDerv is a declared instance of DERIVATE function block *)
MyDerv (RUN, XIN, CYCLE);
XOUT := MyDerv.XOUT;

3.8.5 FBD Language

3.8.6 FFLD Language
(* ENO has the same state as RUN *)

3.8.7 IL Language:
(* MyDerv is a declared instance of DERIVATE function block *)
Op1: CAL MyDerv (RUN, XIN, CYCLE)
FFLD MyDerv.XOUT
ST XOUT

See also

AVERAGE INTEGRAL LIM_ALRM HYSTERSTACKINT

3.9 Dynamic memory allocation functions
The following functions enable the dynamic allocation of arrays for storing DINT
integer values:

ARCREATE allocates an array of DINT integers
ARREAD read a DINT integer in an array allocated by ARCREATE
ARWRITE write a DINT integer in an array allocated by ARCREATE

178 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

Warning
• The memory used for those arrays is allocated directly by the Operating System
of the target. There is no insurance that the required memory space will be
available.
• Allocating large arrays may cause the Operating System to be instable or slow
down the performances of the target system.
• Dynamic memory allocation may be unsuccessful (not enough memory available
on the target). Your application should process such error cases in a safe way.
• Dynamic memory allocation may be not available on some targets. Please refer
to OEM instructions for further details about available features.

ARCREATE: array allocation

OK := ARCREATE (ID, SIZE);

ID : DINT integer ID to be assigned to the array (first possible ID is 0)
SIZE : DINT wished number of DINT values to be stored in the array
OK : DINT return check

Return values

1 OK - array is allocated and ready for read / write operations
2 the specified ID is invalid or already used for another array
3 the specified size is invalid
4 not enough memory (action denied by the Operating System)

The memory allocated by ARCREATE will be released when the application stops.

ARREAD: read array element

VAL := ARREAD (ID, POS);

ID : DINT integer ID of the array
POS : DINT index of the element in the array (first valid index is 0)
VAL : DINT value of the specified item or 0 if arguments are invalid

ARWRITE: write array element

OK := ARWRITE (ID, POS, VAL);

ID : DINT integer ID of the array
POS : DINT index of the element in the array (first valid index is 0)
VAL : DINT value to be assigned to the element
OK : DINT return check

Return values

1 OK - element was forced successfully
2 the specified ID is invalid (not an allocated array)
3 the specified index is invalid (out of array bounds)

3.10 EnableEvents
Function - Enable or disable the production of events for binding(runtime to runtime
variable exchange)

3.10.1 Inputs
EN : BOOL TRUE to enable events / FALSE to disable events

Kollmorgen™ | May 2012 179

KAS Reference Manual - PLC Library | 3 Advanced operations

3.10.2 Outputs
ENO : BOOL Echo of EN input

3.10.3 Remarks
Production is enabled when the application starts. The first production will be
operated after the first cycle. So to disable events since the beginning, you must
call EnableEvents (FALSE) in the very first cycle.

In FFLD language, the input rung (EN) enables the event production, and the output
rung keeps the state of the input rung. In IL language, the input must be loaded
before the function call.

3.10.4 ST Language
ENO := EnableEvents (EN);

3.10.5 FBD Language

3.10.6 FFLD Language
(* Events are enables if EN is TRUE *)
(* ENO has the same value as EN *)

3.10.7 IL Language:
Op1: FFLD EN

EnableEvents
ST ENO

3.11 FatalStop
Function - Breaks the application in fatal error.

3.11.1 Inputs
IN : BOOL Condition

3.11.2 Outputs
Q : BOOL TRUE if performed

3.11.3 Remarks
This function breaks the current cycle and sets the Virtual Machine in "ERROR"
mode. Restarting normal execution will be performed using the debugger.

The VM is stopped only if the IN argument is TRUE. The end of the current cycle is
then not performed.

180 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.12 FIFO
Function block - Manages a "first in / first out" list

3.12.1 Inputs
PUSH : BOOL Push a new value (on rising edge)
POP : BOOL Pop a new value (on rising edge)
RST : BOOL Reset the list
NEXTIN : ANY Value to be pushed
NEXTOUT : ANY Value of the oldest pushed value - updated after call!
BUFFER : ANY Array for storing values

3.12.2 Outputs
EMPTY : BOOL TRUE if the list is empty
OFLO : BOOL TRUE if overflow on a PUSH command
COUNT : DINT Number of values in the list
PREAD : DINT Index in the buffer of the oldest pushed value
PWRITE : DINT Index in the buffer of the next push position

3.12.3 Remarks
NEXTIN, NEXTOUT and BUFFER must have the same data type and cannot be
STRING.

The NEXTOUT argument specifies a variable which is filled with the oldest push
value after the block is called.

Values are stored in the "BUFFER" array. Data is arranged as a roll over buffer and
is never shifted or reset. Only read and write pointers and pushed values are
updated. The maximum size of the list is the dimension of the array.

The first time the block is called, it remembers on which array it should work. If you
call later the same instance with another BUFFER input, the call is considered as
invalid and makes nothing. Outputs reports an empty list in this case.

In FFLD language, input rung is the PUSH input. The output rung is the EMPTY
output.

3.12.4 ST Language
(* MyFIFO is a declared instance of FIFO function block *)
MyFIFO (PUSH, POP, RST, NEXTIN, NEXTOUT, BUFFER);
EMPTY := MyFIFO.EMPTY;
OFLO := MyFIFO.OFLO;
COUNT := MyFIFO.COUNT;
PREAD := MyFIFO.PREAD;
PWRITE := MyFIFO.PWRITE;

Kollmorgen™ | May 2012 181

KAS Reference Manual - PLC Library | 3 Advanced operations

3.12.5 FBD Language

3.12.6 FFLD Language

3.12.7 IL Language
(* MyFIFO is a declared instance of FIFO function block *)
Op1: CAL MyFIFO (PUSH, POP, RST, NEXTIN, NEXTOUT, BUFFER)
FFLD MyFIFO.EMPTY
ST EMPTY
FFLD MyFIFO.OFLO
ST OFLO
FFLD MyFIFO.COUNT
ST COUNT
FFLD MyFIFO.PREAD
ST PREAD
FFLD MyFIFO.PWRITE
ST PWRITE

See also

LIFO

3.13 File management functions
The following functions enable sequential read / write operations in disk files:

Function Use
"F_AOPEN" (see page 185) Create or open a file in appendmode

"F_CLOSE" (see page 185) Close an open file

"F_COPY" (see page 185) Copy a file

"F_DELETE" (see page 185) Remove a file

"F_EOF" (see page 186) Test if the end of the file is reached in a file that is open for reading

182 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

Function Use
"F_EXIST" (see page 186) Test if a file exists

F_GETSIZE Get the size of a file

"F_RENAME" (see page 186) Rename a file

"F_ROPEN" (see page 186) Open a file for reading

"F_WOPEN" (see page 187) Create or reset a file and open it for writing

"FA_READ" (see page 187) Read a DINT integer from a binary file

"FA_WRITE" (see page 187) Write a DINT integer to a binary file

"FB_READ" (see page 187) Read binary data from a file

"FB_WRITE" (see page 187) Write binary data to a file

"FM_READ" (see page 188) Read a string value from a text file

"FM_WRITE" (see page 188) Write a string value to a text file

"SD_MOUNT" (see page 188) Mount an SD card

"SD_UNMOUNT" (see page 188) Unmount an SD card

"SD_ISREADY" (see page 189) Check that the SD card is ready for read/write

Related function blocks:

LogFileCSV log values of variables to a CSV file

Each file is identified in the application by a unique handle manipulated as a DINT
value. The file handles are allocated by the target system. Handles are returned by
the Open functions and used in all other calls for identifying the file.

Warnings
• These functions can have a serious impact on CPU load and the life expectancy
of a flash drive. It is highly recommended that these be used on an event
basis, and not at every PLC cycle.
• Files are opened and closed directly by the Operating System of the target.
Opening some files can be dangerous for system safety and integrity. The
number of open files may be is limited to only ONE file by the target
system.

Notes
• Opening a file can be unsuccessful (invalid path or file name, too many open
files...) Your application must process such error cases in a safe way.
• File management may be unavailable on some targets.
• Memory on the SD card is available in addition to the existing flash memory.
• Valid paths for storing files depend on the target implementation.
• Error messages are logged in the Controller log section of KAS Run Time where
there is a failure in any related function block.
• Using the KAS Simulator, all pathnames are ignored, and files are stored in a
reserved directory. Only the file name passed to the Open functions is taken into
account.
• PAC and AKD PDMM binary files are not identical. AKD PDMM files are big
endian, meaning the data structures between the files are different.

3.13.1 SD Card Access
Files may be written to and read from an SD card. This is typically used for storing a
firmware image for Recovery Mode.

To use an SD card on the PDMM:

1. Ensure that the SD card is inserted
2. Mount the card using "SD_MOUNT" (see page 188)

Kollmorgen™ | May 2012 183

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Endianness

KAS Reference Manual - PLC Library | 3 Advanced operations

3. Ensure the card is accessible using "SD_ISREADY" (see page 189) before per-
forming a read or write action

4. Unmount the card, if desired, using "SD_UNMOUNT" (see page 188) after per-
forming read/write actions

3.13.2 System Conventions
Depending upon the system used, paths to file locations may be defined as either
absolute (C://dir1/file1) or relative paths (/dir1/file1). Not all systems handle
all options, and the paths will vary depending upon the system.

System Absolute Paths Relative Paths
PAC X X

Simulator X X

AKD PDMM X

3.13.2.1 PAC Path Conventions
When a relative path is provided to the function blocks, the path is appended with
the default userdata folder, which is:
<Installed Directory>Kollmorgen/Kollmorgen Automation Suite/Sinope
Runtime/Application/userdata

3.13.2.2 Simulator Path Conventions
When a relative path is provided to the function blocks, the path is appended with
the default userdata folder, which is:
<Installed Directory>Kollmorgen/Kollmorgen Automation Suite/Sinope
Simulator/Application/userdata

3.13.2.3 AKD PDMM Path Conventions
AKD PDMM only allows for relative paths and there is no support for creating
directories on the AKD PDMM. Any path provided to these function blocks, file1 for
example, will be appended with the default userdata folder which is:
/mount/flash/userdata

3.13.2.4 SD Card Path Conventions
To access the SD card memory a valid SD card label must be used at the beginning
of the path, followed by the relative path to the SD card. (Valid SD Card
Label)/(Relative Path)

A valid SD card relative path starts with //, /, \\, or \. This is immediately followed
by SDCard which is followed by \ or /. Please note that this path label is case
insensitive.

Valid Paths Notes
//SDCard/file1

\Sdcard/dir1/file1 dir1 must have been already created

/sdcard/dir1/file1 dir1 must have been already created

//sdCard\file1

Invalid Paths Reason for being invalid
///SDCard/file1 Started with more than two forward or backward slashes

/\Sdcard/dir1/file1 Started with one forward and one backward slash

/sdcarddir1/file1 No forward or backward slash

/sdcard1/dir1/file1 Invalid label

184 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

In order to maintain compatibility with a PAC or Simulator, the SDCard folder is
created inside the userdata folder . File access points to userdata/SDCard when a
PDMM SDCard path is used on a PAC or Simulator.

3.13.2.5 File Name Warning - Limitations
File names in the PAC flash storage are case-insensitive. File names in the PDMM
flash storage are case-sensitive and the SD card (FAT16 or FAT32) are not case-
sensitive.

Storage File System Case-Sensitive
PAC compact flash NTFS No

PDMM embedded flash FFS3 (POSIX-like) Yes

PDMM SD card FAT16 or FAT32 No

For example, two files (MyFile.txt and myfile.txt) can exist in the same directory
of the PDMM flash, but cannot exist in the same directory on a PAC or the PDMM’s
SD card. If you copy two files (via backup operation or function) with the same name,
but different upper/lower case letters, from the PDMM flash to the SD card, one of the
files will be lost. To prevent conflicts and to keep your application compatible
across all platforms, use unique filenames and do not rely on case-sensitive
filenames.

3.13.3 F_AOPEN
Open a file in "append" mode

ID := F_AOPEN (PATH);

PATH : STRING Name of the file. Can include a path name according to target system conventions.
ID : DINT ID of the open file or NULL if the file can't be read

If the file does not exist, it is created. If the file already exists, it is opened at the end
for appending.

3.13.4 F_CLOSE
Close an open file

OK := F_CLOSE (ID);

ID : DINT ID of the open file
OK : BOOL return check; TRUE if successful

3.13.5 F_COPY
Copy source file contents to a destination file. Please note that large files will take a
noticeable amount of time to complete. For example, a 1000KB file takes
approximately 0.6 seconds. The output status is set after the file copy operation is
complete.

OK := F_COPY (SRC, DST);

SRC : STRING Name of the source file (must exist). Can include a pathname according to target system conventions.
DST : STRING Name of the destination file. Can include a pathname according to target system conventions.
OK : BOOL TRUE is successful

3.13.6 F_DELETE
Remove a file

OK := F_DELETE (PATH);

PATH : STRING Name of the file (must exist). Can include a pathname according to target system conventions.
OK : BOOL TRUE if successful

Kollmorgen™ | May 2012 185

KAS Reference Manual - PLC Library | 3 Advanced operations

3.13.7 F_EOF
Test if the end of a file is encountered

OK := F_EOF (ID);

ID : DINT ID of the open file
OK : BOOL TRUE if the end of the file has been encountered

F_EOF must be used only for files open in read mode by the F_ROPEN function.

3.13.8 F_EXIST
Test if file exists

OK := F_EXIST (PATH);

PATH : STRING Name of the file, can include a path name according to target system conventions.
OK : BOOL TRUE if the file exists

3.13.9 F_GETSIZE
Get the size of a file. Note that this function block returns 0 when the file size is zero
or if the file is not present.

SIZE := F_GETSIZE (PATH);

PATH : STRING Name of the file, can include a path name according to target system conventions
SIZE : DINT Size of the file in bytes

3.13.10 F_RENAME
Rename a file

OK := F_RENAME (PATH, NEWNAME);

PATH : STRING Name of the file (must exist). Can include a pathname according to target system conventions.
NEWNAME : STRING New name for the file
OK : BOOL TRUE if successful

3.13.11 F_ROPEN
Open a file for reading

3.13.11.1 Example

Structured Text

ID := F_ROPEN(PATH) ;

Ladder Diagram

186 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

Note
The positive transition on each file operation FB prevents to open the file every
time the program runs (each cycle).

PATH : STRING Name of the file; the file must exist. Can include a path name according to target system conventions.
ID : DINT ID of the open filer NULL if the file can't be read

3.13.12 F_WOPEN
Open a file for writing

ID := F_WOPEN (PATH);

PATH : STRING Name of the file. Can include a path name according to target system conventions.
ID : DINT ID of the open file or NULL if the file can't be read

If the file does not exist, it is created. If the file already exists, its contents are
cleared.

3.13.13 FA_READ
Read a DINT value from a file

Q := FA_READ (ID);

ID: DINT ID of a file open for reading
Q : DINT read value or 0 in case of error

Integer values read by FA_READ must have been written by the FA_WRITE function.
Integers are stored in binary format in the file, using memory conventions of the
target system.

3.13.14 FA_WRITE
Write a DINT value to a file

OK := FA_WRITE (ID, IN);

ID : DINT ID of a file open for writing
IN : DINT integer value to be written
OK : BOOL return check; TRUE if successful

Integers are stored in binary format in the file, using memory conventions of the
target system.

3.13.15 FB_READ
Read binary data from a file

OK := FB_READ (ID, V);

ID : DINT ID of a file open for writing
V : ANY variable to be read; cannot be a string.
OK : BOOL return check; TRUE if successful

Variables are stored in binary format in the file, using memory conventions of the
target system.

3.13.16 FB_WRITE
Write binary data to a file

OK := FB_WRITE (ID, V);

Kollmorgen™ | May 2012 187

KAS Reference Manual - PLC Library | 3 Advanced operations

ID : DINT ID of a file open for writing
V : ANY variable to be written; cannot be a string.
OK : BOOL return check; TRUE if successful

Variables are stored in binary format in the file, using memory conventions of the
target system.

3.13.17 FM_READ
Read a string value from a file

Q := FM_READ (ID);

ID : DINT ID of a file open for reading
Q : STRING read value or empty string in case of error

This function is intended to read a text line in the file. Reading stops when end of
line character is encountered. Reading stops when the maximum length declared for
the return variable is reached.

3.13.18 FM_WRITE
Write a string value to a file

OK := FM_WRITE (ID, IN);

ID : DINT ID of a file open for writing
IN : STRING string value to be written
OK : BOOL return check; TRUE if successful

This function writes a text line in the file. End of line character is systematically
written after the input string.

3.13.19 SD_MOUNT
Mount the SDCard on the PDMM. This will not perform any action, and always return
TRUE with a PAC or Simulator.

OK := SD_MOUNT();

OK : BOOL TRUE if mounting SDCard is successful

NOTE:
Before performing, make sure the SDCard is inserted.

TIP:
It is recommended that SD_MOUNT be used only when motion is not started.

3.13.20 SD_UNMOUNT
Un-mount the SDCard from the PDMM. This will not perform any action, and always
return TRUE with a PAC or Simulator.

OK := SD_UNMOUNT();

OK : BOOL TRUE if un-mounting SDCard is successful

188 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

TIP:
It is recommended that SD_UNMOUNT be used only when motion is not started.

3.13.21 SD_ISREADY
Verify if the SDCard is mounted on the PDMM. This will verify if the SDCard folder is
available inside the userdata folder when using a PAC or Simulator.

OK := SD_ISREADY();

OK : BOOL TRUE if the SDCard is mounted (PDMM) or if the SDCard folder is avalilable (PAC)

3.14 GETSYSINFO
Function - Returns system information.

3.14.1 Inputs
INFO : DINT Identifier of the requested information

3.14.2 Outputs
Q : DINT Value of the requested information or 0 if error

3.14.3 Remarks
The INFO parameter can be one of the following predefined values:
_SYSINFO_TRIGGER_MICROS programmed cycle time inmicro-seconds
_SYSINFO_TRIGGER_MS programmed cycle time inmilliseconds
_SYSINFO_CYCLETIME_MICROS duration of the previous cycle in micro-seconds
_SYSINFO_CYCLETIME_MS duration of the previous cycle in milliseconds
_SYSINFO_CYCLEMAX_MICROS maximum detected cycle time inmicro-seconds
_SYSINFO_CYCLEMAX_MS maximum detected cycle time inmilliseconds
_SYSINFO_CYCLESTAMP_MS time stamp of the current cycle in milliseconds (OEM dependent)
_SYSINFO_CYCLEOVERFLOWS number of detected cycle time overflows
_SYSINFO_CYCLECOUNT counter of cycles
_SYSINFO_APPVERSION version number of the application
_SYSINFO_APPSTAMP compiling date stamp of the application
_SYSINFO_CODECRC CRC of the application code
_SYSINFO_DATACRC CRC of the application symbols

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

In IL, the input must be loaded in the current result before calling the function.

3.14.4 ST Language
Q := GETSYSINFO (INFO);

3.14.5 FBD Language

3.14.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

Kollmorgen™ | May 2012 189

KAS Reference Manual - PLC Library | 3 Advanced operations

3.14.7 IL Language:
Op1: FFLD INFO

GETSYSINFO
ST Q

3.15 HYSTER
Function Block - Hysteresis detection.

3.15.1 Inputs
XIN1 : REAL First input signal
XIN2 : REAL Second input signal
EPS : REAL Hysterisis

3.15.2 Outputs
Q : BOOL Detected hysteresis: TRUE if XIN1 becomes greater than XIN2+EPS
and is not yet below XIN2-EPS

3.15.3 Remarks
The hysteresis is detected on the difference of XIN1 and XIN2 signals. In FFLD
language, the input rung (EN) is used for enabling the block. The output rung is the
Q output.

3.15.4 ST Language
(* MyHyst is a declared instance of HYSTER function block *)
MyHyst (XIN1, XIN2, EPS);
Q := MyHyst.Q;

3.15.5 FBD Language

3.15.6 FFLD Language
(* The block is not called if EN is FALSE *)

190 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.15.7 IL Language:
(* MyHyst is a declared instance of HYSTER function block *)
Op1: CAL MyHyst (XIN1, XIN2, EPS)
FFLD MyHyst.Q
ST Q

See also

AVERAGE INTEGRAL DERIVATE LIM_ALRM STACKINT

3.16 INTEGRAL
Function Block - Calculates the integral of a signal.

3.16.1 Inputs
RUN : BOOL Run command: TRUE=integrate / FALSE=hold
R1 : BOOL Overriding reset
XIN : REAL Input signal
X0 : REAL Initial value
CYCLE : TIME Sampling period (must not be less than the target cycle timing)

3.16.2 Outputs
Q : DINT Running mode report: NOT (R1)
XOUT : REAL Output signal

3.16.3 Remarks
In FFLD language, the input rung is the RUN command. The output rung is the Q
report status.

3.16.4 ST Language
(* MyIntg is a declared instance of INTEGRAL function block *)
MyIntg (RUN, R1, XIN, X0, CYCLE);
Q := MyIntg.Q;
XOUT := MyIntg.XOUT;

3.16.5 FBD Language

Kollmorgen™ | May 2012 191

KAS Reference Manual - PLC Library | 3 Advanced operations

3.16.6 FFLD Language

3.16.7 IL Language:
(* MyIntg is a declared instance of INTEGRAL function block *)
Op1: CAL MyIntg (RUN, R1, XIN, X0, CYCLE)

FFLD MyIntg.Q
ST Q
FFLD MyIntg.XOUT
ST XOUT

See also

AVERAGE DERIVATE LIM_ALRM HYSTER STACKINT

3.17 LIFO
Function block - Manages a "last in / first out" stack

3.17.1 Inputs
PUSH : BOOL Push a new value (on rising edge)
POP : BOOL Pop a new value (on rising edge)
RST : BOOL Reset the list
NEXTIN : ANY Value to be pushed
NEXTOUT : ANY Value at the top of the stack - updated after call!
BUFFER : ANY Array for storing values

3.17.2 Outputs
EMPTY : BOOL TRUE if the stack is empty
OFLO : BOOL TRUE if overflow on a PUSH command
COUNT : DINT Number of values in the stack
PREAD : DINT Index in the buffer of the top of the stack
PWRITE : DINT Index in the buffer of the next push position

3.17.3 Remarks
NEXTIN, NEXTOUT and BUFFER must have the same data type and cannot be
STRING.

The NEXTOUT argument specifies a variable which is filled with the value at the top
of the stack after the block is called.

Values are stored in the "BUFFER" array. Data is never shifted or reset. Only read
and write pointers and pushed values are updated. The maximum size of the stack is
the dimension of the array.

The first time the block is called, it remembers on which array it should work. If you
call later the same instance with another BUFFER input, the call is considered as
invalid and makes nothing. Outputs reports an empty stack in this case.

192 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

In FFLD language, input rung is the PUSH input. The output rung is the EMPTY
output.

3.17.4 ST Language
(* MyLIFO is a declared instance of LIFO function block *)
MyLIFO (PUSH, POP, RST, NEXTIN, NEXTOUT, BUFFER);
EMPTY := MyLIFO.EMPTY;
OFLO := MyLIFO.OFLO;
COUNT := MyLIFO.COUNT;
PREAD := MyLIFO.PREAD;
PWRITE := MyLIFO.PWRITE;

3.17.5 FBD Language

3.17.6 FFLD Language

3.17.7 IL Language
(* MyLIFO is a declared instance of LIFO function block *)
Op1: CAL MyLIFO (PUSH, POP, RST, NEXTIN, NEXTOUT, BUFFER)
FFLD MyLIFO.EMPTY
ST EMPTY
FFLD MyLIFO.OFLO
ST OFLO
FFLD MyLIFO.COUNT
ST COUNT
FFLD MyLIFO.PREAD
ST PREAD
FFLD MyLIFO.PWRITE
ST PWRITE

See also

FIFO

Kollmorgen™ | May 2012 193

KAS Reference Manual - PLC Library | 3 Advanced operations

3.18 LIM_ALRM
Function Block - Detects High and Low limits of a signal with hysteresis.

3.18.1 Inputs
H : REAL Value of the High limit
X : REAL Input signal
L : REAL Value of the Low limit
EPS : REAL Value of the hysteresis

3.18.2 Outputs
QH : BOOL TRUE if the signal exceeds the High limit
Q : BOOL TRUE if the signal exceeds one of the limits (equals to QH OR QL)
QL : BOOL TRUE if the signal exceeds the Low limit

3.18.3 Remarks
In FFLD language, the input rung (EN) is used for enabling the block. The output
rung is the QH output.

3.18.4 ST Language
(* MyAlarm is a declared instance of LIM_ALRM function block *)
MyAlarm (H, X, L, EPS);
QH := MyAlarm.QH;
Q := MyAlarm.Q;
QL := MyAlarm.QL;

3.18.5 FBD Language

3.18.6 FFLD Language
(* The block is not called if EN is FALSE *)

194 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.18.7 IL Language:
(* MyAlarm is a declared instance of LIM_ALRM function block *)
Op1: CAL MyAlarm (H, X, L, EPS)

FFLD MyAlarm.QH
ST QH
FFLD MyAlarm.Q
ST Q
FFLD MyAlarm.QL
ST QL

See also

ALARM_A ALARM_M

3.19 LogFileCSV
Function block - Generate a log file in CSV format for a list of variables

3.19.1 Inputs
LOG : BOOL Variables are saved on any rising edge of this input
RST : BOOL Reset the contents of the CSV file
LIST : DINT ID of the list of variables to log (use VLID function)
PATH : STRING Path name of the CSV file

3.19.2 Outputs
Q : BOOL TRUE if the requested operation has been performed without
error
ERR : DINT Error report for the last requested operation (0 is OK)

Warning
Calling this function leads to miss several PLC cycles.
File are opened and closed directly by the Operating System of the target.
Opening some files may be dangerous for system safety and integrity. The
number of open files may be limited by the target system.

Note
• Opening a file may be unsuccessful (invalid path or file name, too many open
files...) Your application has to process such error cases in a safe way.
• File management may be not available on some targets. Please refer to OEM
instructions for further details about available features.
• Valid paths for storing files depend on the target implementation. Please refer to
OEM instructions for further details about available paths.

3.19.3 Remarks
This function enables to log values of a list of variables in a CSV file. On each rising
edge of the LOG input, one more line of values is added to the file. There is one
column for each variable, as they are defined in the list.

The list of variables is prepared using the KAS IDE or a text editor. Use the VLID
function to get the identifier of the list.

On a rising edge of the RST command, the file is emptied.

When a LOG or RST command is requested, the Q output is set to TRUE if
successful.

Kollmorgen™ | May 2012 195

KAS Reference Manual - PLC Library | 3 Advanced operations

In case of error, a report is given in the ERR output. Possible error values are:

1 = Cannot reset file on a RST command
2 = Cannot open file for data storing on a LOG command
3 = Embedded lists are not supported by the runtime
4 = Invalid list ID
5 = Error while writing to file

Combined with real time clock management functions, this block provides a very easy
way to generate a periodical log file. The following example shows a list and a

program that log values everyday at 14h23m (2:23 pm) (see call out)

3.19.4 ST Language
(* MyLOG is a declared instance of LogFileCSV function block *)
MyLOG (b_LOG, RST, LIST, PATH);
Q := MyLOG.Q;
ERR := MyLog.ERR;

3.19.5 FBD Language

3.19.6 FFLD Language

196 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.19.7 IL Language
(* MyLOG is a declared instance of LogFileCSV function block *)
Op1: CAL MyLOG (b_LOG, RST, LIST, PATH);
FFLD MyLOG.Q
ST Q
FFLD MyLog.ERR
ST ERR

See also

VLID

3.20 MBSlaveRTU
Function Block - MODBUS RTU Slave protocol on serial port.

3.20.1 Inputs
IN : BOOL Enabling command: the port is open when this input is TRUE
PORT : STRING Settings string for the serial port (e.g. 'COM1:9600,N,8,1')
SLV : DINT MODBUS slave number

3.20.2 Outputs
Q : BOOL TRUE if the port is successfully open

3.20.3 Remarks
When active, this function block manages the MODBUS RTU Slave protocol on the
specified serial communication port. The configuration of the MODBUS Slave map
(designing MODBUS addresses) is done using the MODBUS configuration tool, from
the Fieldbus Configurator.

There can be several instances of the MBSlaveRTU working simultaneously on
different serial ports. Other MODBUS Slave connections (TCP server, UDP) can also
be active at the same time.

The slave number entered in the MODBUS Slave configuration tool is ignored when
MODBUS Slave protocol is handled by this function block. Instead, the SLV input
specifies the MODBUS slave number.

3.20.4 ST Language
(* MySlave is a declared instance of MBSlaveRTU function block *)
MySlave (IN, PORT, SLV);
Q := MySlave.Q;

3.20.5 FBD Language

Kollmorgen™ | May 2012 197

KAS Reference Manual - PLC Library | 3 Advanced operations

3.20.6 FFLD Language

3.20.7 IL Language:
(* MySlave is a declared instance of MBSlaveRTU function block *)
Op1: CAL MySlave (IN, PORT, SLV)

FFLD MySlave.Q
ST Q
FFLD MyCounter.CV
ST CV

See also

MBSlaveUDP MODBUS configuration

3.21 MBSlaveUDP
Function Block - MODBUS UDP Slave protocol on ETHERNET.

3.21.1 Inputs
IN : BOOL Enabling command: the port is open when this input is TRUE
PORT : DINT ETHERNET port number
SLV : DINT MODBUS slave number
RTU : BOOL Protocol: TRUE = MODBUS RTU / FALSE = Open MODBUS

3.21.2 Outputs
Q : BOOL TRUE if the port is successfully open

3.21.3 Remarks
When active, this function block manages the MODBUS UDP Slave protocol on the
specified ETHERNETport. The configuration of the MODBUS Slave map (designing
MODBUS addresses) is done using the MODBUS configuration tool, from the
Fieldbus Configurator.

There can be several instances of the MBSlaveUDP working simultaneously on
different serial ports. Other MODBUS Slave connections (TCP server, serial) can also
be active at the same time.

The slave number entered in the MODBUS Slave configuration tool is ignored when
MODBUS Slave protocol is handled by this function block. Instead, the SLV input
specifies the MODBUS slave number. If SLV is 0 then the default port number from
the MODBUS configuration is used.

3.21.4 ST Language
(* MySlave is a declared instance of MBSlaveUDP function block *)
MySlave (IN, PORT, SLV, RTU);
Q := MySlave.Q;

198 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.21.5 FBD Language

3.21.6 FFLD Language

3.21.7 IL Language:
(* MySlave is a declared instance of MBSlaveUDP function block *)
Op1: CAL MySlave (IN, PORT, SLV, RTU)

FFLD MySlave.Q
ST Q
FFLD MyCounter.CV
ST CV

See also

MBSlaveRTU MODBUS configuration

3.22 PID
Function Block - PID loop

Kollmorgen™ | May 2012 199

KAS Reference Manual - PLC Library | 3 Advanced operations

3.22.1 Inputs
Input Type Description
AUTO BOOL TRUE = normal mode - FALSE = manual mode.

PV REAL Process value.

SP REAL Set point.

Xout_Manu REAL Output value in manual mode.

KP REAL Gain.

TI REAL Integration time.

TD REAL Derivation time.

TS TIME Sampling period.

XMIN REAL Minimum allowed output value.

XMAX REAL Maximum output value.

I_SEL BOOL If FALSE, the integrated value is ignored.

INT_HOLD BOOL If TRUE, the integrated value is frozen.

I_ITL_ON BOOL If TRUE, the integrated value is reset to I_ITLVAL.

I_ITLVAL REAL Reset value for integration when I_ITL_ON is TRUE.

DEADB_ERR REAL Hysteresis on PV. PV will be considered as unchanged if greater than
(PVprev - DEADBAND_W) and less that (PRprev + DEADBAND_W).

FFD REAL Disturbance value on output.

3.22.2 Outputs
Output Type Description
Xout REAL Output command value.

ER REAL Last calculated error.

Xout_P REAL Last calculated proportional value.

Xout_I REAL Last calculated integrated value.

Xout_D REAL Last calculated derivated value.

Xout_HLM BOOL TRUE if the output valie is saturated to XMIN.

Xout_LLM BOOL TRUE if the output value is saturated to XMAX.

200 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.22.3 Diagram

3.22.4 Remarks
It is important for the stability of the control that the TS sampling period is much
bigger than the cycle time.

In FFLD language, the output rung has the same value as the AUTO input,
corresponding to the input rung.

3.22.5 ST Language
(* MyPID is a declared instance of PID function block *)
MyPID (AUTO, PV, SP, XOUT_MANU, KP, TI, TD, TS, XMIN, XMAX,
I_SEL, I_ITL_ON, I_ITLVAL, DEADB_ERR, FFD);
XOUT := MyPID.XOUT;
ER := MyPID.ER;
XOUT_P := MyPID.XOUT_P;
XOUT_I := MyPID.XOUT_I;
XOUT_D := MyPID.XOUT_D;
XOUT_HLM := MyPID.XOUT_HLM;
XOUT_LLM := MyPID.XOUT_LLM;

Kollmorgen™ | May 2012 201

KAS Reference Manual - PLC Library | 3 Advanced operations

3.22.6 FBD Language

3.22.7 FFLD Language
(* ENO has the same state as the input rung *)

3.22.8 IL Language
(* MyPID is a declared instance of PID function block *)
Op1: CAL MyPID (AUTO, PV, SP, XOUT_MANU, KP, TI, TD, TS,
XMIN, XMAX, I_SEL, I_ITL_ON, I_ITLVAL,
DEADB_ERR, FFD)

202 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

FFLD MyPID.XOUT
ST XOUT
FFLD MyPID.ER
ST ER
FFLD MyPID.XOUT_P
ST XOUT_P
FFLD MyPID.XOUT_I
ST XOUT_I
FFLD MyPID.XOUT_D
ST XOUT_D
FFLD MyPID.XOUT_HLM
ST XOUT_HLM
FFLD MyPID.XOUT_LLM
ST XOUT_LLM

3.23 PID Functions

3.23.1 JS_DeadTime - analog delay
call:

INPUT : signal input
N : number of samples (200 max)
DeadTime : delay (seconds)

return:

OUT : output signal

Notes

Allows to put a delay on an analog signal

Warning
The dead time divided by the number of samples must be very greater than cycle
time.
If N = 0 the function understands 1
If N > 200 the function understands 200

3.23.2 JS_LeadLag - signal lead / lag
call:

Input : input signal
Lead : lead value
Lag : lag value
Ts : sampling period

return:

Out : output signal

function:

Qn = Qn-1 + Ts/Ti.(Mn-1 - Qn-1) + Td/Ti.(Mn - Mn-1)

Qn : Output at t
Qn-1 : Output at t-1
Mn : Input at t
Mn-1 : Input at t-1
Ts : Sampling period
Ti : Lag
Td : Lead

Kollmorgen™ | May 2012 203

KAS Reference Manual - PLC Library | 3 Advanced operations

Notes

If Lag = 0 the function is not executed
Sampling period must be very greater than cycle time

3.23.3 JS_PID - PID loop setpoint balance
call:

LSL : Loop Scale Lo
LSH : Loop Scale Hi
Auto : automatic or manual mode
Pv : Process output value
Sp : Set point value
Ramp : Setpoint Ramp (Unit per Minute)
Balance : Auto/Manu Setpoint balancing
Action : Output action Direct or Reverse
Mixt : Interactive or Non-Interactive PID
Deriv : Derivative action
Feedback : external PID feedback for output manipulations
X0 : Adjustment value: In manual mode, output pid regulator equal to X0
You must connect obligatory a variable (not a constant and no computation on this
variable
Kp : Proportionality constant
Ti : Integral time constant in minute
Td : derivative time constant in minute
Ts : Sampling period
Xmin : Minimum limit on output command value
Xmax : Maximum limit on output command value

return:

SPcur : Current Setpoint
Xout : Command

Notes

Automatic mode must be set to false at init.
Balance = 0 Non-balancing Setpoint ; =1 Balancing
Xout is limited inside specified Xmin ,Xmax range.
Xmax should be greater than Xmin.
The integral term is held when Xout reaches the limits
The Ts parameter should be greater (>>>) than the kernel cycle time.
Action :
- Direct (0) Output increase if PV-SP positive and decrease if PV-SP negative
- Reverse (1) Output decrease if PV-SP positive and increase if PV-SP negative
Mixt :
- Interactive PID (0) : The I and D parameters are multipied by KP
- Non-Interactive (1) : The P,I,D parameters are independant
Feedback :
- The range must be 0-100
- Feeback=0 : internal feedback

3.23.4 JS_Ramp - Limit variation speed
call:

- INPUT : input signal
- Rampe : maximum variation speed (Unit/mn)
- Cycle : application cycle time

return:

204 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

OUT : output signal

Notes

- The variation of speed is expressed as units per minute
- The Cycle input must be the application cycle time
Use GetSysInfo (_SYSINFO_CYCLETIME_MS)

3.24 printf
Function - Display a trace output.

3.24.1 Inputs
FMT : STRING Trace message
ARG1..ARG4 : DINT Numerical arguments to be included in the trace

3.24.2 Outputs
Q : BOOL Return check

3.24.3 Remarks
This function works as the famous "printf" function of the "C" language, with up to 4
integer arguments. You can use the following pragmas in the FMT trace message to
represent the arguments according to their left to the right order:

%ld signed value in decimal
%lu unsigned value in decimal
%lx value in hexadecimal

The trace message is displayed in the LOG window with runtime messages. Trace is
supported by the KAS Simulator.

Warning
Your target platform can support trace functions or not. Please refer to OEM
instructions for further details on available features.

3.24.4 Example
(* i1, i2, i3, i4 are declared as DINT *)
i1 := 1;
i2 := 2;
i3 := 3;
i4 := 4;
printf ('i1=%ld; i2=%ld; i3=%ld; i4=%ld', i1, i2, i3, i4);

Output message:

i1=1; i2=2; i3=3; i4=4;

3.25 RAMP
Function block - Limit the ascendance or descendance of a signal

3.25.1 Inputs
IN : REAL Input signal
ASC : REAL Maximum ascendance during time base
DSC : REAL Maximum descendance during time base

Kollmorgen™ | May 2012 205

KAS Reference Manual - PLC Library | 3 Advanced operations

TM : TIME Time base
RST : BOOL Reset

3.25.2 Outputs
OUT : REAL Ramp signal

3.25.3 Time diagram

3.25.4 Remarks
Parameters are not updated constantly. They are taken into account when only:
- the first time the block is called
- when the reset input (RST) is TRUE
In these two situations, the output is set to the value of IN input.

ASC and DSC give the maximum ascendant and descendant growth during the TB
time base.
Both must be expressed as positive numbers.

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

3.25.5 ST Language
(* MyRamp is a declared instance of RAMP function block *)
MyRamp (IN, ASC, DSC, TM, RST);
OUT := MyBlinker.OUT;

3.25.6 FBD Language

206 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.25.7 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

3.25.8 IL Language
(* MyRamp is a declared instance of RAMP function block *)
Op1: CAL MyRamp (IN, ASC, DSC, TM, RST)
FFLD MyBlinker.OUT
ST OUT

3.26 Real Time clock management functions
The following functions read the real time clock of the target system:

DTCurDate Get current date stamp
DTCurTime Get current time stamp
DTDay Get day from date stamp
DTMonth Get month from date stamp
DTYear Get year from date stamp
DTSec Get seconds from time stamp
DTMin Get minutes from time stamp
DTHour Get hours from time stamp
DTMs Get milliseconds from time stamp

The following functions format the current date/time to a string:

DAY_TIME With predefined format
DTFORMAT With custom format

The following functions are used for triggering operations:

DTAt Pulse signal at the given date/time
DTEvery Pulse signal with long period

Warning
The real-time clock may not be available on all controller hardware models. Please
consult the controller hardware specifications for real-time clock availability.

DAY_TIME: get current date or time

Q := DAY_TIME (SEL);

SEL : DINT specifies the wished information (see below)
Q : STRING wished information formatted on a string

Possible values of SEL input

Kollmorgen™ | May 2012 207

KAS Reference Manual - PLC Library | 3 Advanced operations

1 current time - format: 'HH:MM:SS'
2 day of the week
0 (default) current date - format: 'YYYY/MM/DD'

DTCURDATE: get current date stamp

Q := DTCurDate ();

Q : DINT numerical stamp representing the current date

DTCURTIME: get current time stamp

Q := DTCurTime ();

Q : DINT numerical stamp representing the current time of the day

DTYEAR: extract the year from a date stamp

Q := DTYear (iDate);

IDATE : DINT numerical stamp representing a date
Q : DINT year of the date (ex: 2004)

DTMONTH: extract the month from a date stamp

Q := DTMonth (iDate);

IDATE : DINT numerical stamp representing a date
Q : DINT month of the date (1..12)

DTDAY: extract the day of the month from a date stamp

Q := DTDay (iDate);

IDATE : DINT numerical stamp representing a date
Q : DINT day of the month of the date (1..31)

DTHOUR: extract the hours from a time stamp

Q := DTHour (iTime);

ITIME : DINT numerical stamp representing a time
Q : DINT Hours of the time (0..23)

DTMIN: extract the minutes from a time stamp

Q := DTMin (iTime);

ITIME : DINT numerical stamp representing a time
Q : DINT Minutes of the time (0..59)

DTSEC: extract the seconds from a time stamp

Q := DTSec (iTime);

ITIME : DINT numerical stamp representing a time
Q : DINT Seconds of the time (0..59)

DTMS: extract the milliseconds from a time stamp

Q := DTMs (iTime);

ITIME : DINT numerical stamp representing a time
Q : DINT Milliseconds of the time (0..999)

3.26.1 DAY_TIME
Function - Format the current date/time to a string.

3.26.1.1 Inputs
SEL : DINT Format selector

208 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.26.1.2 Outputs
Q : STRING String containing formatted date or time

Warning
The real-time clock may not be available on all controller hardware models. Please
consult the controller hardware specifications for real-time clock availability.

3.26.1.3 Remarks
Possible values of the SEL input are:

1 current time - format: 'HH:MM:SS'
2 day of the week
0 (default) current date - format: 'YYYY/MM/DD'

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung.

3.26.1.4 ST Language
Q := DAY_TIME (SEL);

3.26.1.5 FBD Language

3.26.1.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

3.26.1.7 IL Language
Op1: FFLD SEL
DAY_TIME
ST Q

See also

DTFORMAT

3.26.2 DTFORMAT
Function - Format the current date/time to a string with a custom format.

3.26.2.1 Inputs
FMT: STRING Format string

3.26.2.2 Outputs
Q : STRING String containing formatted date or time

Kollmorgen™ | May 2012 209

KAS Reference Manual - PLC Library | 3 Advanced operations

Warning
The real-time clock may not be available on all controller hardware models. Please
consult the controller hardware specifications for real-time clock availability.

3.26.2.3 Remarks
The format string may contain any character. Some special markers beginning with
the '%' character indicates a date/time information:

%Y Year including century (e.g. 2006)
%y Year without century (e.g. 06)
%m Month (1..12)
%d Day of the month (1..31)
%H Hours (0..23)
%M Minutes (0..59)
%S Seconds (0..59)

Example

(* let's say we are at July 04th 2006, 18:45:20 *)

Q := DTFORMAT ('Today is %Y/%m/%d - %H:%M:%S');

(* Q is 'Today is 2006/07/04 - 18:45:20 *)

3.26.2.4 ST Language
Q := DTFORMAT (FMT);

3.26.2.5 FBD Language

3.26.2.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

3.26.2.7 IL Language
Op1: FFLD FMT
DTFORMAT
ST Q

See also

DAY_TIME

3.26.3 DTAT
Function Block - Generate a pulse at given date and time

3.26.3.1 Inputs
YEAR : DINT Wished year (e.g. 2006)
MONTH : DINT Wished month (1 = January)

210 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

DAY : DINT Wished day (1 to 31)
TMOFDAY : TIME Wished time
RST : BOOL Reset command

3.26.3.2 Outputs
QAT : BOOL Pulse signal
QPAST : BOOL True if elapsed

Warning
The real-time clock may not be available on all controller hardware models. Please
consult the controller hardware specifications for real-time clock availability.

3.26.3.3 Remarks
Parameters are not updated constantly. They are taken into account when only:
- the first time the block is called
- when the reset input (RST) is TRUE
In these two situations, the outputs are reset to FALSE.

The first time the block is called with RST=FALSE and the specified date/stamp is
passed, the output QPAST is set to TRUE, and the output QAT is set to TRUE for
one cycle only (pulse signal).

Highest units are ignored if set to 0. For instance, if arguments are "year=0, month=0,
day = 3, tmofday=t#10h" then the block will trigger on the next 3rd day of the month
at 10h.

In FFLD language, the block is activated only if the input rung is TRUE..

3.26.3.4 ST Language
(* MyDTAT is a declared instance of DTAT function block *)
MyDTAT (YEAR, MONTH, DAY, TMOFDAY, RST);
QAT := MyDTAT.QAT;
QPAST := MyDTATA.QPAST;

3.26.3.5 FBD Language

3.26.3.6 FFLD Language
(* Called only if EN is TRUE *)

Kollmorgen™ | May 2012 211

KAS Reference Manual - PLC Library | 3 Advanced operations

3.26.3.7 IL Language:
(* MyDTAT is a declared instance of DTAT function block *)
Op1: CAL MyDTAT (YEAR, MONTH, DAY, TMOFDAY, RST)
FFLD MyDTAT.QAT
ST QAT
FFLD MyDTATA.QPAST
ST QPAST

See also

DTEVERY Real time clock functions

3.26.4 DTEVERY
Function Block - Generate a pulse signal with long period

3.26.4.1 Inputs
RUN : DINT Enabling command
DAYS : DINT Period : number of days
TM : TIME Rest of the period (if not a multiple of 24h)

3.26.4.2 Outputs
Q : BOOL Pulse signal

3.26.4.3 Remarks
This block provides a pulse signal with a period of more than 24h. The period is
expressed as:
DAYS * 24h + TM

For instance, specifying DAYS=1 and TM=6h means a period of 30 hours.

3.26.4.4 ST Language
(* MyDTEVERY is a declared instance of DTEVERY function block *)
MyDTEVERY (RUN DAYS, TM);
Q := MyDTEVERY.Q;

3.26.4.5 FBD Language

3.26.4.6 FFLD Language

212 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.26.4.7 IL Language:
(* MyDTEVERY is a declared instance of DTEVERY function block *)
Op1: CAL MyDTEVERY (RUN DAYS, TM)

FFLD MyDTEVERY.Q
ST Q

See also

DTAT Real time clock functions

3.27 SERIALIZEIN
Function - Extract the value of a variable from a binary frame

3.27.1 Inputs
FRAME : USINT Source buffer - must be an array
DATA : ANY(*) Destination variable to be copied
POS : DINT Position in the source buffer
BIGENDIAN : BOOL TRUE if the frame is encoded with Big Endian format

(*) DATAcannot be a STRING

3.27.2 Outputs
NEXTPOS : DINT Position in the source buffer after the extracted data

0 in case or error (invalid position / buffer size)

3.27.3 Remarks
This function is commonly used for extracting data from a communication frame in
binary format.

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung. This function is not
available in IL language

.
The FRAME input must fit the input position and data size. If the value cannot be
safely extracted, the function returns 0.

The DATA input must be directly connected to a variable, and cannot be a constant or
complex expression. This variable will be forced with the extracted value.

The function extracts the following number of bytes from the source frame:

1 byte for BOOL, SINT, USINT and BYTE variables
2 bytes for INT, UINT and WORD variables
4 bytes for DINT, UDINT, DWORD and REAL variables
8 bytes for LINT and LREAL variables

The function cannot be used to serialize STRING variables.

The function returns the position in the source frame, after the extracted data. Thus
the return value can be used as a position for the next serialization.

3.27.4 ST Language
Q := SERIALIZEIN (FRAME, DATA, POS, BIGENDIAN);

Kollmorgen™ | May 2012 213

KAS Reference Manual - PLC Library | 3 Advanced operations

3.27.5 FBD Language

3.27.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

3.27.7 IL Language:
Not available

See also

SERIALIZEOUT

3.28 SERIALIZEOUT
Function - Copy the value of a variable to a binary frame

3.28.1 Inputs
FRAME : USINT Destination buffer - must be an array
DATA : ANY(*) Source variable to be copied
POS : DINT Position in the destination buffer
BIGENDIAN : BOOL TRUE if the frame is encoded with Big Endian format

(*) DATAcannot be a STRING

3.28.2 Outputs
NEXTPOS : DINT Position in the destination buffer after the copied data

0 in case or error (invalid position / buffer size)

3.28.3 Remarks
This function is commonly used for building a communication frame in binary format.

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung. This function is not
available in IL language

.
The FRAME input must be an array large enough to receive the data. If the data
cannot be safely copied to the destination buffer, the function returns 0.

The function copies the following number of bytes to the destination frame:

214 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

1 byte for BOOL, SINT, USINT and BYTE variables
2 bytes for INT, UINT and WORD variables
4 bytes for DINT, UDINT, DWORD and REAL variables
8 bytes for LINT and LREAL variables

The function cannot be used to serialize STRING variables.

The function returns the position in the destination frame, after the copied data. Thus
the return value can be used as a position for the next serialization.

3.28.4 ST Language
Q := SERIALIZEOUT (FRAME, DATA, POS, BIGENDIAN);

3.28.5 FBD Language

3.28.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

3.28.7 IL Language:
Not available

See also

SERIALIZEIN

3.29 SerGetString
Function - Extract a string from a binary frame

3.29.1 Inputs
FRAME : USINT Source buffer - must be an array
DST : STRING Destination variable to be copied
POS : DINT Position in the source buffer
MAXLEN : DINT Specifies a fixed length string
EOS : BOOL Specifies a null terminated string
HEAD : BOOL Specifies a string headed with its length

Kollmorgen™ | May 2012 215

KAS Reference Manual - PLC Library | 3 Advanced operations

3.29.2 Outputs
NEXTPOS : DINT Position in the source buffer after the extracted data

0 in case or error (invalid position / buffer size)

3.29.3 Remarks
This function is commonly used for extracting data from a communication frame in
binary format.

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung. This function is not
available in IL language

.
The FRAME input must fit the input position and data size. If the value cannot be
safely extracted, the function returns 0.

The DST input must be directly connected to a variable, and cannot be a constant or
complex expression. This variable will be forced with the extracted value.

The function extracts the following bytes from the source frame:

MAXLEN EOS HEAD description
<>0 any any The string is stored on a fixed length specified by MAXLEN. If the string is actually smaller, the space is

completed with null bytes.
= 0 TRUE any The string is stored with its actual length and terminated by a null byte.
= 0 FALSETRUEThe string is stored with its actual length and preceded by its length stored on one byte
=0 FALSEFALSEinvalid call

The function returns the position in the source frame, after the extracted data. Thus
the return value can be used as a position for the next serialization.

3.29.4 ST Language
Q := SerGetString (FRAME, DSR, POS, MAXLEN, EOS, HEAD);

3.29.5 FBD Language

3.29.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

216 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.29.7 IL Language
Not available

3.30 SerPutString
Function - Copies a string to a binary frame

3.30.1 Inputs
FRAME : USINT Destination buffer - must be an array
DST : STRING Source variable to be copied
POS : DINT Position in the source buffer
MAXLEN : DINT Specifies a fixed length string
EOS : BOOL Specifies a null terminated string
HEAD : BOOL Specifies a string headed with its length

3.30.2 Outputs
NEXTPOS : DINT Position in the destination buffer after the copied data

0 in case or error (invalid position / buffer size)

3.30.3 Remarks
This function is commonly used for storing data to a communication frame.

In FFLD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung. This function is not
available in IL language

.
The FRAME input must fit the input position and data size. If the value cannot be
safely copied, the function returns 0.

The function copies the following bytes to the frame:

MAXLEN EOS HEAD description
<>0 any any The string is stored on a fixed length specified by MAXLEN. If the string is actually smaller, the space is

completed with null bytes. If the string is longer, it is truncated.
= 0 TRUE any The string is stored with its actual length and terminated by a null byte.
= 0 FALSETRUEThe string is stored with its actual length and preceded by its length stored on one byte
=0 FALSEFALSEinvalid call

The function returns the position in the source frame, after the stored data. Thus the
return value can be used as a position for the next serialization.

3.30.4 ST Language
Q := SerPutString (FRAME, DSR, POS, MAXLEN, EOS, HEAD);

Kollmorgen™ | May 2012 217

KAS Reference Manual - PLC Library | 3 Advanced operations

3.30.5 FBD Language

3.30.6 FFLD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

3.30.7 IL Language:
Not available

3.31 SERIO
Function Block - Serial communication.

3.31.1 Inputs
RUN : BOOL Enable communication (opens the comm port)
SND : BOOL TRUE if data has to be sent
CONF : STRING Configuration of the communication port
DATASND : STRING Data to send

3.31.2 Outputs
OPEN : BOOL TRUE if the communication port is open
RCV : BOOL TRUE if data has been received
ERR : BOOL TRUE if error detected during sending data
DATARCV : STRING Received data

3.31.3 Remarks
The RUN input does not include an edge detection. The block tries to open the port
on each call if RUN is TRUE and if the port is still not successfully open. The CONF
input is used for settings when opening the port. Please refer to your OEM
instructions for further details about possible parameters.

218 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

The SND input does not include an edge detection. Characters are sent on each call
if SND is TRUE and DATASND is not empty.

The DATARCV string is erased on each cycle with received data (if any). Your
application is responsible for analyzing or storing received character immediately after
the call to SERIO block.

SERIO is available during simulation. In that case, the CONF input defines the
communication port according to the syntax of the "MODE" command. For example:

'COM1:9600,N,8,1'

The SERIO block may not be supported on some targets. Refer to your OEM
instructions for further details.

3.31.4 ST Language
(* MySer is a declared instance of SERIO function block *)
MySer (RUN, SND, CONF, DATASND);
OPEN := MySer.OPEN;
RCV := MySer.RCV;
ERR := MySer.ERR;
DATARCV := MySer.DATARCV;

3.31.5 FBD Language

3.31.6 FFLD Language

3.31.7 IL Language:
(* MySer is a declared instance of SERIO function block *)
Op1: CAL MySer (RUN, SND, CONF, DATASND)
FFLD MySer.OPEN
ST OPEN
FFLD MySer.RCV
ST RCV
FFLD MySer.ERR
ST ERR
FFLD MySer.DATARCV
ST DATARCV

3.32 SigID
Function - Get the identifier of a "Signal" resource

Kollmorgen™ | May 2012 219

KAS Reference Manual - PLC Library | 3 Advanced operations

3.32.1 Inputs
SIGNAL : STRING Name of the signal resource - must be a constant value!
COL : STRING Name of the column within the signal resource - must be a
constant value!

3.32.2 Outputs
ID : DINT ID of the signal - to be passed to other blocks

3.32.3 Remarks
Some blocks have arguments that refer to a "signal" resource. For all these blocks,
the signal argument is materialized by a numerical identifier. This function enables
you to get the identifier of a signal defined as a resource.

3.32.4 ST Language
ID := SigID ('MySignal', 'FirstColumn');

3.32.5 FBD Language

3.32.6 FFLD Language

3.32.7 IL Language
Op1: FFLD 'MySignal'

SigID 'FirstColumn'
ST ID

See also

SigPlay SigScale

3.33 SigPlay
Function block - Generate a signal defined in a resource

3.33.1 Inputs
IN : BOOL Triggering command
ID : DINT ID of the signal resource, provided by SigID function
RST : BOOL Reset command
TM : TIME Minimum time in between two changes of the output

220 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.33.2 Outputs
Q : BOOL TRUE when the signal is finished
OUT : REAL Generated signal
ET : TIME Elapsed time

3.33.3 Remarks
The "ID" argument is the identifier of the "signal" resource. Use the SigID function to
get this value.

The "IN" argument is used as a "Play / Pause" command to play the signal. The
signal is not reset to the beginning when IN becomes FALSE. Instead, use the "RST"
input that resets the signal and forces the OUT output to 0.

The "TM" input specifies the minimum amount of time in between two changes of the
output signal. This parameter is ignored if less than the cycle scan time.

This function block includes its own timer. Alternatively, you can use the SigScale
function if you want to trigger the signal using a specific timer.

3.33.4 ST Language
Q := SigScale (ID, IN);

3.33.5 FBD Language

3.33.6 FFLD Language

3.33.7 IL Language
Op1: FFLD IN
SigScale ID
ST Q

See also

SigScale SigID

Kollmorgen™ | May 2012 221

KAS Reference Manual - PLC Library | 3 Advanced operations

3.34 SigScale
Function - Get a point from a "Signal" resource

3.34.1 Inputs
ID : DINT ID of the signal resource, provided by SigID function
IN : TIME Time (X) coordinate of the wished point within the signal resource

3.34.2 Outputs
Q : REAL Value (Y) coordinate of the point in the signal

3.34.3 Remarks
The "ID" argument is the identifier of the "signal" resource. Use the SigID function to
get this value.

This function converts a time value to a analog value such as defined in the signal
resource. This function can be used instead of SigPlay function block if you want to
trigger the signal using a specific timer.

3.34.4 ST Language
Q := SigScale (ID, IN);

3.34.5 FBD Language

3.34.6 FFLD Language

3.34.7 IL Language
Op1: FFLD IN
SigScale ID
ST Q

See also

SigPlay SigID

3.35 STACKINT
Function Block - Manages a stack of DINT integers.

222 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.35.1 Inputs
PUSH : BOOL Command: when changing from FALSE to TRUE, the value of IN is
pushed on the stack
POP : BOOL Pop command: when changing from FALSE to TRUE, deletes the
top of the stack
R1 : BOOL Reset command: if TRUE, the stack is emptied and its size is set to
N
IN : DINT Value to be pushed on a rising pulse of PUSH
N : DINT maximum stack size - cannot exceed 128

3.35.2 Outputs
EMPTY : BOOL TRUE if the stack is empty
OFLO : BOOL TRUE if the stack is full
OUT : DINT value at the top of the stack

3.35.3 Remarks
Push and pop operations are performed on rising pulse of PUSH and POP inputs. In
FFLD language, the input rung is the PUSH command. The output rung is the
EMPTY output.

The specified size (N) is taken into account only when the R1 (reset) input is TRUE.

3.35.4 ST Language
(* MyStack is a declared instance of STACKINT function block *)
MyStack (PUSH, POP, R1, IN, N);
EMPTY := MyStack.EMPTY;
OFLO := MyStack.OFLO;
OUT := MyStack.OUT;

3.35.5 FBD Language

3.35.6 FFLD Language

Kollmorgen™ | May 2012 223

KAS Reference Manual - PLC Library | 3 Advanced operations

3.35.7 IL Language
(* MyStack is a declared instance of STACKINT function block *)
Op1: CAL MyStack (PUSH, POP, R1, IN, N)

FFLD MyStack.EMPTY
ST EMPTY
FFLD MyStack.OFLO
ST OFLO
FFLD MyStack.OUT
ST OUT

See also

AVERAGE INTEGRAL DERIVATE LIM_ALRM HYSTER

3.36 SurfLin
Function block- Linear interpolation on a surface.

3.36.1 Inputs
X : REAL X coordinate of the point to be interpolated.

Y : REAL Y coordinate of the point to be interpolated.

XAxis : REAL[] X coordinates of the known points of the X axis.

YAxis : REAL[] Y coordinates of the known points of the Y axis.

ZVal : REAL[,] Z coordinate of the points defined by the axis.

3.36.2 Outputs
Z : REAL Interpolated Z value corresponding to the X,Y input point

OK : BOOL TRUE if successful.

ERR : DINT Error code if failed - 0 if OK.

3.36.3 Remarks
This function performs linear surface interpolation in between a list of points defined
in XAxis and YAxis single dimension arrays. The output Z value is an interpolation of
the Z values of the four rounding points defined in the axis. Z values of defined
points are passed in the ZVal matrix (two dimension array).

ZVal dimensions must be understood as: ZVal [iX , iY]

Values in X and Y axis must be sorted from the smallest to the biggest. There must
be at least two points defined in each axis. ZVal must fit the dimension of XAxis and
YAxis arrays. For instance:

XAxis : ARRAY [0..2] of REAL;

YAxis : ARRAY [0.3] of REAL;

ZVal : ARRAY [0..2,0..3] of REAL;

In case the input point is outside the rectangle defined by XAxis and YAxis limits, the
Z output is bound to the corresponding value and an error is reported.

The ERR output gives the cause of the error if the function fails:

Error Code Meaning
0 OK

224 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

Error Code Meaning
1 Invalid dimension of input arrays

2 Invalid points for the X axis

3 Invalid points for the Y axis

4 X,Y point is out of the defined
axis

3.37 TCP-IP management functions
The following functions enable management of TCP-IP sockets for building client or
server applications over ETHERNET network:

tcpListen create a listening server socket
tcpAccept accept client connections
tcpConnect create a client socket and connect it to a server
tcpIsConnected test if a client socket is connected
tcpClose close a socket
tcpSend send characters
tcpReceive receive characters
tcpIsValid test if a socket is valid

Each socket is identified in the application by a unique handle manipulated as a
DINT value.

Warning
• Even though the system provides a simplified interface, you must be familiar
with the socket interface such as existing in other programming languages such
as "C".
• Socket management may be not available on some targets. Please refer to
OEM instructions for further details about available features.

tcpListen: create a "listening" server socket

SOCK := tcpListen (PORT, MAXCNX);

PORT : DINT TCP port number to be attached to the server socket
MAXCNX : DINT maximum number of client sockets that can be accepted
SOCK : DINT ID of the new server socket

This function creates a new socket performs the "bind" and "listen" operations using
default TCP settings. You will have to call the tcpClose function to release the
socket returned by this function.

tcpAccept: accept a new client connection

SOCK := tcpAccept (LSOCK);

LSOCK : DINT ID of a server socket returned by the tcpListen function
SOCK : DINT ID of a new client socket accepted, or invalid ID if no new
connection

This functions performs the "accept" operation using default TCP settings. You will
have to call the tcpClose function to release the socket returned by this function.

tcpConnect: create a client socket and connect it to a server

SOCK := tcpConnect (ADDRESS, PORT);

ADDRESS : STRING IP address of the remote server
PORT : DINT wished port number on the server
SOCK : DINT ID of the new client socket

Kollmorgen™ | May 2012 225

KAS Reference Manual - PLC Library | 3 Advanced operations

This function creates a new socket performs the "connect" operation using default
TCP settings and specified server address and port. You will have to call the
tcpClosefunction to release the socket returned by this function.

Warning
It is possible that the functions returns a valid socket ID even if the connection to the
server is not yet actually performed. After calling this function, you must call
tcpIsConnected function to know if the connection is ready.

tcpIsConnected: test if a client socket is connected

OK := tcpIsConnected (SOCK);

SOCK : DINT ID of the client socket
OK : BOOL TRUE if connection is correctly established

Warning
It is possible that the socket becomes invalid after this function is called, if an error
occurs in the TCP connection. You must call the tcpIsValidfunction after calling this
function. If the socket is not valid anymore then you must close it by calling
tcpClose.

tcpClose: release a socket

OK := tcpClose (SOCK);

SOCK : DINT ID of any socket
OK : BOOL TRUE if successful

You are responsible for closing any socket created by tcpListen, tcpAccept or
tcpConnect functions, even if they have become invalid.

tcpSend: send characters

NBSENT := tcpSend (SOCK, NBCHR, DATA);

SOCK : DINT ID of a socket
NBCHAR : DINT number of characters to be sent
DATA : STRING string containing characters to send
NBSENT : DINT number of characters actually sent

It is possible that the number of characters actually sent is less than the number
expected. In that case, you will have to call again the function on te next cycle to
send the pending characters.

Warning
It is possible that the socket becomes invalid after this function is called, if an error
occurs in the TCP connection. You must call the tcpIsValidfunction after calling this
function. If the socket is not valid anymore then you must close it by calling
tcpClose.

tcpReceive: receive characters

NBRCV := tcpReceive (SOCK, MAXCHR, DATA);

SOCK : DINT ID of a socket
MAXCHR : DINT maximum number of characters wished
DATA : STRING string where to store received characters
NBRCV : DINT number of characters actually received

It is possible that the number of characters actually received is less than the number
expected. In that case, you will have to call again the function on the next cycle to
receive the pending characters.

226 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

Warning
It is possible that the socket becomes invalid after this function is called, if an error
occurs in the TCP connection. You must call the tcpIsValidfunction after calling this
function. If the socket is not valid anymore then you must close it by calling
tcpClose.

tcpIsValid: test if a socket is valid

OK := tcpIsValid (SOCK);

SOCK : DINT ID of the socket
OK : BOOL TRUE if specified socket is still valid

3.38 Text buffers manipulation
Strings are limited to 255 characters. Here is a set of functions and function blocks
for working with not limited text buffers. Text buffers are dynamically allocated or re-
allocated.

Warning
l Theremust be one instance of the TxbManager declared in your application for using these functions.
l The application should take care of releasingmemory allocated for each buffer. Allocating buffers without freeing

them will lead tomemory leaks.

The application is responsible for freeing all allocated text buffers. However, all
allocated buffers are automatically released when the application stops.

Below are the functions and function blocks for managing variable length text buffers:

Memory management / Miscellaneous:

TxbManager: main gatherer of text buffer data in memory

TxbLastError: get detailed error report about last call

Allocation / exchange with files:

TxbNew: Allocate a new empty buffer

TxbNewString: Allocate a new buffer initialized with string

TxbFree: Release a text buffer

TxbReadFile: Allocate a new buffer from file

TxbWriteFile: Store a text buffer to file

Data exchange:

TxbGetLength: Get length of a text buffer

TxbGetData: Store text contents to an array of characters

TxbGetString: Store text contents to a string

TxbSetData: Store an array of characters to a text buffer

Kollmorgen™ | May 2012 227

KAS Reference Manual - PLC Library | 3 Advanced operations

TxbSetString: Store string to text buffer

TxbClear: Empty a text buffer

TxbCopy: Copy a text buffer

Sequential reading:

TxbRewind: Rewind sequential reading

TxbGetLine: Sequential read line by line

Sequential writing:

TxbAppend: Append variable value

TxbAppendLine: Append a text line

TxbAppendEol: Append end of line characters

TxpAppendTxb: Append contents of another buffer

UNICODE conversions:

TxbAnsiToUtf8: Convert a text buffer to UNICODE

TxbUtf8ToAnsi: Converts a text buffer to ANSI

3.38.1 TxbManager
InstanceName
TxbManager

bOK - BOOL
nBuffers - DINT

Description:

This function block is used for managing the memory allocated for text buffers. It
takes care of releasing the corresponding memory when the application stops, and
can be used for tracking memory leaks.

Warning
There must be one and only one instance of this block declared in the IEC
application in order to use any other Txb... function.

Outputs:

228 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

bOK : BOOL TRUE if the text buffers memory system is correctly
initialized.

nBuffers : DINT Number of text buffers currently allocated in memory.

TxbLastError

TxbLastError
iErr - DINT

Description:

All TXB functions and blocks simply return a boolean information as a return
value. This function can be called after any other function giving a FALSE return.
It gives a detailed error code about the last detected error.

Outputs:

iErr : DINT Error code reported by the last call:

0 = OK

other = error (see below)

Below are possible error codes:

1 invalid instance of TXBManager - should be only one
2 manager already open - should be only one instance of TxbManager
3 manager not open - no instance of TxbManager declared
4 invalid handle
5 string has been truncated during copy
6 cannot read file
7 cannot write file
8 unsupported data type
9 too many text buffers allocated

TxbNew

TxbNew
hTxb - DINT

Description:

Kollmorgen™ | May 2012 229

KAS Reference Manual - PLC Library | 3 Advanced operations

This function allocates a new text buffer initially empty. The application will be
responsible for releasing the buffer by calling the TxbFree() function.

Outputs:

hTxb : DINT Handle of the new buffer

TxbNewString

TxbNewString
STRING

-
szText hTxb - DINT

Description:

This function allocates a new text buffer initially filled with teh specified string.
The application will be responsible for releasing the buffer by calling the TxbFree()
function.

Inputs:

szText : STRING Initial value of the text buffer

Outputs:

hTxb : DINT Handle of the new buffer

TxbFree

TxbFree
DINT

-
hTxb bOK - BOOL

Description:

This function releases a text buffer from memory.

230 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

Inputs:

hTxb : DINT Handle of a valid text buffer

Outputs:

bOK : BOOL TRUE if successful

TxbReadFile

TxbReadFile
STRING

-
szPath hTxb - DINT

Description:

This function allocates a new text buffer and fills it with the contents of the
specified file. The application will be responsible for releasing the buffer by calling
the TxbFree() function.

Inputs:

szPath : STRING Full qualified path name of the file to be read

Outputs:

hTxb : DINT Handle of the new buffer

TxbWriteFile

TxbWriteFile
DINT - hTxb bOK - BOOL

STRING
-

szPath

Description:

Kollmorgen™ | May 2012 231

KAS Reference Manual - PLC Library | 3 Advanced operations

This function stores the contents of a text buffer to a file. The text buffer remains
allocated in memory.

Inputs:

hTxb : DINT Handle of the text buffer

szPath :
STRING

Full qualified path name of the file to be
created.

Outputs:

bOK : BOOL TRUE if successful

TxbGetLength

TxbGetLength
DINT

-
hTxb len - DINT

Description:

This function returns the current length of a text buffer.

Inputs:

hTxb : DINT Handle of the text buffer

Outputs:

len : DINT Number of characters in the text buffer

TxbGetData

TxbGetData
DINT

-
hTxb bOK - BOOL

232 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

SINT[]
-

arData

Description:

This function copies the contents of a text buffer to an array of characters.

Inputs:

hTxb : DINT Handle of the text buffer

arData : SINT[] Array of characters to be filled with text

Outputs:

bOK : BOOL TRUE if successful

TxbGetString

TxbGetString
DINT

-
hTxb szText - STRING

Description:

This function copies the contents of a text buffer to a string. The text is truncated
if the string is not large enough.

Inputs:

hTxb : DINT Handle of the text buffer

Outputs:

szText : STRING String to be filled with text

Kollmorgen™ | May 2012 233

KAS Reference Manual - PLC Library | 3 Advanced operations

TxbSetData

TxbSetData
DINT

-
hTxb bOK - BOOL

SINT[]
-

arData

Description:

This function copies an array of characters to a text buffer. All characters of the
input array are copied.

Inputs:

hTxb : DINT Handle of the text buffer

arData : SINT[] Array of characters to copy

Outputs:

bOK : BOOL TRUE if successful

TxbSetString

TxbSetString
DINT - hTxb bOK - BOOL

STRING
-

szText

Description:

This function copies the contents of a string to a text buffer.

Inputs:

hTxb : DINT Handle of the text buffer

szText : STRING String to be copied

234 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

Outputs:

bOK : BOOL TRUE if successful

TxbClear

TxbClear
DINT

-
hTxb bOK - BOOL

Description:

This function empties a text buffer.

Inputs:

hTxb : DINT Handle of the text buffer

Outputs:

bOK : BOOL TRUE if successful

TxbCopy

TxbCopy
DINT

-
hTxbDst bOK - BOOL

DINT
-

hTxb

Description:

This function copies the contents of the hTxb buffer the to hTxbDst buffer.

Inputs:

Kollmorgen™ | May 2012 235

KAS Reference Manual - PLC Library | 3 Advanced operations

hTxbDst : DINT Handle of the destination text buffer

hTxb : DINT Handle of the source text buffer

Outputs:

bOK : BOOL TRUE if successful

TxbRewind

TxbRewind
DINT

-
hTxb bOK - BOOL

Description:

This function resets the sequential reading of a text buffer (rewind to the
beginning of the text).

Inputs:

hTxb : DINT Handle of the text buffer

Outputs:

bOK : BOOL TRUE if successful

TxbGetLine

TxbGetLine
DINT - hTxb bOK - BOOL

STRING
-

szText

Description:

236 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

This function sequentially reads a line of text from a text buffer. End of line
characters are not copied to the output string.

Inputs:

hTxb : DINT Handle of the text buffer

szText : STRING String to be filled with read line

Outputs:

bOK : BOOL TRUE if successful

TxbAppend

TxbAppend
DINT

-
hTxb bOK - BOOL

ANY
-

data

Description:

This function adds the contents of a variable, formatted as text, to a text buffer.
The specified variable can have any data type.

Inputs:

hTxb : DINT Handle of the text buffer

data : ANY Any variable

Outputs:

bOK : BOOL TRUE if successful

TxbAppendLine

Kollmorgen™ | May 2012 237

KAS Reference Manual - PLC Library | 3 Advanced operations

TxbAppendLine
DINT - hTxb bOK - BOOL

STRING
-

szText

Description:

This function adds the contents of the specified string variable to a text buffer,
plus end of line characters.

Inputs:

hTxb : DINT Handle of the text buffer

szText : STRING String to be added to the text

Outputs:

bOK : BOOL TRUE if successful

TxbAppendEol

TxbAppendEol
DINT

-
hTxb bOK - BOOL

Description:

This function adds end of line characters to a text buffer.

Inputs:

hTxb : DINT Handle of the text buffer

Outputs:

bOK : BOOL TRUE if successful

238 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

TxbAppendTxb

TxbAppendTxb
DINT

-
hTxbDst bOK - BOOL

DINT
-

hTxb

Description:

This function adds the contents of the "hTxb" text buffer to the "hTxbDst" text
buffer.

Inputs:

hTxbDst : DINT Handle of the text buffer to be completed

hTxb : DINT Handle of the text buffer to be added

Outputs:

bOK : BOOL TRUE if successful

TxbAnsiToUtf8

TxbAnsiToUtf8
DINT

-
hTxb bOK - BOOL

Description:

This function converts the whole contents of a text buffer from ANSI to
UNICODE UTF8 encoding.

Warning
This function may be time and memory consuming for large buffers.

Kollmorgen™ | May 2012 239

KAS Reference Manual - PLC Library | 3 Advanced operations

Warning
UNICODE conversion may be not available on some operating systems

Inputs:

hTxb : DINT Handle of the text buffer

Outputs:

bOK : BOOL TRUE if successful

TxbUtf8ToAnsi

TxbUtf8ToAnsi
DINT

-
hTxb bOK - BOOL

Description:

This function converts the whole contents of a text buffer from UNICODE UTF8
to ANSI encoding.

Warning
This function may be time and memory consuming for large buffers.

Warning
UNICODE conversion may be not available on some operating systems

Inputs:

hTxb : DINT Handle of the text buffer

Outputs:

bOK : BOOL TRUE if successful

240 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.39 UDP management functions
The following functions enable management of UDP sockets for building client or
server applications over ETHERNET network:

udpCreate create a UDP socket
udpAddrMake build an address buffer for UDP functions
updSendTo send a telegram
udpRcvFrom receive a telegram
udpClose close a socket
udpIsValid test if a socket is valid

Each socket is identified in the application by a unique handle manipulated as a
DINT value.

Warning
• Even though the system provides a simplified interface, you must be familiar
with the socket interface such as existing in other programming languages such
as "C".
• Socket management may be not available on some targets. Please refer to
OEM instructions for further details about available features.

udpCreate: create a UDP socket

SOCK := udpCreate (PORT);

PORT : DINT TCP port number to be attached to the server socket or 0 for a
client socket
SOCK : DINT ID of the new server socket

This function creates a new UDP socket. If the PORT argument is not 0, the socket is
bound to the port and thus can be used as a server socket.

udpAddrMake: build an address buffer for UDP functions

OK := udpAddrMake (IPADDR, PORT, ADD);

IPADDR : STRING IP address in form xxx.xxx.xxx.xxx
PORT : DINT IP port number
ADD : USINT[32] buffer where to store the UDP address (filled on output)
OK : BOOL TRUE if successful

This functions is required for building a internal "UDP" address to be passed to the
udpSendTofunction in case of UDP client processing.

udpSendTo: send a UDP telegram

OK := udpSendTo (SOCK, NB, ADD, DATA);

SOCK : DINT ID of the client socket
NB : DINT number of characters to send
ADD : USINT[32] buffer containing the UDP address (on input)
DATA : STRING characters to send
OK : BOOL TRUE if successful

The "ADD" buffer must contain a valid UDP address either constructed by the
udpAddrMake function or returned by the udpRcvFromfunction.

udpRcvFrom: receive a UDP telegram

OK := udpRcvFrom (SOCK, NB, ADD, DATA);

SOCK : DINT ID of the client socket
NB : DINT maximum number of characters received
ADD : USINT[32] buffer containing the UDP address of the transmitter (filled on

Kollmorgen™ | May 2012 241

KAS Reference Manual - PLC Library | 3 Advanced operations

output)
DATA : STRING buffer where to store received characters
Q : DINT number of actually received characters

If characters are received, the function fills the ADD argument with the internal "UDP"
of the sender. This buffer can then be passed to the udpSendTofunction to send the
answer.

udpClose: release a socket

OK := udpClose (SOCK);

SOCK : DINT ID of any socket
OK : BOOL TRUE if successful

You are responsible for closing any socket created by tcpListen, tcpAccept or
tcpConnect functions, even if they have become invalid.

udpIsValid: test if a socket is valid

OK := udpIsValid (SOCK);

SOCK : DINT ID of the socket
OK : BOOL TRUE if specified socket is still valid

3.40 VLID
Function - Get the identifier of an embedded list of variables

3.40.1 Inputs
FILE : STRING Path name of the .TXT list file - must be a constant value!

3.40.2 Outputs
ID : DINT ID of the list - to be passed to other blocks

3.40.3 Remarks
Some blocks have arguments that refer to a list of variables. For all these blocks, the
"list" argument is materialized by a numerical identifier. This function enables you to
get the identifier of a list of variables.

Embedded lists of variables are simple ".TXT" text files with one variable name per
line (note that you can only declare global variable).

Lists must contain single variables only. Items of arrays and structures must be
specified one by one. The length of the list is not limited by the system.

Warning
List files are read at compiling time and are embedded into the downloaded
application code. This implies that a modification performed in the list file after
downloading will not be taken into account by the application.

3.40.4 ST Language
ID := VLID ('MyFile.txt');

3.40.5 FBD Language

242 Kollmorgen™ | May 2012

KAS Reference Manual - PLC Library | 3 Advanced operations

3.40.6 FFLD Language
(* The function is executed only if EN is TRUE *)

3.40.7 IL Language
Op1: FFLD 'MyFile.txt'
VLID COL
ST ID

Kollmorgen™ | May 2012 243

This page intentionally left blank.

244 Kollmorgen™ | May 2012

Global Support Contacts

Danaher Motion Assistance Center
Phone: 1-540-633-3400
Fax: 1-540-639-4162
Email: contactus@danahermotion.com

Danaher Motion
203A West Rock Road
Radford, VA 24141 USA

Europe Product Support

France

l Linear Units
l Ball- & Leadscrews
l Actuators
l Gearheads
l Rails & Components
l Servo Motors & Direct Drives
l Servo Drives & High Frequency Inverters
l Machine & Motion Controls
Tel.: +33 (0)243 5003-30
Fax: +33 (0)243 5003-39
Email: sales.france@tollo.com

Germany

l Gearheads
l Servo Motors & Direct Drives
l Servo Drives & High Frequency Inverters
l Machine & Motion Controls
Tel.: +49 (0)2102 9394-0
Fax: +49 (0)2102 - 9394-3155
Email: technik@kollmorgen.com

l Ball- & Leadscrews
l Linear Units
l Actuators
l Rails & Components
Tel.: +49 (0)70 22 504-0
Fax: +49 (0)70 22 54-168
Email: sales.wolfschlugen@danahermotion.com

Italy

l Ball- & Leadscrews
l Linear Units
l Actuators
l Gearheads

l Rails & Components
l Servo Motors & Direct Drives
l Servo Drives & High Frequency Inverters
l Machine & Motion Controls
Tel.: +39 0362 5942-60
Fax: +39 0362 5942-63
Email: info@danahermotion.it

Sweden

l Ball- & Leadscrews
l Linear Units
l Actuators
l Gearheads
l Rails & Components
l Servo Motors & Direct Drives
l Servo Drives & High Frequency Inverters
l Machine & Motion Controls
Tel.: +46 (0)44 24 67-00
Fax: +46 (0)44 24 40-85
Email: helpdesk.kid@danahermotion.com

Switzerland

l Servo Motors & Direct Drives
l Servo Drives & High Frequency Inverters
l Machine & Motion Controls
Tel. : +41 (0)21 6313333
Fax: +41 (0)21 6360509
Email: info@danaher-motion.ch

l Miniature Motors
Tel.: +41 (0)32 9256-111
Fax: +41 (0)32 9256-596
Email: info@portescap.com

United Kingdom / Ireland

l Ball- & Leadscrews
l Linear Units
l Actuators
l Gearheads
l Rails & Components
l Servo Motors & Direct Drives
l Servo Drives & High Frequency Inverters
l Machine & Motion Controls
Tel.: +44 (0)1525 243-243
Fax: +44 (0)1525 243-244
Email: sales.uk@danahermotion.com

	KAS IDE - PLC Library

	Trademarks and Copyrights
	Copyrights
	Trademarks
	Disclaimer

	Table of Contents
	1 Programming languages
	1.1 Sequential Function Chart (SFC)
	1.1.1 SFC Steps
	1.1.2 SFC Transitions
	1.1.3 SFC parallel branches
	1.1.4 SFC macro steps
	1.1.5 Jump to an SFC step
	1.1.6 Actions in an SFC step
	1.1.7 Check timeout on an SFC step
	1.1.8 Condition of an SFC transition
	1.1.9 SFC execution at run time
	1.1.10 Hierarchy of SFC programs
	1.1.11 Controlling a SFC child program
	1.1.12 User-Defined Function Blocks programmed in SFC

	1.2 Function Block Diagram (FBD)
	1.2.1 Data flow
	1.2.2 FFLD symbols

	1.3 Structured Text (ST)
	1.3.1 Comments
	1.3.2 Expressions
	1.3.3 Statements

	1.4 Instruction List (IL)
	1.4.1 Comments
	1.4.2 Data flow
	1.4.3 Evaluation of expressions
	1.4.4 Actions

	1.5 Use of ST expressions in graphic language
	1.6 Free Form Ladder Diagram (FFLD)
	1.6.1 Contacts and coils
	1.6.2 Power Rails

	2 Programming features and standard
blocks
	2.1 Basic Operations
	2.1.1 := FFLD FFLDN ST STN
	2.1.2 Access to bits of an integer
	2.1.3 Calling a function
	2.1.4 Calling a function block CAL CALC CALNC
 CALCN
	2.1.5 Calling a sub-program
	2.1.6 CASE OF ELSE END_CASE
	2.1.7 COUNTOF
	2.1.8 DEC
	2.1.9 EXIT
	2.1.10 FOR TO BY END_FOR
	2.1.11 IF THEN ELSE ELSIF END_IF
	2.1.12 INC
	2.1.13 Jumps JMP JMPC JMPNC JMPCN
	2.1.14 LABELS
	2.1.15 MOVEBLOCK
	2.1.16 NEG -
	2.1.17 ON
	2.1.18 ()
	2.1.19 REPEAT UNTIL END_REPEAT
	2.1.20 RETURN RET RETC RETNC RETCN
	2.1.21 WHILE DO END_WHILE

	2.2 Boolean operations
	2.2.1 AND ANDN &
	2.2.2 FLIPFLOP
	2.2.3 F_TRIG
	2.2.4 NOT
	2.2.5 OR ORN
	2.2.6 R
	2.2.7 RS
	2.2.8 R_TRIG
	2.2.9 S
	2.2.10 SEMA
	2.2.11 SR
	2.2.12 XOR XORN

	2.3 Arithmetic operations
	2.3.1 + ADD
	2.3.2 / DIV
	2.3.3 NEG -
	2.3.4 LIMIT
	2.3.5 MAX
	2.3.6 MIN
	2.3.7 MOD / MODR / MODLR
	2.3.8 * MUL
	2.3.9 ODD
	2.3.10 - SUB

	2.4 Comparison operations
	2.4.1 CMP
	2.4.2 >= GE
	2.4.3 > GT
	2.4.4 = EQ
	2.4.5 <> NE
	2.4.6 <= LE
	2.4.7 < LT

	2.5 Type conversion functions
	2.5.1 ANY_TO_BOOL
	2.5.2 ANY_TO_DINT / ANY_TO_UDINT
	2.5.3 ANY_TO_INT / ANY_TO_UINT
	2.5.4 ANY_TO_LINT / ANY_TO_ULINT
	2.5.5 ANY_TO_LREAL
	2.5.6 ANY_TO_REAL
	2.5.7 ANY_TO_TIME
	2.5.8 ANY_TO_SINT / ANY_TO_USINT
	2.5.9 ANY_TO_STRING
	2.5.10 NUM_TO_STRING
	2.5.11 BCD_TO_BIN
	2.5.12 BIN_TO_BCD

	2.6 Selectors
	2.6.1 MUX4
	2.6.2 MUX8
	2.6.3 SEL

	2.7 Registers
	2.7.1 AND_MASK
	2.7.2 HIBYTE
	2.7.3 LOBYTE
	2.7.4 HIWORD
	2.7.5 LOWORD
	2.7.6 MAKEDWORD
	2.7.7 MAKEWORD
	2.7.8 MBSHIFT
	2.7.9 NOT_MASK
	2.7.10 OR_MASK
	2.7.11 PACK8
	2.7.12 ROL
	2.7.13 ROR
	2.7.14 RORb / ROR_SINT / ROR_USINT / ROR_BYTE
	2.7.15 RORw / ROR_INT / ROR_UINT / ROR_WORD
	2.7.16 SETBIT
	2.7.17 SHL
	2.7.18 SHR
	2.7.19 TESTBIT
	2.7.20 UNPACK8
	2.7.21 XOR_MASK

	2.8 Counters
	2.8.1 CTD / CTDr
	2.8.2 CTU / CTUr
	2.8.3 CTUD / CTUDr

	2.9 Timers
	2.9.1 BLINK
	2.9.2 BLINKA
	2.9.3 PLS
	2.9.4 Sig_Gen
	2.9.5 TMD
	2.9.6 TMU / TMUsec
	2.9.7 TOF / TOFR
	2.9.8 TON
	2.9.9 TP / TPR

	2.10 Mathematic operations
	2.10.1 ABS / ABSL
	2.10.2 EXPT
	2.10.3 LOG
	2.10.4 POW ** POWL
	2.10.5 ScaleLin
	2.10.6 SQRT / SQRTL
	2.10.7 TRUNC / TRUNCL

	2.11 Trigonometric functions
	2.11.1 ACOS / ACOSL
	2.11.2 ASIN / ASINL
	2.11.3 ATAN / ATANL
	2.11.4 ATAN2 / ATAN2L
	2.11.5 COS / COSL
	2.11.6 SIN / SINL
	2.11.7 TAN / TANL
	2.11.8 UseDegrees

	2.12 String operations
	2.12.1 ArrayToString / ArrayToStringU
	2.12.2 ASCII
	2.12.3 ATOH
	2.12.4 CHAR
	2.12.5 CONCAT
	2.12.6 CRC16
	2.12.7 DELETE
	2.12.8 FIND
	2.12.9 HTOA
	2.12.10 INSERT
	2.12.11 LEFT
	2.12.12 LoadString
	2.12.13 MID
	2.12.14 MLEN
	2.12.15 REPLACE
	2.12.16 RIGHT
	2.12.17 StringTable
	2.12.18 StringToArray / StringToArrayU

	3 Advanced operations
	3.1 ALARM_A
	3.1.1 Inputs
	3.1.2 Outputs
	3.1.3 Sequence
	3.1.4 Remarks
	3.1.5 ST Language
	3.1.6 FBD Language
	3.1.7 FFLD Language
	3.1.8 IL Language

	3.2 ALARM_M
	3.2.1 Inputs
	3.2.2 Outputs
	3.2.3 Sequence
	3.2.4 Remarks
	3.2.5 ST Language
	3.2.6 FBD Language
	3.2.7 FFLD Language
	3.2.8 IL Language

	3.3 ApplyRecipeColumn
	3.3.1 Inputs
	3.3.2 Outputs
	3.3.3 Remarks
	3.3.4 ST Language
	3.3.5 FBD Language
	3.3.6 FFLD Language
	3.3.7 IL Language

	3.4 AS-interface functions
	3.5 AVERAGE / AVERAGEL
	3.5.1 Inputs
	3.5.2 Outputs
	3.5.3 Remarks
	3.5.4 ST Language
	3.5.5 FBD Language
	3.5.6 FFLD Language
	3.5.7 IL Language:

	3.6 CurveLin
	3.6.1 Inputs
	3.6.2 Outputs
	3.6.3 Remarks

	3.7 CycleStop
	3.7.1 Inputs
	3.7.2 Outputs
	3.7.3 Remarks

	3.8 DERIVATE
	3.8.1 Inputs
	3.8.2 Outputs
	3.8.3 Remarks
	3.8.4 ST Language
	3.8.5 FBD Language
	3.8.6 FFLD Language
	3.8.7 IL Language:

	3.9 Dynamic memory allocation functions
	3.10 EnableEvents
	3.10.1 Inputs
	3.10.2 Outputs
	3.10.3 Remarks
	3.10.4 ST Language
	3.10.5 FBD Language
	3.10.6 FFLD Language
	3.10.7 IL Language:

	3.11 FatalStop
	3.11.1 Inputs
	3.11.2 Outputs
	3.11.3 Remarks

	3.12 FIFO
	3.12.1 Inputs
	3.12.2 Outputs
	3.12.3 Remarks
	3.12.4 ST Language
	3.12.5 FBD Language
	3.12.6 FFLD Language
	3.12.7 IL Language

	3.13 File management functions
	3.13.1 SD Card Access
	3.13.2 System Conventions
	3.13.3 F_AOPEN
	3.13.4 F_CLOSE
	3.13.5 F_COPY
	3.13.6 F_DELETE
	3.13.7 F_EOF
	3.13.8 F_EXIST
	3.13.9 F_GETSIZE
	3.13.10 F_RENAME
	3.13.11 F_ROPEN
	3.13.12 F_WOPEN
	3.13.13 FA_READ
	3.13.14 FA_WRITE
	3.13.15 FB_READ
	3.13.16 FB_WRITE
	3.13.17 FM_READ
	3.13.18 FM_WRITE
	3.13.19 SD_MOUNT
	3.13.20 SD_UNMOUNT
	3.13.21 SD_ISREADY

	3.14 GETSYSINFO
	3.14.1 Inputs
	3.14.2 Outputs
	3.14.3 Remarks
	3.14.4 ST Language
	3.14.5 FBD Language
	3.14.6 FFLD Language
	3.14.7 IL Language:

	3.15 HYSTER
	3.15.1 Inputs
	3.15.2 Outputs
	3.15.3 Remarks
	3.15.4 ST Language
	3.15.5 FBD Language
	3.15.6 FFLD Language
	3.15.7 IL Language:

	3.16 INTEGRAL
	3.16.1 Inputs
	3.16.2 Outputs
	3.16.3 Remarks
	3.16.4 ST Language
	3.16.5 FBD Language
	3.16.6 FFLD Language
	3.16.7 IL Language:

	3.17 LIFO
	3.17.1 Inputs
	3.17.2 Outputs
	3.17.3 Remarks
	3.17.4 ST Language
	3.17.5 FBD Language
	3.17.6 FFLD Language
	3.17.7 IL Language

	3.18 LIM_ALRM
	3.18.1 Inputs
	3.18.2 Outputs
	3.18.3 Remarks
	3.18.4 ST Language
	3.18.5 FBD Language
	3.18.6 FFLD Language
	3.18.7 IL Language:

	3.19 LogFileCSV
	3.19.1 Inputs
	3.19.2 Outputs
	3.19.3 Remarks
	3.19.4 ST Language
	3.19.5 FBD Language
	3.19.6 FFLD Language
	3.19.7 IL Language

	3.20 MBSlaveRTU
	3.20.1 Inputs
	3.20.2 Outputs
	3.20.3 Remarks
	3.20.4 ST Language
	3.20.5 FBD Language
	3.20.6 FFLD Language
	3.20.7 IL Language:

	3.21 MBSlaveUDP
	3.21.1 Inputs
	3.21.2 Outputs
	3.21.3 Remarks
	3.21.4 ST Language
	3.21.5 FBD Language
	3.21.6 FFLD Language
	3.21.7 IL Language:

	3.22 PID
	3.22.1 Inputs
	3.22.2 Outputs
	3.22.3 Diagram
	3.22.4 Remarks
	3.22.5 ST Language
	3.22.6 FBD Language
	3.22.7 FFLD Language
	3.22.8 IL Language

	3.23 PID Functions
	3.23.1 JS_DeadTime - analog delay
	3.23.2 JS_LeadLag - signal lead / lag
	3.23.3 JS_PID - PID loop setpoint balance
	3.23.4 JS_Ramp - Limit variation speed

	3.24 printf
	3.24.1 Inputs
	3.24.2 Outputs
	3.24.3 Remarks
	3.24.4 Example

	3.25 RAMP
	3.25.1 Inputs
	3.25.2 Outputs
	3.25.3 Time diagram
	3.25.4 Remarks
	3.25.5 ST Language
	3.25.6 FBD Language
	3.25.7 FFLD Language
	3.25.8 IL Language

	3.26 Real Time clock management functions
	3.26.1 DAY_TIME
	3.26.2 DTFORMAT
	3.26.3 DTAT
	3.26.4 DTEVERY

	3.27 SERIALIZEIN
	3.27.1 Inputs
	3.27.2 Outputs
	3.27.3 Remarks
	3.27.4 ST Language
	3.27.5 FBD Language
	3.27.6 FFLD Language
	3.27.7 IL Language:

	3.28 SERIALIZEOUT
	3.28.1 Inputs
	3.28.2 Outputs
	3.28.3 Remarks
	3.28.4 ST Language
	3.28.5 FBD Language
	3.28.6 FFLD Language
	3.28.7 IL Language:

	3.29 SerGetString
	3.29.1 Inputs
	3.29.2 Outputs
	3.29.3 Remarks
	3.29.4 ST Language
	3.29.5 FBD Language
	3.29.6 FFLD Language
	3.29.7 IL Language

	3.30 SerPutString
	3.30.1 Inputs
	3.30.2 Outputs
	3.30.3 Remarks
	3.30.4 ST Language
	3.30.5 FBD Language
	3.30.6 FFLD Language
	3.30.7 IL Language:

	3.31 SERIO
	3.31.1 Inputs
	3.31.2 Outputs
	3.31.3 Remarks
	3.31.4 ST Language
	3.31.5 FBD Language
	3.31.6 FFLD Language
	3.31.7 IL Language:

	3.32 SigID
	3.32.1 Inputs
	3.32.2 Outputs
	3.32.3 Remarks
	3.32.4 ST Language
	3.32.5 FBD Language
	3.32.6 FFLD Language
	3.32.7 IL Language

	3.33 SigPlay
	3.33.1 Inputs
	3.33.2 Outputs
	3.33.3 Remarks
	3.33.4 ST Language
	3.33.5 FBD Language
	3.33.6 FFLD Language
	3.33.7 IL Language

	3.34 SigScale
	3.34.1 Inputs
	3.34.2 Outputs
	3.34.3 Remarks
	3.34.4 ST Language
	3.34.5 FBD Language
	3.34.6 FFLD Language
	3.34.7 IL Language

	3.35 STACKINT
	3.35.1 Inputs
	3.35.2 Outputs
	3.35.3 Remarks
	3.35.4 ST Language
	3.35.5 FBD Language
	3.35.6 FFLD Language
	3.35.7 IL Language

	3.36 SurfLin
	3.36.1 Inputs
	3.36.2 Outputs
	3.36.3 Remarks

	3.37 TCP-IP management functions
	3.38 Text buffers manipulation
	3.38.1 TxbManager

	3.39 UDP management functions
	3.40 VLID
	3.40.1 Inputs
	3.40.2 Outputs
	3.40.3 Remarks
	3.40.4 ST Language
	3.40.5 FBD Language
	3.40.6 FFLD Language
	3.40.7 IL Language

	Global Support Contacts
	Danaher Motion Assistance Center
	Europe Product Support

