Kollmorgen Direct Drive Linear Motor Selection Guide

KOLLMORGEN

Because Motion Matters™

Kollmorgen. Every solution comes from a real understanding of OEM challenges facing machine designers and users.

Escalating demands of the marketplace mean increased pressure on machine designers and users at every turn. Time constraints, demand for better performance, and consideration of next-generation machine technologies are just a few of the demands on today's machine designers and end users. While expectations are enormous, budgets are not. Kollmorgen's innovative automation solutions and broad range of quality motion products help engineers not only overcome these challenges but also build truly differentiated machines.

Because motion matters, it's our focus. Motion can distinctly differentiate a machine and deliver a marketplace advantage by improving its performance. This translates to overall increased efficiency on the factory floor. Perfectly deployed machine motion can make your customer's machine more reliable and efficient, enhance accuracy and improve operator safety. Motion also represents endless possibilities for innovation. We've always understood this potential, and thus, have kept motion at our core, relentlessly developing products that offer precision control of speed, accuracy and position in machines that rely on complex motion.

K O L L M O R G E N

KOLLMORGEN

Because Motion Matters[™]

Removing the Barriers of Design, Sourcing, and Time

At Kollmorgen, we know that OEM engineers can achieve a lot more when obstacles aren't in the way. So, we clear obstacles in three important ways:

Integrating Standard and Custom Products

The optimal solution is often not clear-cut. Our application expertise allows us to modify standard products or develop totally custom solutions across our whole product portfolio so that designs can take flight.

Providing Motion Solutions, Not Just Components

As companies reduce their supplier base and have less engineering manpower, they need a total system supplier with a wide range of integrated solutions. Kollmorgen offers complete solutions as well as motion subsystems that combine programming software, engineering services and best-in-class motion components.

Global Footprint

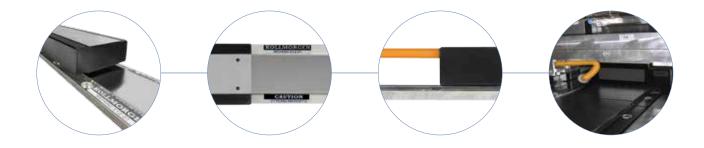
With direct sales, engineering support, manufacturing facilities, and distributors across North America, Europe, and Asia, we're close to OEMs worldwide. Our proximity helps speed delivery and lend support where and when they're needed.

Financial and Operational Stability

Kollmorgen is part of Fortive. A key driver in the growth of all Fortive divisions is the Fortive Business System, which relies on the principle of "kaizen" – or continuous improvement. Using world-class tools, cross-disciplinary teams of exceptional people evaluate processes and develop plans that result in superior performance.

Table of Contents

Direct Drive Linear (DDL) Motor	4
Direct Drive Linear Motor Summary	10
DDL Ironcore ICH Motor	
ICH11 Series	12
ICH22 Series	14
ICH33 Series	16
ICH44 Series	18
Ironcore Magnet Ways	20
DDL Ironless IL Motor	
IL06 Series	22
IL12 Series	24
IL18 Series	26
IL24 Series	30
Ironless Magnet Ways	32
Wiring and Output	36
Application Sizing	38
Model Nomenclature	42


Direct Drive Linear Motor

Our direct drive linear motor series provides new dimensions in performance with high throughput, accuracy, and zero maintenance. A linear motor is a frameless, permanent magnet, three phase, brushless servo motor. The product line consists of two fundamental constructions, Ironless (slotless) and Ironcore. Ironless motors have no attractive force between the framless components and zero cogging for ultra smooth motion. Ironcore motors provide the highest force per frame size and feature an anti-cogging design which yields extremely smooth operation.

The Benefits of Direct Drive Linear Motor

• Zero Maintenance with Greater Accuracy and Higher Bandwidth	• Smoother velocity and reduced audible noise					
	• Power transmission without backlash					
	 Transmission elements such as couplings, toothed belts, ball/lead screws, rack & pinions, and other fitted components can be eliminated 					
	• No gears or screws, no lubrication required					
	Improved machine reliability					
• Wide Range of Sizes and Force to cover any Linear Application	Increased performance for the entire system					
	• Flat, compact drive solution					
	• Easy mix and match motors and drives					
	• Real-life acceleration up to 10 G					
• Simplified, High Force Permanent Magnet Design	 Higher bandwidth and faster response than ball/lead screws or rack & pinion solutions 					
	• Rapid indexing of heavy loads with peak force up to 12700 N					
	• Fewer parts and lower cost of ownership					
	More compact machine design					

• No cogging and no attractive force (ironless motors)

Direct Drive Linear Motor Overview

Kollmorgen Direct Drive Linear DDL Motor Series

Kollmorgen supplied its first linear motors in the late 1970's for use in precision X-Y tables and coating systems. These were brush DC motors using the Kollmorgen patented push-through commutator bar method. This led to the 1980's development of the brushless versions of the linear motor which were used in film processing applications where smooth, high stiffness, linear motion was required. During the past 30 years, advances in permanent magnet material, power semiconductors, and microprocessor technology have been the enablers for increased performance and lower costs for linear motors.

DDL motors series ICH comply with the Low Voltage Directive 2014/35/EC for installation in a machine. Safety depends upon installing and configuring motor per the manufacturer's recommendations. The machine in which this product is to be installed must conform to the provisions of EC directive 2014/30/EC.

Standard Product Features

Ironcore:

- Peak force ICH series: 405 N to 12726 N
- Continuous force ICH series: 175 N to 5341 N
- Anti-cogging technique for minimal cogging without magnet skewing
- High motor constant (K_)
- High force density
- Thermal protection PTC and KTY84-130
- Stainless steel magnet way covers
- Isolation system for 480 V AC

Ironless:

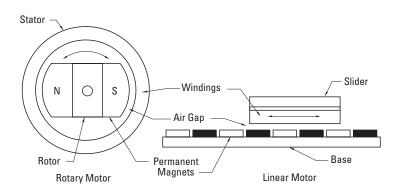
- Peak force 60 N to 1600 N
- Continuous force 21 N to 450 N
- Zero cogging
- Zero attractive force
- Smooth motion for speed as low as 1 micron/second
- Low mass coil assembly for high acceleration
- Isolation system for 230 V AC

All Motors:

- Zero contact, zero maintenance, brushless design
- 3 phase sinusoidal commutation
- Peak accelerations easily above 10 G
- High position accuracy and resolution
- Very low settling time
- · Low thermal losses
- Modular magnet design

Standard Options:

- Hall effect feedback (digital)
- Thermal protection thermistor (PTC, ironless)
- Cable options
- Winding options



≲

Our Direct Dirve Linear (DDL) motor series are frameless permanent magnet, three phase brushless servo motors. Fundamentally, a linear motor is a rotary motor that is rolled out flat.

The two primary components of permanent magnet brushless rotary motors are the stator (primary coils) and the rotor (secondary or rotating magnets). In brushless linear motors the rotor is rolled out flat to become the magnet track (also called the magnet way). The primary coils of the rotary motor are rolled out flat to become the coil assembly (also called the slider).

In most brushless linear motor applications it is typical for the magnet way to be stationary and the coil assembly to be in motion, because of the relative masses of the two components. It is also perfectly acceptable, and sometimes advantageous, to reverse this arrangement. The basic electromagnetic operating principles are the same in either case and are identical to those of a rotary motor.

Direct Drive Linear Motor Options

Two types of linear motors are available, Ironcore and Ironless. Each one provides characteristics and features that are optimal depending upon the application. Ironcore motors have coils wound on silicon steel laminations, to maximize the generated force, with a single sided magnet way.

Using an innovative electromagnetic design, DDL linear motors have the highest rated force per size, a high K_m motor constant (equals low thermal losses), and low cogging forces without the need for skewing of the magnets. The high thrust forces possible with these motors make them ideal for accelerating and moving high masses, and

Feedback Types

All brushless motors require feedback for commutation. For a linear motor, commutation feedback can also be accomplished with a variety of methods. Digital or linear Hall effect devices are available from Kollmorgen for the DDL motor series which allow the drive electronics to commutate the linear motors in a manner identical to rotary motors.

For exceptionally smooth motion requirements, sinusoidal drive electronics using digital Hall effects, provide sinusoidal drive currents to the motor for the best constant force and velocity performance. maintaining stiffness during machining or process forces. Ironless motors have no iron, or slots for the coils to be wound on. Therefore, these motors have zero cogging, a very light mass, and absolutely no attractive forces between the coil assembly and the magnet way. These characteristics are ideal for applications requiring very low bearing friction, high acceleration of lighter loads, and for maximizing constant velocity, even at ultra low speeds. The modular magnet ways consists of a double row of magnets to maximize the generated thrust force and to provide a flux return path for the magnetic circuit.

As an alternative, it is typical for linear motor applications to have a linear encoder present in the system for position feedback. It is increasingly common today for drive amplifiers to derive the necessary commutation information directly from this linear encoder, either with or without supplemental digital Hall effect devices on startup.

Direct Drive Linear Motor Overview

Advantages

Wide Speed Range

Since the frameless parts of the linear motor are non-contact, and no limitations of a mechanical transmission are present, both very high speeds and very low speeds are easily obtainable. Speeds are truly not limited by the motor. Instead, by eliminating the mechanical transmission, speed becomes limited by other elements in the system such as the linear bearings, and the achievable bandwidth from any feedback devices. Application speeds of greater than 5 meters per second or less than 1 micron per second are typically achievable. In comparison, mechanical transmissions such as ball screws are commonly limited to linear speeds of 0.5 to 0.7 meters per second because of resonances and wear. In addition to a wide speed range, linear motors, both ironcore and ironless, have excellent constant velocity characteristics, typically better than $\pm 0.01\%$ speed variation.

High System Dynamics

In addition to high speed capability, direct drive linear motors are capable of very high accelerations. Limited only by the system bearings, accelerations of 3 to 5 G are quite typical for the larger motors and accelerations exceeding 10 G are easily achievable for smaller motors.

Easy Selection process:

- Determine peak and continuous force required for your applications (see our applications section on pages 38-41)
- 2. Use the motor selection guide on pages 8-9 to choose your motor
- 3. Refer to the appropriate pages in the data publication for technical details
- 4. Build model number for ordering using pages 42-44

Smooth Operation and Positional Accuracy

Both ironless and ironcore motors exhibit very smooth motion profiles due to the inherent motor design of Kollmorgen's DDL series. Cogging, which is a component of force, is greatly reduced in the ironcore designs and is zero in the ironless designs. As a result, these direct drive linear motors provide very low force and velocity ripple for ultra smooth motion. Positioning accuracies are limited only by the feedback resolution, and sub-micron resolutions are commonly achievable.

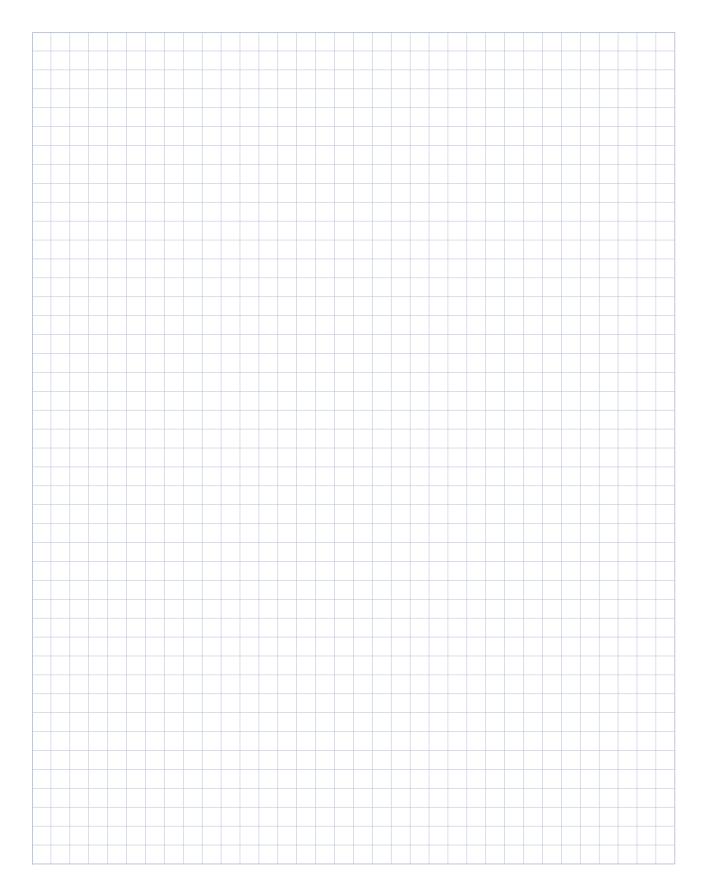
Unlimited Travel

With the DDL motor series, magnet ways are made in 4 modular sections: 64 mm, 128 mm, 256 mm and 512 mm long. Each module can be added in unlimited numbers to any other module to allow for unlimited travel. Whether the travel required is 1mm or 100 meters the DDL series can accommodate the need.

No Wear or Maintenance

Linear motors have few components, therefore the need for ball screw components such as nuts, bearing blocks, couplings, motor mounts and the need to maintain these components have been eliminated. Very long life and clean operation, with no lubrication or maintenance of these parts are the result.

Integration of Components is Much Simpler


Frameless linear motors require much fewer components than rotary motors with mechanical transmissions. A 0.9 mm airgap for the ironcore design and 0.5 mm airgap for the ironless design is the only alignment of the frameless linear motor components that is necessary. No critical alignments are required as with ball screws. Straightness of travel as provided by the system linear bearings is more than suffi-cient for the Kollmorgen linear motors.

Typical Applications for Linear Motors Include:

Machine Tool Drilling Milling Grinding Laser cutting Cam grinding Semiconductor Wafer handling process Wafer-inspection Wafer slicing Tab bonding Wire bonding lon implantation Lithography Textile Carpet tufting Plasma cutting Polishing Preform injection (plastics) Patient table Handling systems Measurement / Inspection Coordinate measurement machines Electronic assembly Pick-and-place machines Component insertion Screen printers Adhesive dispensers PC-board inspection. drilling

Other applications include: Flight Simulators Acceleration sleds Catapult G-Force measurement

Notes

Direct Drive Linear Motor Summary

Ironcore Linear Motors

Continuous Force N Peak Force N

IRECT

DRIVE

ΕAR

 \leq

0

T 0

R

U S

M M

ARY

KOLLMORGEN

Direct Drive Linear Motor Summary

Ironless Linear Motors

Continuous Force N Peak Force N

N	_	_	_	_	_	_	_	_	0	0	0	0	0	0	0	0	Max. Fo	rce (N)
Newtons	100	200	300	400	500	600	700	800	006	1000	1100	1200	1300	1400	1500	1600	Continuous	Peak
IL06-030																	30.3	120
IL06-050																	49.7	200
IL06-075																	67.6	300
IL06-100																	82.8	400
IL12-030																	62.1	240
IL12-050																	88.4	400
IL12-075																	119	600
IL12-100																	148	800
IL18-030				L													92.1	360
IL18-050																	131	600
IL18-075								-									173	900
IL18-100																	211	1200
IL24-030																	109	480
IL24-050																	155	800
IL24-075																	211	1200
IL24-100																	262	1600

ICH11 Performance Data

Ironcore Motors Series

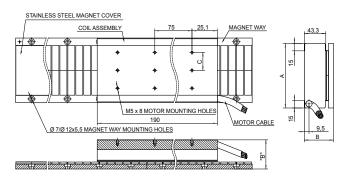
Rated Perfomance	Symbol	Units	ICH1	1-030	ICH1	1-050	ICH11-075		ICH11-100		ICH11-150		ICH11-200		ICH11-250		
Peak Force	Fp	N	4	05	6	674		12	1349		1909		2545		3182		
Continuous Force @ Tmax (1)	Fc	Ν	1	75	299		455		612		894		1200		1507		
Motor Constant @ 25°C	Km	N/√W	2	26	3	8	4	.9	5	9	7	2	85		9	6	
Electrical Specifications (2)																
Winding Code (5)			A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	
Peak Current	lp	Arms	8.9	15.5	8.9	15.5	8.9	15.5	8.9	15.5	15.3	26.5	15.3	26.5	15.3	26.5	
Continuous Current @Tmax	lc	Arms	2.9	5.0	2.9	5.1	3.0	5.2	3.0	5.2	5.2	9.0	5.2	9.0	5.2	9.1	
Electrical Resistance @ 25°C ±10%	Rm	Ohms L-L	3.8	1.3	5.1	1.7	6.7	2.2	8.3	2.8	3.8	1.3	4.9	1.6	5.9	2.0	
Electrical Inductance ±20%	L	mH L-L	47	16	78	26	117	39	156	52	80	27	106	35	133	44	
Back EMF Constant @ 25°C ±10%	Ke	V _{peak} /(m/s) L-L	49	28	82	47	122	71	163	94	141	81	188	108	235	135	
Force Constant @ 25°C ±10%	Kf	N/Arms	61	35	102	59	152	88	203	117	173	100	230	133	287	166	
Mechanical Specification	s																
Coil Assembly Mass ±15%	Mc	kg	2	2.5		3.5		4.8		6.1		8.6		11.2		13.8	
Magnetic Way Type			MC	H030	MC	H050	MCH075		MCH100		MCH150		MCH200		MCH250		
Magnetic Way Mass ±15%	Mw	kg/m	5	.4	7	.6	10).4	13	8.2	18	8.8	24	l.4	30).0	
Figures of Merit and Addit	ional Da	ta															
Electrical Time Constant	Te	ms	12	2.5	15	5.4	17	'.5	18	8.8	21	.0	21	.8	22	2.4	
Max.Theoretical Acceleration (3)	Amax	m/s²	1	61	1	91	2	10	22	22	23	34	24	41	24	15	
Max. Allowable Coil Temp. (4)	Tmax	°C	14	45	14	45	14	45	14	15	14	45	14	15	14	15	
Cable Diameter	Dc	mm	g	.7	9	.7	9	9.7		9.7		9.7		.7	9.7		
Magnetic Attraction Force	Fa	kN	1	.2	2	.1	3	.1	4.1		6.2		8.3		10.4		
Thermal Resistance of Forcer, Air Cooling	Rta	K/W	1.	53	1.22		0.94		0.75		0.53		0.41		0.33		

Notes:

1.

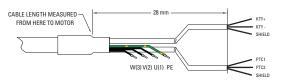
2.

The motor continuous force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings are available on request. Please consult the Kollmorgen Customer Support for design options. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application. 3.


Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations. Winding phase connection: A1: Y (star) windings, A5: Δ (triangle) windings 4.

5.

ICH11 Outline Drawings


Ironcore Motors Series

Motor Coil	Coil Width	Motor Height	Hole Grid Spacing
Туре	A (mm)	B (mm)	C (mm)
ICH11-030	60.0 ± 1.0	58.6 ± 0.1	16.0
ICH11-050	80.0 ± 1.0	58.6 ± 0.1	36.0
ICH11-075	105.0±1.0	58.6 ± 0.1	32.0
ICH11-100	130.0 ± 1.0	58.6 ± 0.1	36.0
ICH11-150	180.0±1.0	60.6 ± 0.1	32.0
ICH11-200	230.0 ± 1.0	60.6 ± 0.1	36.0
ICH11-250	280.0 ± 1.0	62.6 ± 0.1	32.0

Resultant airgap = 0.9 mm nominal (0.5 mm minimum) when components are set up to dimension "B" in table above. Number of holes and typical installation of mulitple ironcore magnet assemblies: please refer to page 21

Cable Option Flying Leads

Leads	Cable Length (mm)
C1	400
C2	200
С3	100
C4	1200

Cable Option Connector on the Cable (Only available for Motors with $I_c < 15 \text{ A}$)

(mating view)

Extension with pins: BKUA-MR24-42-0035-000

Suggested mating connector BSTA-108-FR05-08-0036-000 (cable mounted) or BDFA-108-FR05-00-0150-000 (flange mounted)

Connector	Cable Length (mm)								
P1	400								
P2	200								
P3	100								
P4	1200								

Shield is connected to motor core and connectors case

Cable Types

Motor Coil Type	Cable Type: OLFLEX-SERVO 719 CY 4G
ICH11-030 A1/A5	0.75+2x(2X0.34)∅9.7
ICH11-050 A1/A5	0.75+2x(2X0.34)∅9.7
ICH11-075 A1/A5	0.75+2x(2X0.34)Ø9.7
ICH11-100 A1/A5	0.75+2x(2X0.34)Ø9.7
ICH11-150 A1	0.75+2x(2X0.34)Ø9.7
ICH11-150 A5	0.75+2x(2x0.34)Ø9.7
ICH11-200 A1	0.75+2x(2x0.34)Ø9.7
ICH11-200 A5	0.75+2x(2x0.34)Ø9.7
ICH11-250 A1	0.75+2x(2x0.34)Ø9.7
ICH11-250 A5	0.75+2x(2x0.34)Ø9.7

Cable Wire Nomenclature

Function	Cable \varnothing 9.7 mm	Cable > ∅9.7 mm	Plug BKUA (Option) (1)
U	Black 1	Black 1	1
V	Black 2	Black 2	3
W	Black 3	Black 3	4
PE	Green/Yellow	Green/Yellow	PE
PTC1	Yellow	Black 5	А
PTC2	Green	Black 6	В
KTY+	White	Black 7	С
KTY -	Brown	Black 8	D

Note 1: Option available only for motors with $\rm I_{c}$ < 15 A Note 2: Used KTY type is KTY84-130

ICH22 Performance Data

Ironcore Motors Series

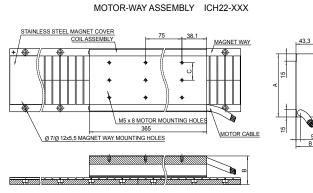
Rated Perfomance	Symbol	Units	ICH2	2-030	ICH22-050		ICH22-075		ICH22-100		ICH22-150		ICH22-200		ICH22-250		
Peak Force	Fp	N	7	710		1184		75	2367		3551		4734		5918		
Continuous Force @ Tmax (1)	Fc	N	3	42	58	584		889		1203		1823		2445		3067	
Motor Constant @ 25°C	Km	N/√W	3	37	5	3	6	69	8	3	1()6	125		141		
Electrical Specifications	(2)																
Winding Code (5)			A1	A5	A 1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	
Peak Current	lp	Arms	8.9	15.5	8.9	15.5	17.9	30.9	30.6	53.0	30.6	53.0	30.6	53.0	30.6	53.0	
Continuous Current @Tmax	lc	Arms	2.8	4.9	2.9	5.0	5.9	10.2	10.2	17.7	10.4	17.9	10.4	18.0	10.5	18.1	
Electrical Resistance	Data	Ohmall	7 5	2.5	10.1	3.4	2.2	1 1	1.4	0.40	1.0	0.05	2 5	0.00	3.0	1.0	
@ 25°C ±10%	Rm	Ohms L-L	7.5	2.5	10.1	3.4	3.3	1.1	1.4	0.46	1.9	0.65	2.5	0.83	3.0	1.0	
Electrical Inductance ±20%	L	mH L-L	94	31	156	52	59	20	27	9	40	13	53	18	66	22	
Back EMF Constant	Ka	\///ma_/ma_\	00	F7	100	04	100	71	05	FF	140	02	100	110	207	107	
@ 25°C ±10%	Ke	V _{peak} /(m/s) L-L	98	57	163	94	122	71	95	55	143	82	190	110	237	137	
Force Constant @ 25°C ±10%	Kf	N/Arms	121	70	202	117	151	87	117	68	176	102	235	135	293	169	
Mechanical Specification	IS																
Coil Assembly Mass ±15%	Mc	kg	4	4.9 6.		6.8		9.3		11.8		16.8		21.7		26.7	
Magnetic Way Type			MC	H030	MCI	H050	MCH075		MCH100		MCH150		MCH200		MCH250		
Magnetic Way Mass ±15%	Mw	kg/m	5	.4	7.	.6	10).4	13	8.2	18	8.8	24	l.4	30).0	
Figures of Merit and Addit	ional Da	ta															
Electrical Time Constant	Te	ms	12	2.5	15	5.4	17	7.5	19	9.1	20).6	21	.4	21	.9	
Max.Theoretical Acceleration(3)	Amax	m/s²	14	46	17	73	19	90	2	01	2	12	2	18	22	22	
Max. Allowable Coil Temp. (4)	Tmax	°C	1	45	14	15	14	45	14	15	14	15	14	15	14	15	
Cable Diameter	Dc	mm	g	.7	9	.7	9	.7	9.7 12.3		9.7 12.3		9.7 12.3		9.7	12.3	
Magnetic Attraction Force	Fa	kN	2	.4	4	.0	6	.0	8.0		12.0		16.1		20).1	
Thermal Resistance of Forcer, Air Cooling	Rta	K/W	0.	86	0.	0.69		0.53		0.43		0.30		0.23		19	

Notes:

1. The motor continuous force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

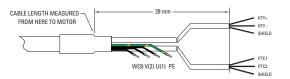
2. Alternate windings are available on request. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.


4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

5. Winding phase connection: A1: Y (star) windings, A5: ∆ (triangle) windings

ICH22 Outline Drawings


Ironcore Motors Series

Motor Coil	Coil Width	Motor Height	Hole Grid Spacing
Туре	A (mm)	B (mm)	C (mm)
ICH22-030	60.0 ± 1.0	58.6 ± 0.1	16.0
ICH22-050	80.0 ± 1.0	58.6 ± 0.1	36.0
ICH22-075	105.0±1.0	58.6 ± 0.1	32.0
ICH22-100	130.0 ± 1.0	58.6 ± 0.1	36.0
ICH22-150	180.0±1.0	60.6 ± 0.1	32.0
ICH22-200	230.0 ± 1.0	60.6 ± 0.1	36.0
ICH22-250	280.0±1.0	62.6 ± 0.1	32.0

Resultant airgap = 0.9 mm nominal (0.5 mm minimum) when components are set up to dimension "B" in table above. Number of holes and typical installation of mulitple ironcore magnet assemblies: please refer to page 21

Cable Option Flying Leads

Leads	Cable Length (mm)
C1	400
C2	200
C3	100
C4	1200

Cable Option Connector on the Cable (Only available for Motors with $I_c < 15 \text{ A}$)

(mating view)

Extension with pins: BKUA-MR24-42-0035-000

Suggested mating connector BSTA-108-FR05-08-0036-000 (cable mounted) or BDFA-108-FR05-00-0150-000 (flange mounted)

C	
Connector	Cable Length (mm)
P1	400
P2	200
P3	100
P4	1200

Shield is connected to motor core and connectors case

Cable Types

Motor Coil Type	Cable Type: OLFLEX-SERVO 719 CY 4G
ICH22-030 A1/A5	0.75+2x(2X0.34)∅9.7
ICH22-050 A1/A5	0.75+2x(2X0.34)∅9.7
ICH22-075 A1	0.75+2x(2X0.34)∅9.7
ICH22-075 A5	0.75+2x(2x0.34)∅9.7
ICH22-100 A1	0.75+2x(2x0.34)Ø9.7
ICH22-100 A5	1.50+2x(2x0.75)Ø12.3
ICH22-150 A1	0.75+2x(2x0.34)Ø9.7
ICH22-150 A5	1.50+2x(2x0.75)Ø12.3
ICH22-200 A1	0.75+2x(2x0.34)Ø9.7
ICH22-200 A5	1.50+2x(2x0.75)Ø12.3
ICH22-250 A1	0.75+2x(2x0.34)Ø9.7
ICH22-250 A5	1.50+2x(2x0.75)Ø12.3

Cable Wire Nomenclature

Function	Cable \varnothing 9.7 mm	Cable > ∅9.7 mm	Plug BKUA (Option) (1)
U	Black 1	Black 1	1
V	Black 2	Black 2	3
W	Black 3	Black 3	4
PE	Green/Yellow	Green/Yellow	PE
PTC1	Yellow	Black 5	А
PTC2	Green	Black 6	В
KTY+	White	Black 7	С
KTY -	Brown	Black 8	D

Note 1: Option available only for motors with $\rm I_{c}$ < 15 A Note 2: Used KTY type is KTY84-130

ICH33 Performance Data

Ironcore Motors Series

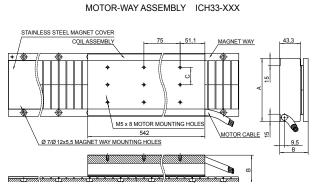
Rated Perfomance	Symbol	Units	ICH3	3-030	ICH33-050		ICH33-075		ICH33-100		ICH33-150		ICH33-200		ICH33-250		
Peak Force	Fp	Ν	10	65	19	1909		63	3818		5727		7636		9545		
Continuous Force @ Tmax (1)	Fc	Ν	5	11	76	769		1171		1575		2387		3201		4016	
Motor Constant @ 25°C	Km	N/√W	4	5	6	i5	85		1()1	128		151		171		
Electrical Specifications (2)																
Winding Code (5)			A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A 5	A1	A5	
Peak Current	lp	Arms	8.9	15.5	30.6	53.0	30.6	53.0	30.6	53.0	30.6	53.0	45.9	79.5	45.9	79.5	
Continuous Current @Tmax	lc	Arms	2.8	4.9	8.8	15.2	8.9	15.5	9.0	15.6	9.1	15.8	13.8	23.8	13.8	23.9	
Electrical Resistance @ 25°C ±10%	Rm	Ohms L-L	11.3	3.8	1.3	0.42	1.7	0.56	2.1	0.70	2.9	0.97	1.7	0.55	2.0	0.67	
Electrical Inductance ±20%	L	mH L-L	141	47	20	7	30	10	40	13	60	20	35	12	44	15	
Back EMF Constant @ 25°C ±10%	Ke	V _{peak} /(m/s) L-L	147	85	72	41	107	62	143	82	214	123	190	110	237	137	
Force Constant @ 25°C±10%	Kf	N/Arms	182	105	88	51	131	76	175	101	262	151	233	134	291	168	
Mechanical Specification	s																
Coil Assembly Mass ±15%	Mc	kg	7	.2	10.2		13.8		17.5		24.9		32.2		39.6		
Magnetic Way Type			MC	H030	MCI	MCH050		MCH075		MCH100		H150	MCH200		MCH250		
Magnetic Way Mass ±15%	Mw	kg/m	5	.4	7	.6	10.4		13	8.2	18	8.8	24	1.4	30).0	
Figures of Merit and Addit	ional Da	ta															
Electrical Time Constant	Те	ms	12	2.5	15	i.6	17	.8	19	9.1	20.6		21	.4	21	.9	
Max.Theoretical Acceleration(3)	Amax	m/s²	14	48	18	38	20)7	2	18	23	30	23	37	24	41	
Max. Allowable Coil Temp. (4)	Tmax	°C	145		14	15	14	15	14	15	14	45	14	15	14	15	
Cable Diameter	Dc	mm	9	9.7		12.3	9.7	12.3	12.3 9.7 12.3		9.7 12.3		9.7 14.7		9.7	14.7	
Magnetic Attraction Force	Fa	kN	3	.6	6	.0	8.9		11.9		17.9		23.8		29.8		
Thermal Resistance of Forcer, Air Cooling	Rta	K/W	0.	60	0.	0.48		37	0.30		0.21		0.16		0.13		

Notes

1.

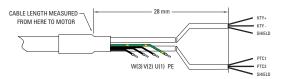
2

The motor continuous force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings are available on request. Please consult the Kollmorgen Customer Support for design options. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier 3. etc. must be considered to determine the achievable acceleration in each application. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations. Winding phase connection: A1: Y (star) windings, A5: Δ (triangle) windings


4.

5.

ICH33 Outline Drawings


Ironcore Motors Series

Motor Coil	Coil Width	Motor Height	Hole Grid Spacing
Туре	A (mm)	B (mm)	C (mm)
ICH33-030	60.0 ± 1.0	58.6 ± 0.1	16.0
ICH33-050	80.0 ± 1.0	58.6 ± 0.1	36.0
ICH33-075	105.0±1.0	58.6 ± 0.1	32.0
ICH33-100	130.0 ± 1.0	58.6 ± 0.1	36.0
ICH33-150	180.0±1.0	60.6 ± 0.1	32.0
ICH33-200	230.0 ± 1.0	60.6 ± 0.1	36.0
ICH33-250	280.0 ± 1.0	62.6 ± 0.1	32.0

Resultant airgap = 0.9 mm nominal (0.5 mm minimum) when components are set up to dimension "B" in table above. Number of holes and typical installation of mulitple ironcore magnet assemblies: please refer to page 21

Cable Option Flying Leads

Leads	Cable Length (mm)
C1	400
C2	200
C3	100
C4	1200

Cable Option Connector on the Cable (Only available for Motors with $I_c < 15 \text{ A}$)

(mating view)

Extension with pins: BKUA-MR24-42-0035-000

Suggested mating connector BSTA-108-FR05-08-0036-000 (cable mounted) or BDFA-108-FR05-00-0150-000 (flange mounted)

e for Motors with I _c < 15 A)							
Connector	Cable Length (mm)						
P1	400						
P2	200						
P3	100						
P4	1200						

Shield is connected to motor core and connectors case

Cable Types

Motor Coil Type	Cable Type: OLFLEX-SERVO 719 CY 4G
ICH33-030 A1/A5	0.75+2x(2X0.34)∅9.7
ICH33-050 A1	0.75+2x(2x0.34)Ø9.7
ICH33-050 A5	1.50+2x(2x0.75)Ø12.3
ICH33-075 A1	0.75+2x(2x0.34)Ø9.7
ICH33-075 A5	1.50+2x(2x0.75)Ø12.3
ICH33-100 A1	0.75+2x(2x0.34)Ø9.7
ICH33-100 A5	1.50+2x(2x0.75)Ø12.3
ICH33-150 A1	0.75+2x(2x0.34)Ø9.7
ICH33-150 A5	1.50+2x(2x0.75)Ø12.3
ICH33-200 A1	0.75+2x(2x0.34)Ø9.7
ICH33-200 A5	2.5+2x(2x1.0)Ø14.7
ICH33-250 A1	0.75+2x(2x0.34)Ø9.7
ICH33-250 A5	2.5+2x(2x1.0)Ø14.7

Cable Wire Nomenclature

Function	Cable \varnothing 9.7 mm	Cable > ∅9.7 mm	Plug BKUA (Option) (1)
U	Black 1	Black 1	1
V	Black 2	Black 2	3
W	Black 3	Black 3	4
PE	Green/Yellow	Green/Yellow	PE
PTC1	Yellow	Black 5	А
PTC2	Green	Black 6	В
KTY+	White	Black 7	С
KTY -	Brown	Black 8	D

Note 1: Option available only for motors with $\rm l_{c}$ < 15 A Note 2: Used KTY type is KTY84-130

ICH44 Performance Data

Ironcore Motors Series

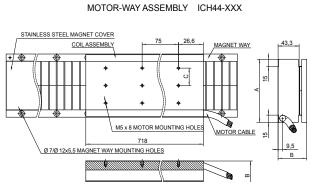
Rated Perfomance	Symbol	Units	ICH4	4-030	ICH44-050		ICH44-075		ICH44-100		ICH44-150		ICH44-200		ICH44-250		
Peak Force	Fp	Ν	15	1527		2545		18	5090		7636		10181		12726		
Continuous Force @ Tmax (1)	Fc	Ν	60	00	1023		1557		2095		3175		4258		5341		
Motor Constant @ 25°C	Km	N/√W	5	62	7	75	9	8	11	17	14	18	175		19	98	
Electrical Specifications (2)																
Winding Code (5)			A1	A 5	A1	A5	A1	A 5	A1	A5	A1	A5	A1	A 5	A1	A5	
Peak Current	lp	Arms	15.3	26.5	15.3	26.5	30.6	53.0	30.6	53.0	61.2	106.0	61.2	106.0	61.2	106.0	
Continuous Current @Tmax	lc	Arms	4.3	7.4	4.4	7.6	8.9	15.4	9.0	15.6	18.2	31.5	18.3	31.7	18.4	31.8	
Electrical Resistance @ 25°C ±10%	Rm	Ohms L-L	5.1	1.7	6.8	2.3	2.2	0.75	2.8	0.93	0.97	0.32	1.2	0.41	1.5	0.50	
Electrical Inductance ±20%	L	mH L-L	64	21	106	35	40	13	53	18	20	7	27	9	33	11	
Back EMF Constant @25°C ±10%	Ke	V _{peak} /(m/s) L-L	115	66	191	110	143	82	190	110	143	82	190	110	237	137	
Force Constant @ 25°C ±10%	Kf	N/Arms	140	81	234	135	175	101	233	135	175	101	233	134	291	168	
Mechanical Specification	s																
Coil Assembly Mass ±15%	Mc	kg	9	.6	13.5		18.3		23.2		33.0		42.7		52.5		
Magnetic Way Type			MCI	H030	MC	H050	MCH075		MCH100		MCH150		MCH200		MCH250		
Magnetic Way Mass ±15%	Mw	kg/m	5	.4	7	.6	10.4		13	.2	18	8.8	24	1.4	30	0.0	
Figures of Merit and Addit	ional Da	ta															
Electrical Time Constant	Те	ms	12	2.6	15	5.6	17	.8	19).1	20.6		21	.4	21	.9	
Max.Theoretical Acceleration(3)	Amax	m/s²	16	60	1	89	20)8	2	19	2	32	23	38	24	42	
Max. Allowable Coil Temp. (4)	Tmax	°C	145		1	45	14	15	14	15	14	45	14	45	14	15	
Cable Diameter	Dc	mm	9	.7	g).7	9.7	12.3	12.3 9.7 12.3		12.3 16.4		12.3 16.4		12.3	16.4	
Magnetic Attraction Force	Fa	kN	4	.7	7	.9	11.9		15.8		23.7		31.6		39.5		
Thermal Resistance of Forcer, Air Cooling	Rta	K/W	0.	46	0	0.37		0.28		0.23		0.16		0.12		0.10	

Notes:

1. The motor continuous force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

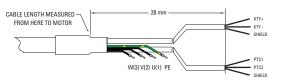
2. Alternate windings are available on request. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.


4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

5. Winding phase connection: A1: Y (star) windings, A5: Δ (triangle) windings

ICH44 Outline Drawings


Ironcore Motors Series

Motor Coil	Coil Width	Motor Height	Hole Grid Spacing
Туре	A (mm)	B (mm)	C (mm)
ICH44-030	60.0 ± 1.0	58.6 ± 0.1	16.0
ICH44-050	80.0 ± 1.0	58.6 ± 0.1	36.0
ICH44-075	105.0±1.0	58.6 ± 0.1	32.0
ICH44-100	130.0±1.0	58.6 ± 0.1	36.0
ICH44-150	180.0±1.0	60.6 ± 0.1	32.0
ICH44-200	230.0 ± 1.0	60.6 ± 0.1	36.0
ICH44-250	280.0±1.0	62.6 ± 0.1	32.0

Resultant airgap = 0.9 mm nominal (0.5 mm minimum) when components are set up to dimension "B" in table above. Number of holes and typical installation of mulitple ironcore magnet assemblies: please refer to page 21

Cable Option Flying Leads

Leads	Cable Length (mm)
C1	400
C2	200
C3	100
C4	1200

Cable Option Connector on the Cable (Only available for Motors with $I_c < 15 \text{ A}$)

(mating view)

Extension with pins: BKUA-MR24-42-0035-000

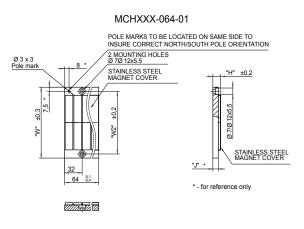
Suggested mating connector BSTA-108-FR05-08-0036-000 (cable mounted) or BDFA-108-FR05-00-0150-000 (flange mounted)

С	
Connector	Cable Length (mm)
P1	400
P2	200
P3	100
P4	1200

Shield is connected to motor core and connectors case

Cable Types

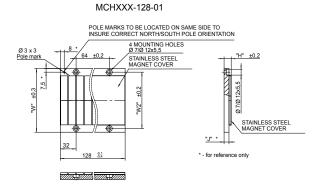
Motor Coil Type	Cable Type: OLFLEX-SERVO 719 CY 4G
ICH44-030 A1/A5	0.75+2x(2X0.34)Ø9.7
ICH44-050 A1/A5	0.75+2x(2X0.34)∅9.7
ICH44-075 A1	0.75+2x(2x0.34)Ø9.7
ICH44-075 A5	1.50+2x(2x0.75)Ø12.3
ICH44-100 A1	0.75+2x(2x0.34)Ø9.7
ICH44-100 A5	1.50+2x(2x0.75)Ø12.3
ICH44-150 A1	1.50+2x(2x0.75)Ø12.3
ICH44-150 A5	4.00+2x(2x1.00)Ø16.4
ICH44-200 A1	1.50+2x(2x0.75)Ø12.3
ICH44-200 A5	4.00+2x(2x1.00)Ø16.4
ICH44-250 A1	1.50+2x(2x0.75)Ø12.3
ICH44-250 A5	4.00+2x(2x1.00)Ø16.4


Cable Wire Nomenclature

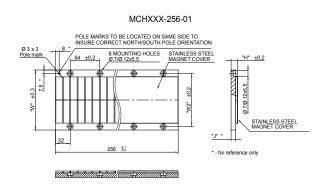
Function	Cable \varnothing 12.4 mm	Cable > ∅12.4 mm	Plug BKUA (Option) (1)
U	Black 1	Black 1	1
V	Black 2	Black 2	3
W	Black 3	Black 3	4
PE	Green/Yellow	Green/Yellow	PE
PTC1	Yellow	Black 5	А
PTC2	Green	Black 6	В
KTY+	White	Black 7	С
KTY -	Brown	Black 8	D

Note 1: Option available only for motors with $I_c < 15$ A Note 2: Used KTY type is KTY84-130

Ironcore Magnet Ways

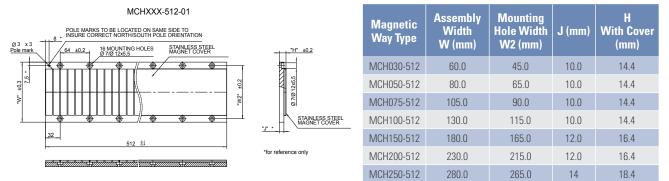

MCHxxx-064

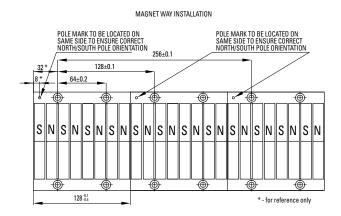
Magnet assembiles are modular and can be installed in multiples of same or alternate lengths. Standard lengths are shown below.


Magnetic Way Type	Assembly Width W (mm)	Mounting Hole Width W2 (mm)	J (mm)	H With Cover (mm)
MCH030-064	60.0	45.0	10.0	14.4
MCH050-064	80.0	65.0	10.0	14.4
MCH075-064	105.0	90.0	10.0	14.4
MCH100-064	130.0	115.0	10.0	14.4
MCH150-064	180.0	165.0	12.0	16.4
MCH200-064	230.0	215.0	12.0	16.4
MCH250-064	280.0	265.0	14.0	18.4

MCHxxx-128

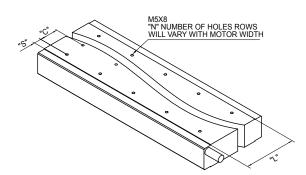
Magnetic Way Type	Assembly Width W (mm)	Mounting Hole Width W (mm)	J (mm)	H With Cover (mm)
MCH030-128	60.0	45.0	10.0	14.4
MCH050-128	80.0	65.0	10.0	14.4
MCH075-128	105.0	90.0	10.0	14.4
MCH100-128	130.0	115.0	10.0	14.4
MCH150-128	180.0	165.0	12.0	16.4
MCH200-128	230.0	215.0	12.0	16.4
MCH250-128	280.0	265.0	14.0	18.4


MCHxxx-256


Magnetic Way Type	Assembly Width W (mm)	Mounting Hole Width W2 (mm)	J (mm)	H With Cover (mm)
MCH030-256	60.0	45.0	10.0	14.4
MCH050-256	80.0	65.0	10.0	14.4
MCH075-256	105.0	90.0	10.0	14.4
MCH100-256	130.0	115.0	10.0	14.4
MCH150-256	180.0	165.0	12.0	16.4
MCH200-256	230.0	215.0	12.0	16.4
MCH250-256	280.0	265.0	14	18.4

* Note: Flatness and height of magnet ways is defined at fastened to the flat base.

MCHxxx-512



Typical Installation of Multiple Ironcore Magnet Assemblies

Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm. Multiple magnet assemblies can be installed to obtain the desired length. Shown below is the method to mount multiple assemblies.

Typical Mounting Bar Lengths & Mounting Holes Tabulation

Magnetic Coil Type	Number of Rows N	Spacing Bet. Holes C (mm)	Mounting Bar Length L (mm)	S (mm)
ICHXX-030	2	16.0	30	7.0
ICHXX-050	2	36.0	50	7.0
ICHXX-075	3	32.0	75	5.5
ICHXX-100	3	36.0	100	14.0
ICHXX-150	5	32.0	150	11.0
ICHXX-200	6	36.0	200	10.0
ICHXX-250	8	32.0	250	13

* Note: Flatness and height of magnet ways is defined at fastened to the flat base.

IL06 Performance Data

Ironless Non-Cooled Motors Series

Rated Perfomance	Symbol	Units	IL06-030		IL06-050		IL06-075		IL06-100		
						_					
Peak Force	Fp	N	12	20	Z	00	31	00	4(JU	
Continuous Force @ Tmax (1)	Fc	Ν	30).3	49	9.7	67.6		82	8	
Motor Constant	Km	N/√W	5	.6	8.0		10).2	12	.1	
Electrical Specifications (2)											
		Winding Code	A 1	A 4	A1	A 4	A1	A 4	A1	A 4	
Peak Current	lp	Arms	7.1	14.2	7.0	14.0	7.0	14.0	7.0	14.0	
Continuous Current @Tmax	lc	Arms	1.8	1.8 3.6		3.5	1.6	3.2	1.5	2.9	
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	6.1	6.1 1.5		2.2	11.7	2.9	14.7	3.7	
Electrical Inductance ±20%	L	mH L-L	1.3	1.3 0.33		0.75	5.00	1.25	7.00	1.75	
Back EMF Constant @ 25°C±10%	Ke	Vpeak/m/s L-L	13.7	6.9	23.3	11.6	34.9	17.5	46.5	23.3	
Force Constant @ 25°C±10%	kf	N/Arms	16.8	16.8 8.4		14.3	42.8	21.4	57.0	28.5	
		Mechanica	l Specif	ications	6						
Coil Assembly Mass ±15%	Mc	kg	0.	27	0.	32	0.38		0.45		
Magnetic Way Type			М	W	M	W	MW	/075	MW075		
waynetic way type			030	030L	050	050L					
Magnetic Way Mass ±15%	Mw	kg/m	9.4	7.3	12.2	10.2	18	8.9	27	.3	
	F	igures of Merit	and Ad	ditional	Data						
Electrical Time Constant	Te	ms	0.	21	0.	35	0.	43	0.4	48	
Max.Theoretical Acceleration (3)	Amax	m/s²	45	5.2	63	3.6	80).6	90).7	
Magnetic Attraction	Fa	kN	(D	1	C	0		0		
Thermal Resistance (4) (Coils to External Structure)	Rth	°C/Watt	1.	61	1.26		1.04		0.87		
Max. Allowable Coil Temp. (4)	Tmax	°C	13	30	13	30	13	30	130		

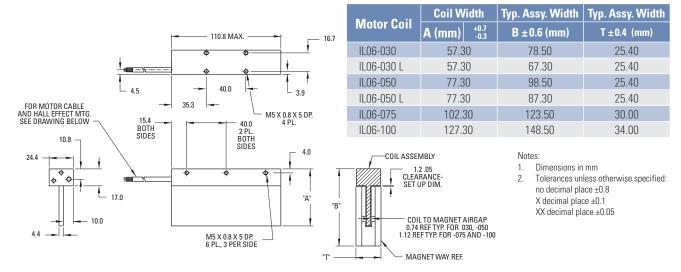
Notes:

1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

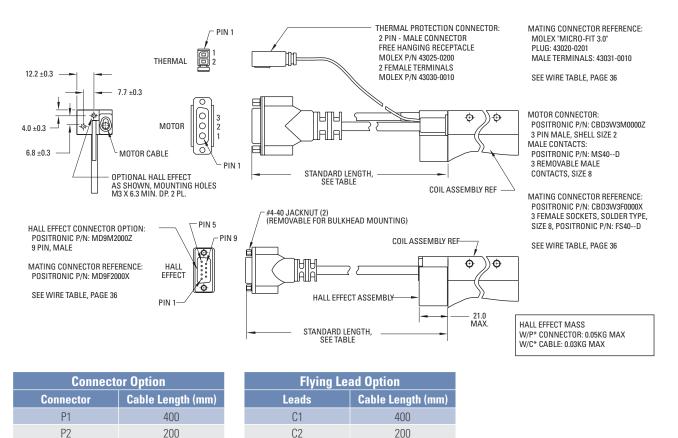
2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the

additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier


etc. must be considered to determine the achievable acceleration in each application.

4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.


ILO6 PERFORMANCE DATA

IL06 Outline Drawings

Ironless Non-Cooled Motors Series

Termination and Hall Effect Options

C3

C4

100

1200

S

www.kollmorgen.com

100

1200

P3

P4

IL12 Performance Data

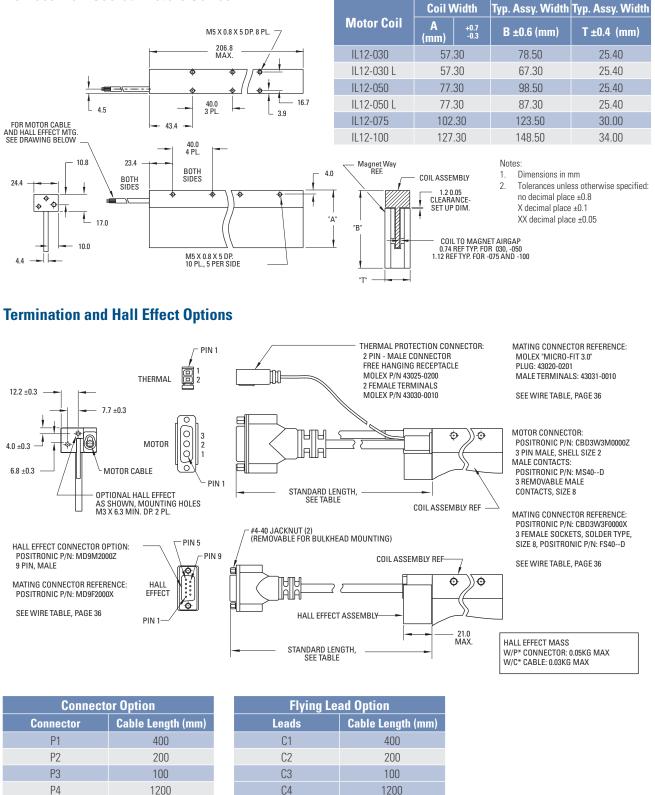
Ironless Non-Cooled Motors Series

Rated Perfomance	Symbol	Units	I	L12-03	0	I	L12-05	0	I	L12-07	5	IL12-100	
Peak Force	Fp	N		240			400			600		80)0
Continuous Force @ Tmax (1)	Fc	Ν		62.1		88.4				119		148	
Motor Constant @ 25°C	Km	N/√W		7.8		11.3				14.5		17.2	
		Electrica	al Spe	cifica	tions (2)							
		Winding Code	A1	A2	A 4	A1	A2	A 4	A1	A2	A 4	A2	A 4
Peak Current	lp	Arms	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.1	14.0	28.1
Continuous Current @Tmax	lc	Arms	Arms 1.8 3.7		7.4	1.6	3.1	6.2	1.4	2.8	5.6	2.6	5.2
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	12.2	3.1	0.8	17.2	4.3	1.1	23.3	5.8	1.5	7.4	1.8
Electrical Inductance ±20%	L	mH L-L	2.60	0.65	0.16	6.00	1.5	0.38	10.0	2.5	0.63	3.5	0.88
Back EMF Constant @ 25°C±10%	Ke	Vpeak/m/s L-L	27.5	13.8	6.9	46.5	23.3	11.6	69.8	34.9	17.5	46.5	23.3
Force Constant @ 25°C±10%	Kf	N/Arms	33.7	16.9	8.4	57.0	28.5	14.3	85.5	42.8	21.4	57.0	28.5
		Mechan	ical S	pecifi	cation	IS							
Coil Assembly Mass ±15%	Mc	kg	0.42			0.52			0.65			0.77	
Magnetic Way Type				MW			MW		MW075			MW100	
waynene way iype			030)30L	050	()50L					
Magnetic Way Mass ±15%	Mw	kg/m	9.4		7.3	12.2		10.2		18.9		27	.3
		Figures of M	erit ar	nd Add	itiona	l Data							
Electrical Time Constant	Te	ms		0.21			0.35			0.43		0.4	48
Max.Theoretical Acceleration (3)	Amax	m/s²		58.2			78.4			94.1		10)6
Magnetic Attraction	Fa	kN		0			0			0		()
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.804		0.629		0.519		0.433				
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130			130		130	

Notes

1.

2.


The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier with the subject to statisticate the subject to the shock rating of the feedback. 3. etc. must be considered to determine the achievable acceleration in each application. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

4.

IL 12 PERFORMANCE DATA

IL12 Outline Drawings

Ironless Non-Cooled Motors Series

S

IL18 Performance Data

Ironless Non-Cooled Motors Series

Rated Perfomance	Symbol	Units		IL18	-030			IL18-	050				
Peak Force	Fp	N		36	60			60	0				
Continuous Force @ Tmax (1)	Fc	Ν		92	2.1		131						
Motor Constant @ 25°C	Km	N/√W		9	.7			13.8					
		cations (2)											
		A1	A2	A 3	A 4	A1	A2	A3	A 4				
Peak Current	lp	Arms	7.1	14.3	21.4	42.8	7.0	14.0	21.0	42.1			
Continuous Current @Tmax	lc	Arms	1.8	3.6	5.5	11.0	1.5	3.1	4.6	9.2			
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	18.2	4.6	2.0	0.5	25.7	6.4	2.9	0.7			
Electrical Inductance ±20%	L	mH L-L	3.8	0.95	0.42	0.11	9.00	2.25	1.00	0.25			
Back EMF Constant @ 25°C±10%	Ке	Vpeak/m/s L-L	41.2	20.6	13.7	6.9	69.8	34.9	23.3	11.6			
Force Constant @ 25°C±10%	Kf	N/Arms	50.5	25.3	16.8	8.4	85.5	42.8	28.5	14.3			
	N	lechanical Specifi	ications	s (2)									
Coil Assembly Mass ±15%	Mc	kg		0.	57		0.72						
				М	W		MW						
Magnetic Way Type			03	0	03	DL	05	60	05	OL			
Magnetic Way Mass ±15%	Mw	kg/m	9.	4	7.	3	12	.2	10	.2			
	Figu	res of Merit and A	dditiona	al Data									
Electrical Time Constant	Te	ms		0.	21			0.3	35				
Max.Theoretical Acceleration (3)	Amax	m/s²		64	l.5			84	.9				
Magnetic Attraction	Fa	kN		()		0						
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.536				0.419					
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			130					

Notes:

The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options. 1

2

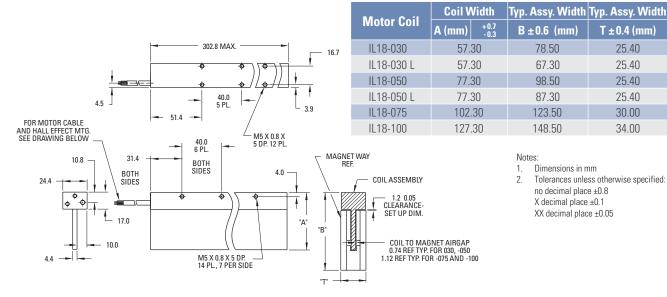
Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier 3. etc. must be considered to determine the achievable acceleration in each application.

Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations. 4.

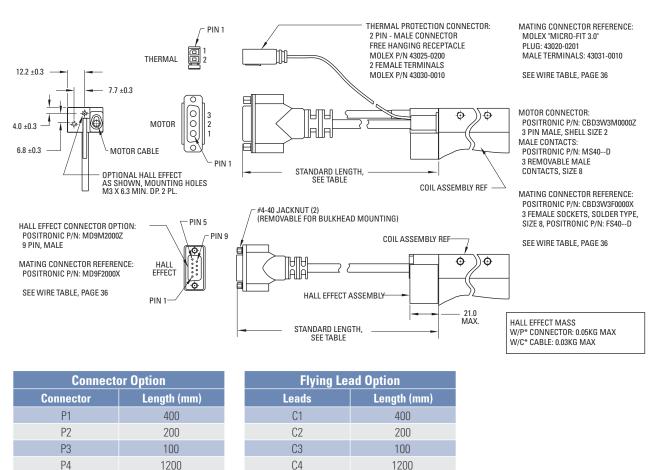
Rated Perfomance	Symbol	Units		IL18	-075			IL18-100						
Peak Force	Fp	Ν		90	00			1200						
Continuous Force @ Tmax (1)	Fc	Ν		17	73		211							
Motor Constant @ 25°C	Km	N√W		17	7.7			21	.0					
	E				Electrical Specifications (2)									
		Winding Code	A1	A2	A 3	A 4	A1	A2	A3	A 4				
Peak Current	lp	Arms	7.0	14.0	21.0	42.1	7.0	14.0	21.0	42.1				
Continuous Current @Tmax	lc	Arms	1.4	2.7	4.0	8.1	1.2	2.5	3.7	7.4				
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	35.0	8.8	3.9	1.0	44.2	11.1	4.9	1.2				
Electrical Inductance ±20%	L	mH L-L	15.0	3.75	1.67	0.42	21.0	5.25	2.33	0.58				
Back EMF Constant @ 25°C±10%	Ке	Vpeak/m/s L-L	105	52.4	34.9	17.5	140	69.9	46.6	23.3				
Force Constant @ 25°C±10%	Kf	N/Arms	128	64.2	42.8	21.4	171	85.6	57.0	28.5				
	Mechanical Specifications													
Coil Assembly Mass ±15%	Mc	kg		0.	91		1.10							
Magnetic Way Type				MW	/075		MW100							
Magnetic Way Mass ±15%	Mw	kg/m		18	8.9			27	.3					
	Figu	res of Merit and A	ddition	al Data										
Electrical Time Constant	Te	ms		0.	43			0.4	18					
Max.Theoretical Acceleration (3)	Amax	m/s ²		1()1			11	1					
Magnetic Attraction	Fa	kN		0				0						
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.35			0.29								
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			130						

Notes:

1.

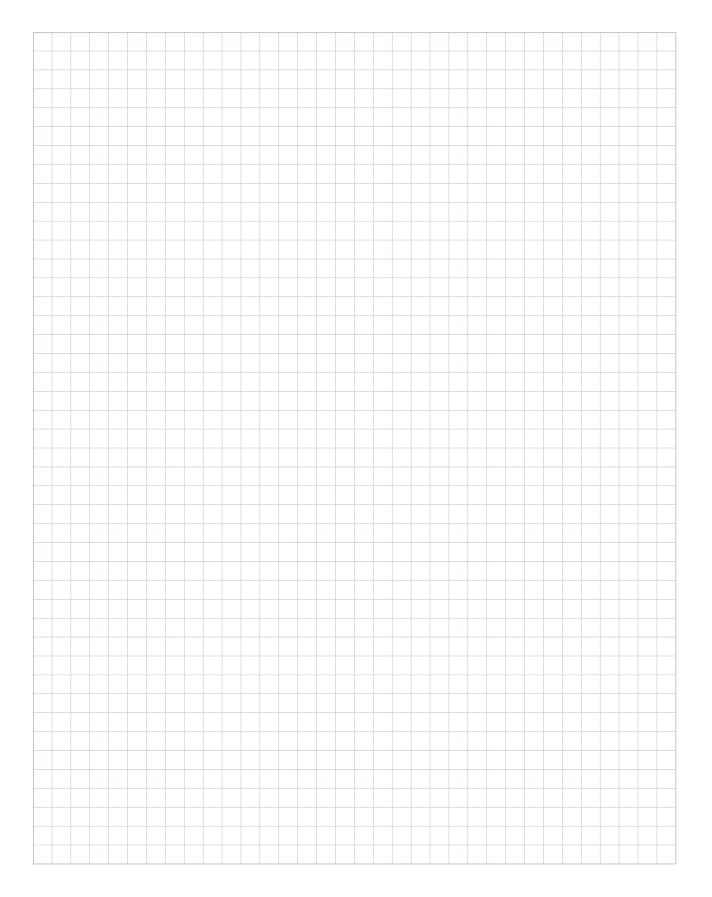

2.

tes: The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations. 3.


4.

IL18 Outline Drawings

Ironless Non-Cooled Motors Series



Termination and Hall Effect Options

S

Notes

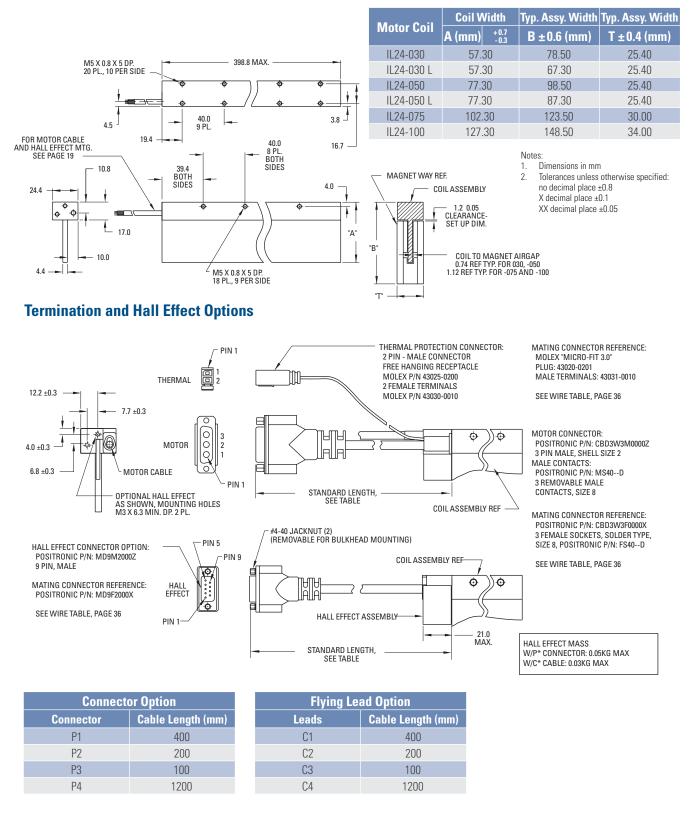
IL24 Performance Data

Ironless Non-Cooled Motors Series

Rated Perfomance	Symbol	Units	IL	24-03	80	IL24-050			IL24-075				IL24-100			
Peak Force	Fp	N		480		800			12	00			16	00		
Continuous Force @ Tmax (1)	Fc	Ν		109		155			211					26	62	
Motor Constant @ 25°C	Km	N/√W		11.2			15.9		20.6				24.4			
		Elec	ctrica	l Spe	cific	ation	s (2)									
Winding Code A1						A1	A2	A 3	A1	A2	A 3	A 4	A1	A2	A 3	A 4
Peak Current	lp	Arms	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.0	56.1	7.0	14.0	28.1	56.1
Continuous Current @Tmax	lc	Arms	1.6	3.2	6.4	1.4	2.7	5.4	1.2	2.5	4.9	9.9	1.2	2.3	4.6	9.2
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	24.3	6.1	1.5	34.3	8.6	2.1	46.6	11.7	2.9	0.73	58.9	14.7	3.7	0.92
Electrical Inductance ±20%	L	mH L-L	5.1	1.28	0.32	12.0	3.00	0.75	20.0	5.0	1.25	0.31	28.0	7.00	1.75	0.44
Back EMF Constant @ 25°C±10%	Ке	Vpeak/m/s L-L	55.0	27.5	13.8	93.1	46.5	23.3	140.	69.9	34.9	17.5	186	93.1	46.6	23.3
Force Constant	Kf	N/Arms	67.4	33.7	16.9	114	57.0	28.5	171	85.6	42.8	21.4	228	114	57.0	28.5
@ 25°C±10%	KI	lbf/Arms	15.2	7.6	3.8	25.6	12.8	6.4	38.5	19.2	9.6	4.8	51.3	25.6	12.8	6.4
		Ме	chani	cal S	peci	ficati	ons									
Coil Assembly Mass ±15%	Mc	kg		0.72			0.92			1.	17			1.4	42	
Magnetic Way Type				MW			MW			Μ	W		MW			
			030) () 30L	050) (0 50L		07	75			10)0	
Magnetic Way Mass ±15%	Mw	kg/m	9.4		7.3	12.2	2	10.2		18	.9			27	.3	
		Figures	of Me	erit a	nd Ad	ditio	nal D	ata								
Electrical Time Constant	Te	ms		0.21			0.35			0.	43			0.4	48	
Max.Theoretical Acceleration(3)	Amax	m/s²		68.0			88.7			10)5			11	5	
Magnetic Attraction	Fa	kN		0			0		0				0			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.40		0.32		0.26				0.22				
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130			13	30			13	30	

Notes:

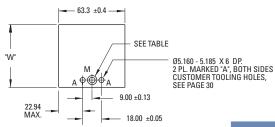
1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

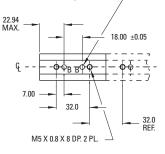

2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.

3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone, Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

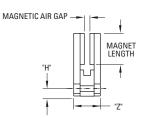
4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IL24 Outline Drawings


Ironless Non-Cooled Motors Series


S

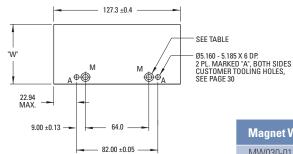
Ironless Magnet Ways


MWxxx-0064

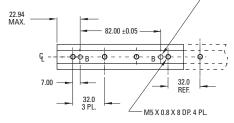
 $\emptyset 5.160$ - 5.185 X 10 DP. 2 PL. MARKED "B", CUSTOMER TOOLING HOLES, SEE PAGE 30 $_{\overline{\mathcal{T}}}$

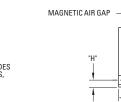
Magnet assemblies are modular and can be installed in multiples of same or alternate lengths (see page 34). Standard assembly lengths are shown below.

Notes: 1. Dimensions in mm 2. Teleraneou unloso o


- Tolerances unless otherwise specified: no decimal place ±0.8 X decimal place ±0.1
 - XX decimal place ±0.05

Magnet Way	Magnet Size Ref.	H ±0.8	W ±0.4	Z ±0.4
MW030-0064	30 mm	7.11	60.20	25.40
MW030L-0064	30 mm	5.69	49.00	25.40
MW050-0064	50 mm	7.11	80.20	25.40
MW050L-0064	50 mm	5.69	69.00	25.40
MW075-0064	75 mm	8.23	105.20	30.00
MW100-0064	100 mm	8.23	130.20	34.00


	Hardware (Hex. Socket Head Cap)					
Magnet Way	Hole Dia. ±0.13	C'bore Dia. ±0.13	Cbore Depth ±0.13	Metric	Inch	Bottom Mount Thread Option
MW030-0064	5.70	9.35	5.79	M5	#10	M5 X 0.8 X 8.0 DP.
MW030L-0064	4.70	7.80	5.79	M4	#8	M4 X 0.7 X 6.0 DP.
MW050-0064	5.70	9.35	5.79	M5	#10	M5 X 0.8 X 8.0 DP.
MW050L-0064	4.70	7.80	5.79	M4	#8	M4 X 0.7 X 6.0 DP.
MW075-0064	5.70	9.35	7.95	M5	#10	M5 X 0.8 X 8.0 DP.
MW100-0064	5.70	9.35	9.96	M5	#10	M5 X 0.8 X 8.0 DP.


MAGNET

MWxxx-0128

Magnet Way	Magnet Size Ref.	H ±0.8	W ±0.4	Z ±0.4
MW030-0128	30 mm	7.11	60.20	25.40
MW030L-0128	30 mm	5.69	49.00	25.40
MW050-0128	50 mm	7.11	80.20	25.40
MW050L-0128	50 mm	5.69	69.00	25.40
MW075-0128	75 mm	8.23	105.20	30.00
MW100-0128	100 mm	8.23	130.20	34.00

		Hardware (Hex. Socket Head Cap)				
Magnet Way	Hole Dia. ±0.13	C'bore Dia. ±0.13	Cbore Depth ±0.13	Metric	Inch	Bottom Mount Thread Option
MW030-0128	5.70	9.35	5.79	M5	#10	M5 X 0.8 X 8.0 DP.
MW030L-0128	4.70	7.80	5.79	M4	#8	M4 X 0.7 X 6.0 DP.
MW050-0128	5.70	9.35	5.79	M5	#10	M5 X 0.8 X 8.0 DP.
MW050L-0128	4.70	7.80	5.79	M4	#8	M4 X 0.7 X 6.0 DP.
MW075-0128	5.70	9.35	7.95	M5	#10	M5 X 0.8 X 8.0 DP.
MW100-0128	5.70	9.35	9.96	M5	#10	M5 X 0.8 X 8.0 DP.

MWxxx-0256

Magnet assemblies are modular and can be installed in multiples of same or alternate lengths (see page 32). Standard assembly lengths are shown below.

255.3 ±0.4 SEE TABLE "W" Ø5.160 - 185 X 6 DP. 2 PL. MARKED "A", BOTH SIDES CUSTOMER TOOLING HOLES, SEE PAGE 30 M ≜⊕⊕ Μ Μ '⊕1 **€**¢_A 22.94 MAX. 64.0 3 PL. 9.00 ± 0.13 210.0 ± 0.05

Ø5.160 - 5.185 X 10 DP. 2 PL. MARKED "B", CUSTOMER TOOLING HOLES, SEE PAGE 30

210.0 ±0.05

B-0-0

32.0 REF.

M5 X 0.8 X 8 DP. 8 PL.

MAGNETIC AIR GAP

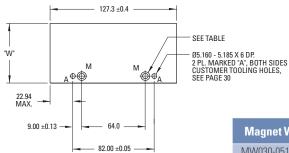
"H

ł Notes: Dimensions in mm (inches) 1. MAGNET LENGTH 2.

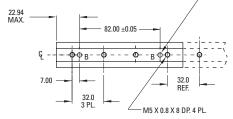
Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

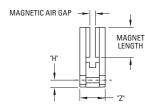
Magnet Way	Magnet Size Ref.	H ±0.8	W ±0.4	Z ±0.4
MW030-0256	30 mm	7.11	60.20	25.40
MW030L-0256	30 mm	5.69	49.00	25.40
MW050-0256	50 mm	7.11	80.20	25.40
MW050L-0256	50 mm	5.69	69.00	25.40
MW075-0256	75 mm	8.23	105.20	30.00
MW100-0256	100 mm	8.23	130.20	34.00

		Hardware (Hex. Socket Head Cap)				
Magnet Way	Hole Dia. ±0.13	C'bore Dia. ±0.13	Cbore Depth ±0.13	Metric	Inch	Bottom Mount Thread Option
MW030-0512	5.70	9.35	5.79	M5	#10	M5 X 0.8 X 8.0 DP.
MW030L-0512	4.70	7.80	5.79	M4	#8	M4 X 0.7 X 6.0 DP.
MW050-0512	5.70	9.35	5.79	M5	#10	M5 X 0.8 X 8.0 DP.
MW050L-0512	4.70	7.80	5.79	M4	#8	M4 X 0.7 X 6.0 DP.
MW075-0512	5.70	9.35	7.95	M5	#10	M5 X 0.8 X 8.0 DP.
MW100-0512	5.70	9.35	9.96	M5	#10	M5 X 0.8 X 8.0 DP.


ффВ – Ð

32.0 7 PL.


22.94 MAX.

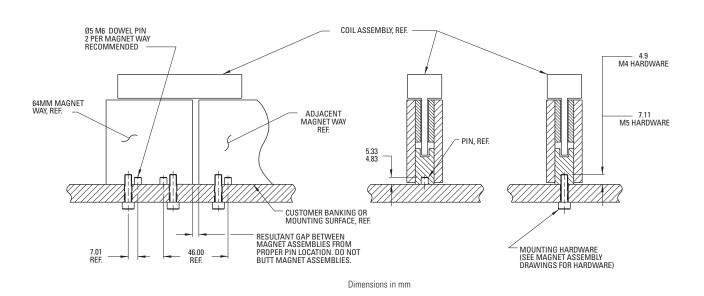

գ

7.00

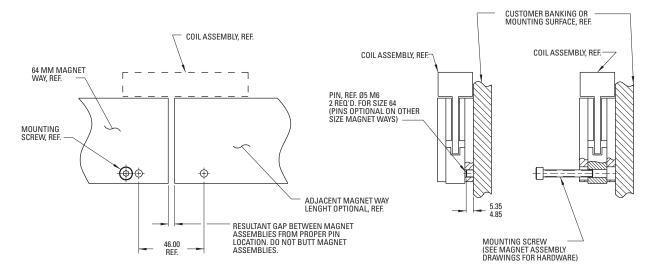
Magnet Way	Magnet Size Ref.	H ±0.8	W ±0.4	Z ±0.4
MW030-0512	30 mm	7.11	60.20	25.40
MW030L-0512	30 mm	5.69	49.00	25.40
MW050-0512	50 mm	7.11	80.20	25.40
MW050L-0512	50 mm	5.69	69.00	25.40
MW075-0512	75 mm	8.23	105.20	30.00
MW100-0512	100 mm	8.23	130.20	34.00

		Hardware (Hex. Socket Head Cap)				
Magnet Way	Hole Dia. ±0.13	C'bore Dia. ±0.13	Cbore Depth ±0.13	Metric	Inch	Bottom Mount Thread Option
MW030-0512	5.70	9.35	5.79	M5	#10	M5 X 0.8 X 8.0 DP.
MW030L-0512	4.70	7.80	5.79	M4	#8	M4 X 0.7 X 6.0 DP.
MW050-0512	5.70	9.35	5.79	M5	#10	M5 X 0.8 X 8.0 DP.
MW050L-0512	4.70	7.80	5.79	M4	#8	M4 X 0.7 X 6.0 DP.
MW075-0512	5.70	9.35	7.95	M5	#10	M5 X 0.8 X 8.0 DP.
MW100-0512	5.70	9.35	9.96	M5	#10	M5 X 0.8 X 8.0 DP.

IRONLESS

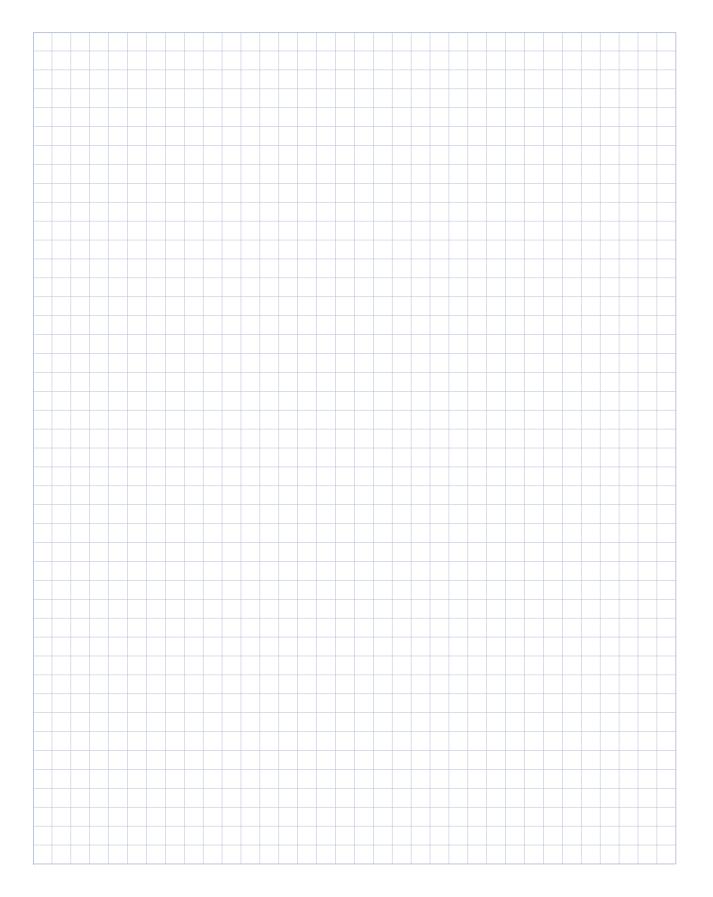

MAGNET

WAYS


Ironless Magnet Ways

Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64. 128. 256. 512 mm.

Bottom Mounting Installation



Side mounting installation

Dimensions in mm

Notes

Wiring and Output

Ironcore Non-Cooled Motors ICH-Series

Motor Wire Table

See the cable data on pages 13, 15, 17, 19

	1.5	, , , , ,
	Cable	Plug BKUA Option ¹⁾
U	Black U	1
V	Black V	3
W	Black W	4
PE	Green/Yellow	PE
PTC1	Black 5	А
PTC2	Black 6	В
KTY+	Black 7	С
KTY-	Black 8	D

Note 1: For motors with $\rm I_{c}{<}\,15\,A$

Hall Effect Wire Table

Ø 4.6 mm			
Pin Number	Color	Function	
1	Gray	+5 VDC	
2	Green	S1	
3	Yellow	S2	
4	Brown	\$3	
5	White	Return	
Shell	Shield	Shield	

Ironless Non-Cooled Motors IL-Series

Motor Wire Table

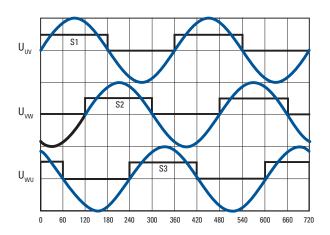
A1, A2, A3, A4: 18 AWG, Ø 5.6 mm

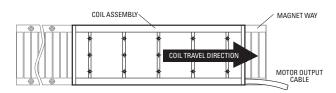
Pin Number	Color	Function
1	Red	А
2	White	В
3	Black	С
Connector Shell	Green/Yellow	GND
Connector Shell	Violet	Shield

Thermal Protection Wire Table

26 AWG. Ø 3.8 mm

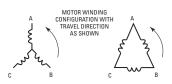
Pin	Color	Transition Point
1	Black/White	130°C
2	Black/White	130°C


Note: TIC-X extender cable is shielded


Hall Effect Wire Table

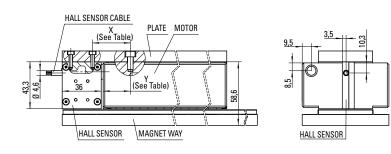
26 AWG, ∅6.0 mm

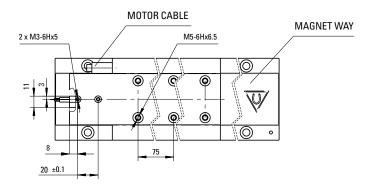
Pin Number	Color	Function
1	Gray	+5 VDC
2	Green	S1
3	Yellow	S2
4	Brown	S3
5	White	Return
Shell	Shield	Shield


Ironcore and Ironless Motors Output Diagrams

Magnet pole pitch:

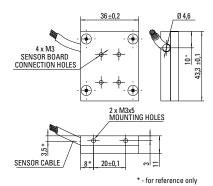
Both Ironcore (ICH) and Ironless (IL) feature the same pole pitch. which is 32 mm (360 electrical degrees).




Motor BEMF phases U, V, W relative to Hall effect devices S1,S2,S3 with coil travel direction towards the motor output cable assembly exit as shown on the right hand side

Note:

1. The diagram above refers to both ironless (IL) and ironcore (ICH) motors


Mounting of Hall Sensor on ICH Ironcore Motors

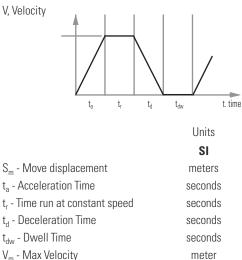
ІСН Туре	X (mm)	Y (mm)
ICH11	34.9	25.1
ICH22	48.9	38.1
ICH33	60.9	51.1
ICH44	36.4	26.6

Dimensions Hall Sensor HD-Y-Px or HD-D-Px (mm)

Application Sizing

To size a Linear Motor, you will need to:

1. Define a Move Profile


- 2. Define the Load
- 3. Size the Motor and the Amplifier

From the move profile, we can calculate the maximum speed and the maximum acceleration/deceleration. From the load we can calculate all of the forces at constant speed and using the move profile all the dynamic forces during acceleration and deceleration. Once a motor is selected, the weight of the moving parts of the motor are added to the moving weight to calculate a total Peak Force and a total RMS force. The motor should be able to deliver the peak force and the calculated RMS force should be less than the motor continuous force to ensure a known safety margin. The coil temperature rise can also be calculated to ensure that it is lower than the intended maximum temperature rise.

The maximum bus voltage and continuous and peak current can also be calculated and compared to the selected amplifier to be sure the calculated performances can be achieved.

1. Move Profile

Triangular/Trapezoidal

meter/sec² meter/sec²

v _m	IVIAN VEIDUILY
A_{m}	- Acceleration
D	Developmenting

D_m - Deceleration

Example:

```
Move 0.1 meter in 100 msec assuming t_a = t_d and t_r = 0.
       (assume triangular move)
```

 $V_m = 2 \cdot S_m / (t_a + t_d + 2 \cdot t_r)$ Max Speed: $V_m = 2 \cdot 0.1 / (100E-3) m/s$ = 2 m/s

Max Acceleration/Deceleration

Acceleration	$A_{m} = V_{m} / t_{a}$ $A_{m} = 2 / 50E-3 m/s2$ $= 40 m/s2$ $A_{m} "g" = A_{m} / 9.81 m/s2$ $a (g) = 40 / 9.81$ $= 4.08 q$
	= 4.00 y
Deceleration	$D_{m} = V_{m}/t_{d}$
	$D_m = 2/50E-3 m/s2$ = 40 m/s2
	Dm "q" = Dm / 9.81 m/s2
	d(q) = 40/9.81
	u(y) = 40 / 9.01
	= 4.08 g

2. Load

	SI
F _{ext} - External Force only	Ν
(Cutting force, etc.)	
F _{acc} - Acceleration Force only	Ν
F _r - Run Force at constant speed	Ν
F _{dec} - Deceleration Force only	Ν
F _{am} - Max. Acceleration Force	Ν
F _{dm} - Max. Deceleration Force	Ν
F _{dw} - Dwell Force	Ν
F _{rms} - RMS Force	Ν
ω - Coefficient of Friction	_
(bearing support)	
M _I - Load Mass	kg
M _c - Coil Mass	kg
M _{cb} - Counterbalance Mass	kg
F _a - Magnetic Attraction Force	Ν
CB - Counterbalance of load in %	-
q - Angle of Linear Displacement	
with horizontal	
(0°= horizontal, 90° vertical)	degrees
g - Gravity coefficient	9.81 m/s ²
n - Number of motors in parallel	-

Units

BASIC FORMULAS*:

We assume a general case where we have n motors solidly coupled pushing the load and a possible counterbalance weight Mcb (Mostly for vertical displacement).

Example of Coefficient of Friction µ:

Linear bearing w/ balls	0.002 - 0.004
Linear bearing w/ rollers	0.005
Steel on oiled steel	0.06
Steel on dry steel	0.2
Steel on concrete	0.3

Counterbalance Weight:

 $M_{cb} = MI \cdot CB/100$

Acceleration Force only:

 $Facc = [(M_1 / n) \cdot (1 + CB/100) + M_c] \cdot Am$

Run Force at constant speed:

 $\mathsf{F}_{\mathsf{r}} = (\mathsf{M}_{_{\mathsf{l}}}\,/n\,+\,\mathsf{M}_{\mathsf{c}})\cdot\,g\,\cdot\,\mathsf{SIN}(q)\,+\,m\,\cdot\,\mathsf{cos}(q)\,-\,(\mathsf{Mcb}/n)\,\cdot\,g\,+\,\mathsf{F}_{\mathsf{a}}\cdot\,\mu\,+\,\mathsf{F}_{\mathsf{ext}}/n$

Deceleration Force only:

 $F_{dec} = [(M_{\textrm{I}} \ /n) \ \cdot \ (1 \ + \ CB/100) \ + \ M_{c}] \ \cdot \ D_{\textrm{m}}$

Maximum Acceleration Force:

 $\mathsf{F}_{am} = \mathsf{F}_{acc} + \mathsf{F}_{r}$

Maximum Deceleration Force:

 $\mathsf{F}_{dm} = \mathsf{F}_{dec} - \mathsf{F}_{r}$

Dwell Force:

 $F_{dw} = (M_1 / n + M_c) \cdot g \cdot [sin(q)] - (M_{cb} / n) \cdot g$

RMS Force:

$$F_{rms} = \sqrt{\frac{F_{am}^2 \cdot t_a + F_r^2 \cdot t_r + F_{dm}^2 \cdot t_d + F_{dw}^2 \cdot t_{dw}}{t_a + t_r + t_d + t_{dw}}}$$

* All calculations are given in SI units

3. SIZE THE MOTOR AND AMPLIFIER

Example:

Moving Weight:	MI = 0.5 kg
Number of Motors:	n = 1
Horizontal Move:	q = 0
Counterbalance Force:	$M_{cb} = 0$
External Force:	$F_{ext} = 0$
Friction Coefficient:	m = 0.01

Assume same move as above with a Dwell Time of 50 ms.

Run Force at Constant Speed: Acceleration Force only: Deceleration Force only: Maximum Accel Force: Maximum Decel Force: Rms Force:
$$\begin{split} F_{r} &= 0.5 \cdot 9.81 \cdot 0.01 = 0 \; .05 \; N \\ F_{a} &= 0.5 \cdot 40 = 20 \; N \\ F_{d} &= 0.5 \cdot 40 = 20 \; N \\ F_{am} &= 20 + 0.05 = 20.05 \; N \\ F_{dm} &= 20 - 0.05 = 19.95 \; N \end{split}$$

SI Units

$$F_{rms} = \sqrt{\frac{(20.05)^2 \cdot (50E-3) + (19.95)^2 \cdot (50E-3)}{100E-3 + 50E-3}}$$

$$F_{rms} = 16.3 \text{ N}$$

Motor Sizing:

If we select an ironless motor for smoothest possible move we can use Motor IL060-30A1. This motor has a coil mass of 0.21 kg and no attractive force. By adding that weight in equations above, we need an additional force of $0.21 \cdot 40 \cdot 0.01 = 0.084$ N. So peak force is 20.05 + 0.08 = 28.45 N and RMS force is 23.19 N. This motor will have a safety factor of (38-23.19).100/38 = 39%.

Sizing the Amplifier :

I _a - Max Acceleration Current	А
I _r - Run Current	А
I _d - Max Deceleration Current	А
I _{dw} - Dwell Current	А
I _{rms} - RMS Current	А
K _f - Force Constant	N/A
R _m - Motor Electrical Resistance	Ohms L-L
K _e - Back EMF Constant	Vpeak/m/s
V _{bus} - Bus Voltage	V DC
L - Electrical Inductance	H L-L
Max Acceleration Current:	$I_a = F_{am}/K_f$
Run Current at constant Speed:	$I_r = F_r / K_f$
Max Deceleration Current only:	$I_d = F_{dm}/K_f$
Dwell Current:	$I_{dw} = F_{dw}/K_{f}$
RMS Current:	$I_{rms} = F_{rms}/K_{f}$

Application Sizing

BUS VOLTAGE:

If we assume a sine wave drive with a phase advance ϕ (degrees) and full conduction, the minimum bus voltage (see Fig. 1) is:

$$V_{b1} = 2.4 V$$

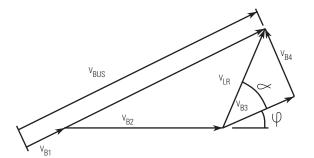
$$V_{b2} = K_e \cdot V_m$$

$$V_{b3} = \frac{\sqrt{3}}{\sqrt{2}} \cdot R_{m,hot} \cdot I_{rms}$$

$$V_{b4} = 2\pi \frac{\sqrt{3}}{\sqrt{2}} \cdot L \cdot I_{rms} \cdot V_m / Pitch$$

$$a_v = \arctan(V_{b4} / V_{b3})$$

$$V_{1r} = \sqrt{V_{b3}^2 + V_{b4}^2}$$


$$V_{bre} = V_{b2} + V_{1r} \cdot \cos(a_v + \phi)$$

$$V_{bim} = V_{1r} \cdot \sin(a_v + \phi)$$

$$V_{bus} = V_{b1} + \sqrt{V_{bre}^2 + V_{bim}^2}^2$$

Note: If there is no phase advance take $\phi = 0^{\circ}$

Figure 1:

THERMAL CONSIDERATIONS:

	SI
$\Delta \theta$ - Coil increase of temperature	°C
R _{th} - Thermal Resistance	°C/W
K _m - Motor Constant	N/ \sqrt{W}
P _{out} - Output Power	W

Units

Coil Temperature rise

 $\Delta \theta = R_{th} \cdot (F_{rms}/K_m)^2$

Resistance of Coil hot (copper)

$$R_{m,hot} = \frac{R_{ambient} (234.5 + \theta_{hot})}{(234.5 + \theta_{amb})}$$

Power Losses

$$P_{Irms} = \Delta \Theta / R_{th} = \frac{(\Theta_{hot} - \Theta_{ambient})}{R_{th}}$$

Output Power

 $P_{out\,(max)} = F_{am} \cdot V_m$

Example: In above example with: $R_{th} = 1.61 \text{ °C/W}$

 $K_{\rm m}=4.7~{\rm N}/\sqrt{{\rm W}.}$

Coil Temperature rise:

$$\label{eq:2.1} \begin{split} \Delta \theta &= 1.61 \cdot (23.19/4.7)^2 = 39.2\,^\circ\text{C} \\ \text{Power losses } P_{_I} &= 39.2\,/\,1.61 = 24.34\,\text{Watts} \\ \text{Max output Power } P_{\text{out (max)}} &= 57\,\text{Watts} \end{split}$$

The Use of the Motor Constant K:

Cognizance of the heat load being generated by the linear motor is an important consideration in the application of any linear motor. Linear motors are direct drive devices, typically mounted very close to the moving load. Therefore, any heat generated by the linear motor needs to be managed to avoid affecting the process or workpiece that the moving load is carrying. The motor constant K_m is a powerful parameter that can be used to determine this heat load, K_m equals:

$$K_{\rm m} = \frac{F}{\sqrt{P_{\rm c}}}$$

where the RMS force F is in Newtons, the RMS heat load Pc is in Watts and K_m is in units of N / \sqrt{W} The motor constant, K_m , allows us to determine motor performance capabilities such as shown in the following two examples. In the first example, we use K_m to calculate, for a given force, how many watts of generated heat are dissipated by the motor's coil assembly. In the second, we use K_m to determine the maximum RMS force developed by the motor when the dissipated power is limited to some value.

1. An application requires a continuous thrust force of 200 Newtons. The ICH11-050 ironcore motor is a good candidate, having a continuous force rating of 299 Newtons and a K_m of 38.0 N/ \sqrt{W} . Therefore, since resistance rises 1.452 times at 145°C from the ambient value at 25°C, and since resistance is the square root denominator of K_m, we must write our equation as follows:

Force =
$$\frac{K_m}{\sqrt{Factor}} \sqrt{Power (dissipated)}$$

200 = $\frac{38.0}{\sqrt{1.452}} \sqrt{Watts}$

Power (dissipated) = 40.2 Watts

This value of watts is the power or heat generated by the motor.

2. The same application requires that no more than 20 watts are to be dissipated by the motor into the surrounding structure and environment. What is the maximum RMS force that the ICH11-050 motor may produce while not exceeding this power limit?

Maximum RMS Force =
$$\frac{38.0}{\sqrt{1.452}}$$
 $\sqrt{20}$ = 141 N

Therefore, if the motor delivers no more than 141 N of thrust force on an RMS basis, then this same motor will not dissipate more than 20 watts.

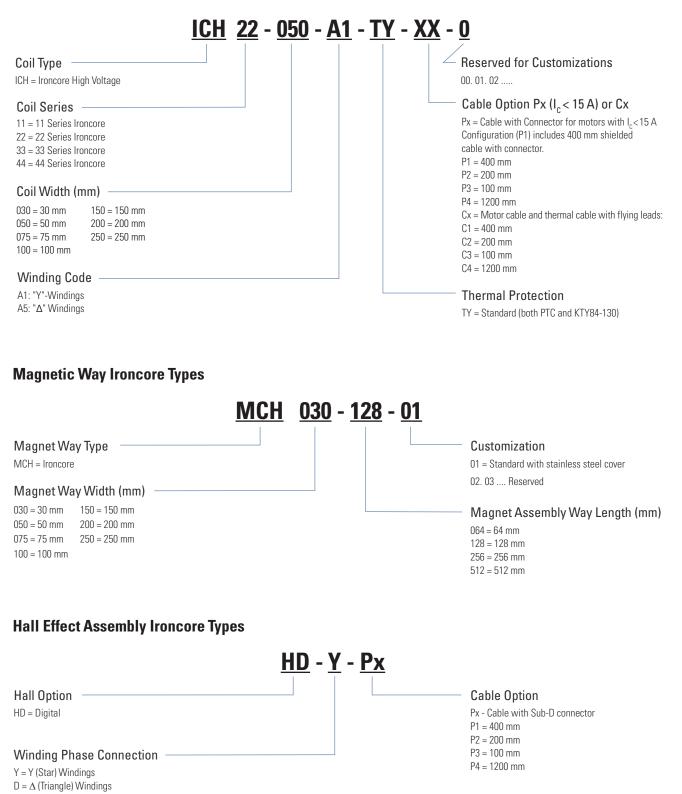
Continuous Force Fc as a Function of Ambient Temperature

In our data sheets the continuous rated force Fc is the RMS force that the motor can supply continuously 100% of the time, assuming the ambient temperature is 25°C and with the coils achieving a maximum temperature of 130°C (IL series motors) respectively 145°C (ICH series motors). At higher or lower ambient temperatures, the F_c of the motor must be adjusted by a factor that is determined by the following equation:

Factor =
$$\sqrt{\frac{(130 - \Theta_{Amb})}{105}}$$
 (for IL series motors)
Factor = $\sqrt{\frac{(145 - \Theta_{Amb})}{120}}$ (for ICH series motors
where Θ_{Amb} = Ambient Temperature in °C

This factor vs. ambient temperature works out as:

ICH Ironcore Linear Motors

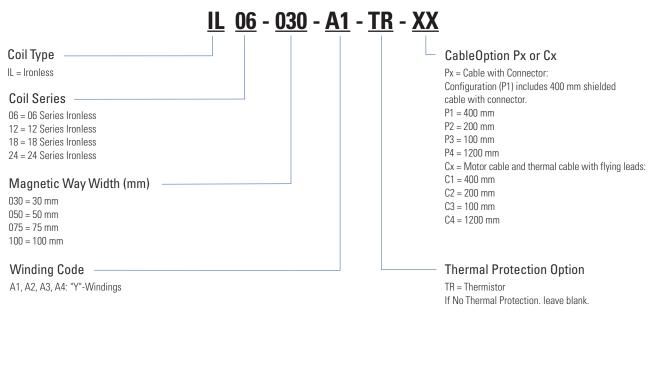

5°C	10°C	15°C	20°C	25°C	30°C	35°C	40°C	45°C
1.080	1.061	1.041	1.021	1.000	0.979	0.957	0.935	0.913

IL Ironless Linear Motors

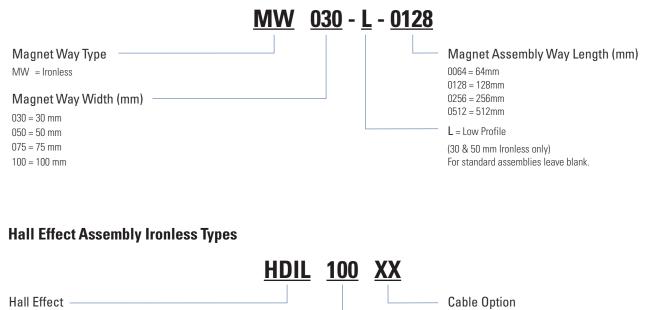
5	5°C	10°C	15°C	20°C	25°C	30°C	35°C	40°C	45°C
1.	091	1.069	1.047	1.024	1.000	0.976	0.951	0.926	0.900

Model Nomenclature

Ironcore Types


 \leq

ODEL


Z O

 \leq

Ironless Type

Magnetic Way Ironless Types

Px - Cable with Connector:

Cx - flying leads (lengths as above)

Configuration (P1) includes 400 mm shielded cable with connector (lengths as above)

HDIL = Digital for Ironless (Microswitch SS461A

Winding Code

100 (A1, A2, A3, A4) 200 (A5, A6, A7, A8)

About Kollmorgen

Kollmorgen is a leading provider of motion systems and components for machine builders. Through world-class knowledge in motion, industry-leading quality and deep expertise in linking and integrating standard and custom products. Kollmorgen delivers breakthrough solutions that are unmatched in performance, reliability and ease-of-use, giving machine builders an irrefutable marketplace advantage.

For assistance with your application needs visit www.kollmorgen.com for a global contact list.

Application Centers Global Manufacturing

ing Kong

KOLLMORGEN

Santa Barbara C

Because Motion Matters™

Kollmorgen 203A West Rock Road Radford, VA 24141 USA Phone: 1-540-633-3545 Fax: 1-540-639-4162

Kollmorgen Europe GmbH Pempelfurtstraße 1 40880 Ratingen Germany Phone: +49 (0) 2102 9394 0 Fax: +49 (0) 2102 9394 3155

Sao Paulo \bigcirc

 Boston Radford

> Kollmorgen Asia Rm 202, Building 3, Lane 168 Lin Hong Road Changning District, Shanghai 200335, China Phone: +86 400 661 2802 sales.china@kollmorgen.com

© 2017 Kollmorgen Corporation. All rights reserved. KM_CA_00284_RevC_UK Specifications are subject to change without notice. It is the responsibility of the product user to determine the suitability of this product for a specific application. All trademarks are the property of their respective owners.