

www.DanaherMotion.com

950BASIC Reference Manual

Version 4.1
MA950-LR

Rev. G

Record of Manual Revisions
ISSUE Date Description of Revision

 G 05/30/2003 Updated corporate information

Copyright Information
 Copyright 1996 - 2003 Danaher Motion - All rights reserved.
Printed in the United States of America.

NOTICE:
Not for use or disclosure outside of Danaher Motion except under written agreement. All rights are
reserved. No part of this book shall be reproduced, stored in retrieval form, or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise without the written permission
from the publisher. While every precaution has been taken in the preparation of the book, the
publisher assumes no responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein.
This document is proprietary information of Danaher Motion that is furnished for customer use
ONLY. No other uses are authorized without written permission of Danaher Motion. Information in
this document is subject to change without notice and does not represent a commitment on the part
Danaher Motion. Therefore, information contained in this manual may be updated from time-to-time
due to product improvements, etc., and may not conform in every respect to former issues.

WARRANTY AND LIMITATION OF LIABILITY

Includes software provided by Danaher Motion
Danaher Motion warrants its motors and controllers (“Product(s)”) to the original purchaser
(the “Customer”), and in the case of original equipment manufacturers or distributors, to
their original consumer (the “Customer”) to be free from defects in material and
workmanship and to be made in accordance with Customer’s specifications which have
been accepted in writing by Danaher Motion. In no event, however, shall Danaher Motion
be liable or have any responsibility under such warranty if the Products have been
improperly stored, installed, used or maintained, or if customer has permitted any
unauthorized modifications, adjustments, and/or repairs to such Products. Danaher
Motion’s obligation hereunder is limited solely to repairing or replacing (at its option), at its
factory any Products, or parts thereof, which prove to Danaher Motion’s satisfaction to be
defective as a result of defective materials or workmanship, in accordance with Danaher
Motion’s stated warranty, provided; however, that written notice of claimed defects shall
have been given to Danaher Motion within two (2) years after the date of the product date
code that is affixed to the product, and within thirty (30) days from the date any such defect
is first discovered. The products or parts claimed to be defective must be returned to
Danaher Motion, transportation prepaid by Customer, with written specifications of the
claimed defect. Evidence acceptable to Danaher Motion must be furnished that the
claimed defects were not caused by misuse, abuse, or neglect by anyone other than
Danaher Motion.

Danaher Motion also warrants that each of the Pacific Scientific Motion Control Software
Programs (“Program(s)”) will, when delivered, conform to the specifications therefore set
forth in Pacific Scientific’s specifications manual. Customer, however, acknowledges that
these Programs are of such complexity and that the Programs are used in such diverse
equipment and operating environments that defects unknown to Danaher Motion may be
discovered only after the Programs have been used by Customer. Customer agrees that
as Danaher Motion’s sole liability, and as Customer’s sole remedy, Danaher Motion will
correct documented failures of the Programs to conform to Danaher Motion’s specifications
manual. DANAHER MOTION DOES NOT SEPARATELY WARRANT THE RESULTS OF
ANY SUCH CORRECTION OR WARRANT THAT ANY OR ALL FAILURES OR ERRORS
WILL BE CORRECTED OR WARRANT THAT THE FUNCTIONS CONTAINED IN
PACIFIC SCIENTIFIC’S PROGRAMS WILL MEET CUSTOMER’S REQUIREMENTS OR
WILL OPERATE IN THE COMBINATIONS SELECTED BY CUSTOMER. This warranty for
Programs is contingent upon proper use of the Programs and shall not apply to defects or
failure due to: (i) accident, neglect, or misuse; (ii) failure of Customer’s equipment; (iii) the
use of software or hardware not provided by Danaher Motion; (iv) unusual stress caused by
Customer’s equipment; or (v) any party other than Pacific Scientific who modifies, adjusts,
repairs, adds to, deletes from or services the Programs. This warranty for Programs is
valid for a period of ninety (90) days from the date Danaher Motion first delivers the
Programs to Customer.

THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES
(EXCEPT AS TO TITLE), WHETHER EXPRESSED OR IMPLIED, INCLUDING WITHOUT
LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR OF FITNESS FOR ANY
PARTICULAR PURPOSE, AND ARE IN LIEU OF ALL OTHER OBLIGATIONS OR
LIABILITIES ON THE PART OF DANAHER MOTION. DANAHER MOTION’S MAXIMUM
LIABILITY WITH RESPECT TO THESE WARRANTIES, ARISING FROM ANY CAUSE
WHATSOEVER, INCLUDING WITHOUT LIMITATION, BREACH OF CONTRACT,
NEGLIGENCE, STRICT LIABILITY, TORT, WARRANTY, PATENT OR COPYRIGHT
INFRINGEMENT, SHALL NOT EXCEED THE PRICE SPECIFIED OF THE PRODUCTS
OR PROGRAMS GIVING RISE TO THE CLAIM, AND IN NO EVENT SHALL PACIFIC
SCIENTIFIC BE LIABLE UNDER THESE WARRANTIES OR OTHERWISE, EVEN IF
DANAHER MOTION HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES,
FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT
LIMITATION, DAMAGE OR LOSS RESULTING FROM INABILITY TO USE THE
PRODUCTS OR PROGRAMS, INCREASED OPERATING COSTS RESULTING FROM A
LOSS OF THE PRODUCTS OR PROGRAMS, LOSS OF ANTICIPATED PROFITS, OR
OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER
SIMILAR OR DISSIMILAR, OF ANY NATURE ARISING OR RESULTING FROM THE
PURCHASE, INSTALLATION, REMOVAL, REPAIR, OPERATION, USE OR
BREAKDOWN OF THE PRODUCTS OR PROGRAMS, OR ANY OTHER CAUSE
WHATSOEVER, INCLUDING NEGLIGENCE.

The foregoing shall also apply to Products, Programs, or parts for the same which have
been repaired or replaced pursuant to such warranty, and within the period of time, in
accordance with Danaher Motion’s date of warranty.

No person, including any agent, distributor, or representative of Danaher Motion, is
authorized to make any representation or warranty on behalf of Danaher Motion concerning
any Products or Programs manufactured by Danaher Motion, except to refer purchasers to
this warranty.

Danaher Motion Kollmorgen Table of Contents

MA950-LR i

Table of Contents

1 950BASIC LANGUAGE ..1-1

1.1 950BASIC PROGRAM STRUCTURE..1-1
1.2 PROGRAM SECTIONS..1-2
1.3 MAIN PROGRAM, SUBROUTINES, FUNCTIONS &
 INTERRUPT HANDLERS......................1-6
1.4 LANGUAGE DEFINITION ...1-9
1.5 STATEMENTS ...1-12
1.6 BUILT-IN FUNCTIONS...1-22
1.7 EXPRESSIONS ...1-24
1.8 FUNCTION INVOCATION ...1-27
1.9 ARRAYS AND FUNCTION PARAMETER LISTS....................................1-28
1.10 PACLAN...1-31
1.11 MODBUS..1-33
1.12 ALLEN-BRADLEY DF1 COMMUNICATIONS PROTOCOL....................1-38
1.13 CAM PROFILING...1-42

2 QUICK REFERENCE ...2-1

3 INSTRUCTIONS ..3-1

$ABMAPFLOAT() ...3-2
$ABMAPINTEGER()..3-3
$DECLARECAM()..3-4
$INCLUDE ..3-5
$MBMAPBIT() ...3-6
$MBMAP16() ...3-7
$MBMAP32() ...3-8
$MBMAPFLOAT() ..3-9
$PACLANADDR() ...3-9
ABCRC ..3-10
ABERR ..3-10
ABINFO...END ...3-11
ABORTMOTION..3-12
ABS() ..3-12
ACCELGEAR ..3-13
ACCELRATE ..3-14
ACTIVECAM ..3-15
ADDPOINT() ...3-17
ADF0 ..3-18
ADOFFSET...3-18
ALIAS ..3-19

Table of Contents Danaher Motion

ii MA950-LR

ANALOGIN ...3-19
ANALOGOUT1..3-20
ANALOGOUT2..3-20
AND ...3-20
ARF0...3-21
ARF1...3-21
ARZ0...3-22
ARZ1...3-22
ASC() ..3-23
ATAN()..3-23
AUTOSTART ...3-23
AXISADDR ...3-24
BAND ...3-24
BAUDRATE ..3-25
BDINP1..3-25
BDINP2..3-26
BDINP3..3-26
BDINP4..3-26
BDINP5..3-27
BDINP6..3-27
BDINPUTS..3-27
BDIOMAP1 ...3-28
BDIOMAP2 ...3-29
BDIOMAP3 ...3-30
BDIOMAP4 ...3-31
BDIOMAP5 ...3-32
BDIOMAP6 ...3-33
BDLGCTHR ...3-34
BDOUT1 ..3-34
BDOUT2 ..3-35
BDOUT3 ..3-35
BDOUT4 ..3-35
BDOUT5 ..3-36
BDOUT6 ..3-36
BDOUTPUTS ..3-37
BEEP ..3-37
BLKTYPE ...3-38
BNOT ...3-38
BOR..3-39
BRAKE ...3-39
BXOR ...3-40
CALL..3-40
CAMCORRECTDIR..3-41
CAMMASTER ...3-42

Danaher Motion Kollmorgen Table of Contents

MA950-LR iii

CAMMASTERPOS...3-42
CAMSLAVEOFFSET..3-43
CCDATE ..3-43
CCSNUM ...3-43
CCWINH...3-44
CCWOT ..3-44
CHR$()..3-44
CINT()...3-45
CLS ..3-45
CMDGAIN ..3-45
COMMENBL ...3-46
COMMOFF ...3-46
COMMSRC ...3-47
CONFIGPLS() ...3-48
CONST ...3-49
COS() ..3-49
COUNTSPERREV ..3-49
CREATECAM() ..3-50
CWINH...3-51
CWOT ..3-51
DECELGEAR ..3-52
DECELRATE...3-53
DIM..3-54
DIR ..3-54
DM1F0..3-55
DM1GAIN ...3-56
DM1MAP ..3-57
DM1OUT...3-58
DM2F0..3-58
DM2GAIN ...3-59
DM2MAP ..3-60
DM2OUT...3-61
ENABLE ...3-61
ENABLED ...3-62
ENABLEPLS0 ..3-62
ENABLEPLS1 ..3-63
ENABLEPLS2 ..3-63
ENABLEPLS3 ..3-64
ENABLEPLS4 ..3-64
ENABLEPLS5 ..3-65
ENABLEPLS6 ..3-65
ENABLEPLS7 ..3-66
ENCFREQ ...3-66
ENCIN..3-67

Table of Contents Danaher Motion

iv MA950-LR

ENCINF0..3-68
ENCMODE..3-69
ENCOUT...3-69
ENCPOS ...3-70
ENCPOSMODULO ...3-70
END..3-71
ERR ..3-71
EXIT ...3-74
EXP() ..3-74
EXTFAULT ...3-75
FAULT ..3-76
FAULTCODE...3-77
FAULTRESET..3-78
FIX() ...3-78
FOR...NEXT ..3-79
FUNCTION ..3-80
FVELERR ...3-81
FWV...3-81
GEARERROR ..3-82
GEARING..3-83
GEARLOCK ..3-84
GETMOTOR$() ..3-85
GOABS...3-85
GOABSDIR...3-86
GOHOME ...3-87
GOINCR..3-87
GOTO ...3-88
GOVEL...3-88
HEX$()..3-89
HSTEMP...3-89
HWV..3-90
ICMD ...3-90
IFB ..3-90
IF...THEN...ELSE...3-91
ILMTMINUS ...3-91
ILMTPLUS ..3-92
INDEXDIST...3-92
INKEY$..3-93
INP0-INP20...3-93
INPOSITION ..3-94
INPOSLIMIT ...3-94
INPUT ...3-95
INPUTS ...3-95
INSTR() ...3-96

Danaher Motion Kollmorgen Table of Contents

MA950-LR v

INT() ...3-96
INTERRUPT...END INTERRUPT ..3-97
INTR{SOURCE}...3-98
IPEAK ..3-100
ITF0...3-100
ITFILT ..3-101
ITTHRESH ..3-101
ITTHRESHA ...3-102
I_R ..3-102
I_S...3-102
I_T...3-103
KII ...3-103
KIP...3-103
KPP ..3-104
KVFF..3-104
KVI ..3-105
KVP ...3-105
LANFLT() ..3-106
LANINT() ...3-106
LANINTERRUPT[]...3-107
LANINTRARG ...3-107
LANINTRSOURCE ...3-107
LCASE$() ..3-108
LEFT$()...3-108
LEN() ..3-108
LOG()..3-109
LOG10()..3-109
LTRIM$() ..3-109
MAIN ...3-110
MB32WORDORDER ..3-110
MBERR ...3-111
MBFLOATWORDORDER..3-112
MBINFO BLOCK...END ..3-113
MBREADBIT()..3-114
MBREAD16() ...3-115
MBREAD32() ...3-116
MBREADFLOAT()...3-117
MBWRITEBIT() ..3-118
MBWRITE16()..3-119
MBWRITE32()..3-120
MBWRITEFLOAT() ...3-121
MID$()..3-122
MOD ..3-122
MODEL ..3-122

Table of Contents Danaher Motion

vi MA950-LR

MODELEXT ..3-123
MODIFYENCPOS()...3-123
MOTOR ..3-124
MOVING...3-124
OCDATE ..3-125
OCSNUM ...3-125
OCT$() ..3-125
ON ERROR GOTO ...3-126
OR..3-127
OUT0-OUT20 ...3-127
OUTPUTS..3-128
PARAMS...END PARAMS...3-128
PAUSE() ..3-129
POLECOUNT...3-129
POSCOMMAND ...3-130
POSERROR ...3-130
POSERRORMAX ...3-131
POSITION..3-131
POSMODULO..3-132
POSPOLARITY ..3-132
PRINT ...3-133
PULSESIN ...3-133
PULSESOUT..3-134
RANDOM ..3-135
RANDOMIZE ...3-136
RATIO ..3-137
READPLC5BINARY()..3-138
READPLC5FLOAT() ..3-139
READPLC5INTEGER()...3-140
READSLC5BINARY()..3-141
READSLC5FLOAT() ..3-142
READSLC5INTEGER()...3-143
REG1HIENCPOS ...3-144
REG1HIFLAG ...3-144
REG1HIPOSITION ...3-145
REG1LOENCPOS ..3-145
REG1LOFLAG ..3-146
REG1LOPOSITION ..3-146
REG2HIENCPOS ...3-147
REG2HIFLAG ...3-147
REG2HIPOSITION ...3-148
REG2LOENCPOS ..3-148
REG2LOFLAG ..3-149
REG2LOPOSITION ..3-149

Danaher Motion Kollmorgen Table of Contents

MA950-LR vii

REGCONTROL..3-150
REMOTEFB..3-151
RESPOS..3-152
RESTART..3-152
RIGHT$() ..3-153
RTRIM$() ..3-153
RUNSPEED ...3-153
RUNTIMEPARITY ...3-154
RUNTIMEPROTOCOL ..3-154
SCURVETIME ...3-155
SELECT CASE...3-156
SENDLANINTERRUPT()[] ..3-157
SETMOTOR() ..3-159
SGN() ..3-159
SHL...3-159
SHRA..3-160
SHRL ..3-160
SIN() ...3-160
SPACE$() ..3-160
SQR() ..3-161
STATIC ...3-161
STATUS[] ..3-162
STOP ..3-162
STR$() ..3-163
STRING$()...3-163
SUB...END SUB ..3-164
SWAP ...3-164
SYSLANWINDOW1-8 ...3-165
TAN()..3-165
TARGETPOS ...3-165
TIME ..3-166
TRIM$() ..3-166
UCASE$()..3-166
UPDMOVE ...3-167
VAL()..3-167
VBUS...3-167
VBUSTHRESH ..3-168
VELCMD..3-168
VELERR ...3-168
VELFB...3-169
VELLMTHI ..3-169
VELLMTLO..3-170
VELOCITY ..3-170
VMDIR ...3-171

Table of Contents Danaher Motion

viii MA950-LR

VMENCPOS...3-172
VMGOINCR ..3-173
VMGOVEL..3-174
VMMOVING..3-175
VMRUNFREQ..3-175
VMSTOPMOTION..3-176
VMUPDMOVE ..3-177
WHEN ..3-178
WHENENCPOS ...3-179
WHENPOSCOMMAND...3-180
WHENPOSITION ...3-180
WHENRESPOS ..3-180
WHENTIME ..3-181
WHILE...WEND ..3-181
WRITEPLC5BINARY() ..3-182
WRITEPLC5FLOAT() ..3-183
WRITEPLC5INTEGER() ...3-184
WRITESLC5BINARY() ..3-185
WRITESLC5FLOAT() ..3-186
WRITESLC5INTEGER() ...3-187
XOR ...3-188

APPENDIX A ..A-1

OPERATING AT 9600 BAUD..A-1

INDEX..I

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-1

1 950BASIC LANGUAGE
This chapter describes the overall structure of a 950BASIC program, and the
elements of the 950BASIC language. Topics covered are:

l scope
l program structure

− setup parameters
− global variables, constants and aliases
− ‘main’ program, subroutines, functions and interrupt handlers

l language description
− lexical conventions
− identifiers
− data types
− constants
− statements
− built-in functions
− pre-defined variables
− expressions
− function invocation
− $include
− arrays and parameter lists
− optimizations

1.1 950BASIC Program Structure
Local Variables The notion of ‘scope’ is a key concept in 950BASIC

programs. By ‘scope’, we mean those parts of the program
in which a particular name is ‘visible’. There are two
levels of scope in 950BASIC — global and local.
Variables (and constant definitions, aliases, etc.) defined
inside a ‘main’ definition, or a subroutine, function, or
interrupt handler definition, are considered to be ‘local’ in
scope (visible only within that function).

950BASIC Language Danaher Motion

1-2 MA950-LR

Global Variables All other definitions (those occurring outside functions)

are considered ‘global’ in scope (visible inside main, and
inside any subroutine, function, or interrupt handler). For
example, consider the following simple 950BASIC
program:

dim i as integer
main
dim i as integer
 for i = 1 to 10
 print “the cube of ”;i;" is “;cube(i)
 call increment
 next i
end main
function cube(i as integer) as integer
 cube = i * i * i
end function
sub increment
 i = i+1
end sub

This program prints a table of the cubes of the integers
from 1 to 10. The first (global) definition of ‘i’ is visible
inside subroutine ‘increment’, but ‘shadowed’ by the ‘i’
in main and function ‘cube’. The definition of ‘i’ inside
‘main’ is local to ‘main’, and is NOT the same variable as
the ‘i’ inside the function ‘cube’, or inside the subroutine
‘increment’. These same scope rules apply to constant
definitions and aliases, as well.

1.2 Program Sections
The major sections of a 950BASIC program are:

l setup parameter definitions
l global variables, constants, and aliases
l ‘main’ program, subroutines, functions, and interrupt handlers

Although these sections may appear in any order, we recommend that you keep
them in the order shown, or at least, choose a single layout style and use it
consistently.

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-3

Program
Template

The program below is an example of the template
generated automatically by 950IDE:

params
‘————— Parameter Values Header —————
‘ Drive: SC952
‘ Motor: R32G
‘ Performance Setting: Medium
‘ Inertia Ratio: 0
‘—————- params start ——————————
ARF0 = 150.000000
ARF1 = 750.000000
Commoff = 0.000000
ILmtMinus = 100.000000
ILmtPlus = 100.000000
ItThresh = 60.000000
Kip = 144.513255
Kpp = 15.000000
Kvi = 5.000000
Kvp = 0.059626
Polecount = 4
BDIOMap1 = Fault_Reset_Inp_Lo
BDIOMap2 = CW_Inhibit_Inp_Lo
BDIOMap3 = CCW_Inhibit_Inp_Lo
BDIOMap4 = 0
BDIOMap5 = Brake_Out_Hi
BDIOMap6 = Fault_Out_Hi
‘—————- params end ———————————
end params
‘————— Define (dim) Global Variables ——
‘————— Main Program ——————————-
main
end main
‘————— Subroutines and Functions ————
‘————— Interrupt Routines ———————-

These sections are described in greater detail in the following paragraphs.

950BASIC Language Danaher Motion

1-4 MA950-LR

Setup
Parameter
Definitions

This section of the program defines the power-on default
parameters for servocontroller tuning and configuration. It is
executed immediately upon power-up, before entering main,
and before any interrupts are enabled. The section begins
with the keyword params and ends with the keywords end
or end params (this is similar to the format used to define a
subroutine or function). The only statements permitted in
this section are assignment statements of the form:

<pre-defined variable> = <constant expression>

This section is automatically generated by 950IDE when
File|New is selected from the main menu. Ordinarily, you do
not need to modify the statements in this section — they are
automatically given optimal values based on the New
Program dialog, and should not be changed unless further
tuning is necessary.

Global
Variables,
Constants,
And Aliases

This section contains variables, constant definitions, and
global alias expressions — they apply everywhere in the
program, unless specifically overridden by another
declaration at local scope (inside a subroutine, function, or
interrupt handler). Global definitions may be placed almost
anywhere in the program text — between subroutines, before
or after ‘main’, and so on.

Global variables, constants, and aliases do not need to be
defined before use — the only requirement is that they be
defined at some point in the program text. You may have
multiple instances of the global variables section throughout
your program. However, as a matter of good programming
style, we recommend that you keep all global definitions in
one place, preferably at or near the beginning of your
program.

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-5

Variable
Definitions

The format of a global variable definition is:
dim a,b, as integer, x,y,z as float
dim ia(3,4) as integer
dim s1, s2 as string*80
dim sa(5,2) as string

Line 1 declares a and b as integers, x,y, and z as floats. Line
2 declares a 3 x 4 array of integers. Line 3 declares s1 and s2
as strings, each of length 80 Line 4 declares sa as a 5 x 2
array of strings, each with the default length of 32 characters.

In addition, global variables are specified as ‘nv’ to indicate
their values are retained when power is turned off. All other
global variables are automatically initialized when the
program begins (strings are set to empty, and floats and
integers are set to 0). There are no restrictions on the
ordering of volatile vs. non-volatile user-variables. For ease
of program maintenance, place all non-volatile variables
definitions in a single section at the beginning of the
program, and add new variables to the end of that section.

Constant
Definitions

The format of a constant declaration is:
<name> = <constant_expression>

as in
const ARRAY_SIZE = 4 * NUMBER_OF_ENTRIES
const PI_SQUARE = 3.1415926535 ^ 2
const GREETING = “Hello”
const SALUTATION = GREETING + “, world!”
const NUMBER_OF_ENTRIES = 5

Names for constants follow the same rules as variable names.
‘Forward definitions’ are allowed. Circular definitions are
detected and reported at compile-time. Although it is not
required, it is convenient to adopt a convention of keeping all
constants in UPPER_CASE, so you can easily distinguish
between constants and variables in the program.

Constant definitions are entirely ‘folded’ at compile-time.
Feel free to write maintainable constant expressions such as:

const LENGTH = 3
const WIDTH = 10
const AREA = LENGTH * WIDTH

The value of AREA is computed at compile-time, so the
program does NOT need to compute this at run-time and the
program is easier to maintain if LENGTH changes at some
future date.

950BASIC Language Danaher Motion

1-6 MA950-LR

Alias
Definitions

Aliases allow you to define your own names for system
resources, such as input / output pins. The intention is to
make it possible for you to use names that are meaningful to
you in your particular application. The format of an alias
expression is:

alias <name> = <expression>

For example, the following alias defines application-specific
uses of input # 1:
alias CONVEYOR_IS_RUNNING = (inp1=0)
alias CONVEYOR_IS_STOPPED = (inp1=1)
if CONVEYOR_IS_RUNNING then print “running” else print
“stopped”

An alias is much more powerful than a constant. Constant
expressions are computable at compile-time, while an alias
has a value that is only known (in general) at the time it is
used. Use aliases with care — too much aliasing can make it
very difficult for you to understand the program.

1.3 Main Program, Subroutines, Functions &
Interrupt Handlers

These sections share the same fundamental structure:
<section>
 <declarations>
 <statements>
<section end>

An example of each of these sections follows, with an explanation of key points.

Main
Definitions

For main, a typical definition is:
main
dim i as integer
 i = 1
 print i
end main

The variable ‘i’ defined above in the ‘dim’
statement is a local variable — it is not accessible
to other functions, and inside ‘main’, its
definition overrides any other variable named ‘i’
that might exist at global scope.

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-7

 Unlike global variables, local variables MUST be defined at
the beginning of the section — they must appear before any
executable statement in main. For example, the following is
illegal:

 main
dim i as integer
i = 1
dim j as integer ‘this is an error!
j = i
end main

You may also define local constant definitions and aliases,
provided that like local variables, they appear before any
executable statement. Local constant definitions override
global definitions of the same name. For example, given the
following global definitions,

const N = 1
main
const N = “Hello, world!”
print N
call sub1
end main
sub sub1
 print N
end sub
The program prints:
Hello world!
1

Because the N visible inside main is the constant defined
there, while the N visible to sub1 is the global constant N,
whose value is 1.

The main program is the section of your program that is
executed immediately after the‘params section, regardless
of its position in the program text. Other functions,
subroutines, and interrupt handlers are executed according to
the flow of control defined in the program.

main does not accept arguments, and cannot be called from
any other subroutine, function, or interrupt handler.

950BASIC Language Danaher Motion

1-8 MA950-LR

Subroutine
Definition

For a subroutine such as print_sum, a typical definition is:
sub print_sum(i,j as integer)
 print i+j
end sub

The arguments to this subroutine are specified as integer
variables, and are passed by value — any assignments to
these variables has no effect on the arguments supplied by
the caller. Subroutines are invoked by ‘call’ instructions, as
in call print_sum(3,4).

Function
Definition

For a function such as sum_squares, a typical definition is:
function sum_squares(i,j as integer) as integer
 sum_squares = i^2 + j^2
end function

The function above returns a value of type integer. The
value of the function is assigned by assigning to the name of
the function, as if it were a variable. However, it is not legal
to use the function name as a variable on the right-hand-side
of an assignment — a function name on the right-hand-side
is always an INVOCATION of that function.

There must be at least one statement in the function that
assigns a value to the function. It is not possible to detect at
compile-time if the statement will actually execute.
Functions are invoked by name, as in print
sum_squares(3,4).

This is syntactically identical to an array
reference.

Interrupt
Handler
Definition

For an interrupt handler such as i1hi, a typical definition is:
interrupt i1hi
 print “interrupt occurred on input 1"
 intri1hi = TRUE
end interrupt

The interrupt is re-enabled by the statement
intri1hi = TRUE. A similar statement must be
executed once before the interrupt is serviced. It
is a run-time error to attempt to enable an
interrupt for which no handler is defined.

 Interrupt handlers do not return values and cannot have
arguments. They declare local variables, constants, and
aliases. Interrupt handlers are invoked when the 950
hardware detects that the designated interrupt condition is
satisfied (provided that the interrupt is enabled).

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-9

1.4 Language Definition

Lexical
Conventions

950BASIC is case-insensitive. String literals are not
modified, but all other text is treated as if it were entered in
upper case. This means that the identifiers spin, Spin, and
SPIN all refer to the same entity.

Identifiers Identifiers are alphanumeric and must start with an
alphabetic character or underscore. In addition, they may
include the underscore character (‘_’) and dollar sign (‘$’).
Identifiers denote variables, functions, subroutines, and
statement labels, symbolic constants, and aliases. Identifiers
are a maximum of 40 characters. User-defined identifiers
may not include the period (‘.’). Use of a longer identifier is
a compile-time error. Several pre-defined variables that have
special forms:

predefvar {alpha} {alnum}* ‘.’ {alnum}*

alpha [A-Za-z_]

alnum [A-Za-z_0-9$]

Many of these pre-defined variables have alternate spellings
without the ‘.’ character, such as index.dist and IndexDist.
Although both forms are accepted for compatibility, the latter
form is preferred. Although 950BASIC is case-insensitive,
we recommend that you adopt a consistent naming
convention, such as IndexDist, and avoid having indexDist,
index.dist, and Indexdist in the same program.

Data Types The pre-defined types are INTEGER, FLOAT, and STRING.
LONG is used for INTEGER. SINGLE or DOUBLE are
used for FLOAT. INTEGER variables are 32-bit signed
integers. FLOAT variables are IEEE single-precision
floating point numbers. STRING variables are represented
internally as a maximum length, a current length, and an
array of ASCII characters (can contain null characters).

When a FLOAT result is assigned to an INTEGER variable,
or when a FLOAT argument is used where an INTEGER is
expected, the value is coerced to an integer before use.
Coercion from FLOAT to INT always rounds to the nearest
integer. For example:

1.2 rounds to 1
1.7 rounds to 2
-1.2 rounds to –1
-1.7 rounds to -2

950BASIC Language Danaher Motion

1-10 MA950-LR

 Scalar INTEGER and FLOAT coercion is automatically
provided for function arguments. When passing ARRAYS
as arguments, the types must match exactly because coercion
is prohibitively expensive at run-time.

String assignment is checked at run-time. An attempt to copy
a string to a destination too small results in a run-time error.
String indexing is 1-origin. For example, mid$(“abc”,1,1)
returns the string, a.

STRING variables have a firmware-imposed maximum
length of 230 characters and a default maximum length of 32
characters. They may be assigned a different maximum
length by declaring them to be of type STRING*n where n is
a positive integer between 1 and 230 (inclusive).

Declare arrays of the pre-defined types. Arrays have a
maximum rank of four dimensions. The upper-bound of
each dimension has no compiler-defined limit. However,
because of the limited data space of the controller, there is a
logical upper-bound that depends on the controller model.

Array indexing is 1-origin. The indices in each dimension
range from 1 to the upper-bound of the dimension. Every
reference to an array element is checked at run-time. Any
attempt to reference beyond the bounds of the array causes a
run-time error. New types cannot be defined.

Literal
Constants

String constants begin and end with the double-quotes (‘"’).
They cannot extend past the end of the input line. Any
printable ASCII character appears in a string constant. An
attempt to generate a string literal with non-ASCII characters
causes a compile-time error. No check is made to verify that
non-ASCII strings are not created at run-time, so avoid doing
so.

Decimal
Integer
Constants

Decimal integer constants are a string of decimal digits with
no decimal point. A leading ‘-’ sign is optional and is parsed
as a unary minus. For example:

1
-1
314159

are all valid decimal constants.

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-11

Hexadecimal
Constants

Hexadecimal constants are denoted by a leading &H or &h,
and cannot have a sign or decimal point. Hexadecimal
constants are composed from the set [0-9A-Fa-f]. Upper- and
lower-case may be mixed. For example:

&h00ff
&HFF00
&H1234abcd

are all valid hexadecimal constants.

Octal and binary constants are not supported.

Floating-
Point
Constants

Floating-point constants are specified in fixed-point or
mantissa-exponent notation. A floating-point constant
consists of one of the following.

digit [0-9]

optsign ‘+’ | ‘-’ | /* nothing */

fixed optsign {digit}+ ‘.’ {digit}*optsign ‘.’ {digit}+

exp fixed ‘e’ optsign {digit}+

float fixed | exp

For example:
0.1
.1
-.1
-0.1
3.14159E-6
-1.0E6

are all valid floating point constants.

By design, “.” is not a legal floating-point
constant.

950BASIC Language Danaher Motion

1-12 MA950-LR

1.5 Statements
Statements are separated by a new line (CR-LF) or a colon (‘:’). The statements
of the language are:

AbortMotion AbortMotion stops motor motion and allows continued
program execution. Deceleration is determined by the motor
torque capability in conjunction with the current limit
parameters.

Alias Alias <name> = <expression>

Create an alias for an identifier (not just any identifier). alias
is either a pre-defined variable or another alias. id must be a
legal variable name.

You cannot create an alias for an array element.

 Like Const definitions, Alias definitions can be made to
identifiers not yet defined. Circular definitions are not
allowed.

Any duplicate definition of an identifier in the
same scope is illegal. However, a local definition
can shadow a definition from the global scope.
Using a single identifier to denote two different
objects is NOT allowed (i.e., you cannot have
both a label and a variable named all_done).

 Like constant, variable, and function declarations, Alias
declarations made in the global scope are imported into all
functions (including the main function).

Example Alias speed = motor.speed ‘save some keystrokes

Beep Sends the ASCII character, &h7, to the serial port.

Call CALL sub[(arg1, arg2, ...)]

sub is the name of a subroutine. The current program
counter is saved and sub is invoked. When sub finishes (by
reaching either an exit sub or end sub statement, control is
returned to the statement logically following Call.

A subroutine is essentially a function with no return value.
The parameter passing conventions followed by subroutines
are the same as those followed by functions.

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-13

Cls This statement transmits 40 line-feed characters (ASCII code
= 10) to the serial port. Cls clears the display of a terminal.

Const Const name = x

Declares symbolic constants to be used instead of numeric
values. Forward references are allowed, but circular
references are not supported.

CONST x = y + 2
CONST y = 17

unsupported
CONST x = y + 2
CONST y = x - 2

Like alias, variable, and function declarations, Const
declarations made in the global scope are imported into all
functions (including the main function).

Dim Dim var1 [, var2 [...]] as type [NV]

All variables must be declared. Local variables must be
declared in the function before use. Global variables are
defined in the module after use in a function (as can functions).

The NV specifier is used on a Dim statement in the global
scope, in the main function, or a Static statement in function
scope.

Variables in the global scope are automatically imported into
functions and subroutines. Variables in function scope
(including inside the main function) are not accessible in other
functions.

Arrays cannot be assigned directly (i.e., the following is not
allowed):

DIM X(5), Y(5) AS INTEGER
X = Y

Instead, a loop is needed:
DIM X(5), Y(5), I AS INTEGER
 FOR I = 1 to 5
 X(I) = Y(I)
 NEXT I

Exit Exit {{Sub|Function|Interrupt|For|While}]

Exits the closest enclosing context of the specified type. It is a
compile-time error to EXIT a construct not currently in scope.

950BASIC Language Danaher Motion

1-14 MA950-LR

For…Next For loop_counter = Start_Value To End_Value [Step increment]

...statements...

Next

If step increment is not specified, uses 1 as the step increment. If
step increment is positive, continues to the value of End_Value.
If step increment is negative, continues to the value of var =
limit.

The loop index variable must be a simple identifier,
not an array element or a pre-defined variable and
must be a numeric variable (integer or float).

 The semantics of a For loop are defined in terms of the
following transformation:

FOR var = init TO limit STEP delta
 stlist
NEXT var
becomes:
var = init
delta_val = delta
limit_val = limit
test:
IF delta_val 0 AND var limit_val THEN
 GOTO done
ELSEIF delta_val 0 AND var limit_val THEN
 GOTO done
ENDIF
stlist
var = var + delta_val
GOTO test
done:

...

Substantially more efficient code is generated if
delta is a constant (i.e., the default value of 1 is
used, or specified as an expression that is evaluated
at compile-time).

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-15

Function Function function-name [(argument-list)] as function-type
...statements...
End Function

On function entry, all local variable strings are “” and all
numeric locals are zero (including all elements of local arrays).

If the function takes no arguments, omit the paramlist. An empty
paramlist is illegal.

The value returned from the function is specified by assigning
an identifier with the name of the function.

Example FUNCTION cube(x AS FLOAT) AS FLOAT
 cube = x * x * x
END FUNCTION

Arguments are passed by value.

Arrays can not be returned by a function. Arrays
passed to a function are passed by value.

 If the return value is not set, a runtime error condition is
generated (caught with ON ERROR).

Array actuals must conform with formals to the extent that they
have the same number of dimensions, and EXACTLY the same
type. The size of each dimension is available to the function
through the use of local constants that are bound on function
entry.

Example FUNCTION sum(x(N) AS INTEGER) AS INTEGER
 DIM i, total AS INTEGER
 sum = 0
 FOR I = 1 TO N
 total = total + x(i)
 next
 sum = total

END FUNC
 This function exploits the fact that the variable N is

automatically assigned a value when the function is called and
the value is the extent of the array passed on invocation. N is a
read-only variable in this context. Attempts to write to N cause
compile-time errors.

The local variable, total is automatically initialized
to 0 upon function entry.

950BASIC Language Danaher Motion

1-16 MA950-LR

GoAbs GoAbs (Go Absolute) moves the motor to the position specified
by TargetPos. This position is based on a zero position at
electrical home.

The motor speed follows a velocity profile as specified by
AccelType, AccelRate, and DecelRate . Direction of travel
depends on current position and target position only (DIR has no
effect).

After the program initiate GoAbs, it immediately
goes to the next instruction.

 Change variables during a move using UpdMove.

GoHome GoHome moves the motor shaft to the electrical home position
(Position = 0).

The motor speed follows a velocity profile as specified by
AccelRate, RunSpeed, and DecelRate.

After the program initiates GoHome, it immediately
goes to the next instruction.

 GoHome performs the same action as setting TargetPos to zero
and executing a GoAbs function.

GoIncr GoIncr (Go Incremental) moves the motor shaft an incremental
index from the current position.

Distance, as specified in IndexDist, is either positive or negative.
The motor speed follows a trapezoidal velocity profile as
specified by AccelType, AccelRate, RunSpeed, and DecelRate.

The program does not wait for motion completion.
After the program initiates this move it immediately
goes to the next instruction.

 Change variables during a move using UpdMove.

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-17

GoVel GoVel (Go Velocity) moves the motor shaft at a constant
speed.

The motor accelerates and reaches maximum speed as
specified by AccelRate and RunSpeed, with direction
determined by DIR. Stop motion by:

l Programming AbortMotion for maximum deceleration
allowed by current limits.

l Programming RunSpeed = 0 for deceleration at rate
set by DecelRate.

After the program initiate GoVel, it
immediately goes to the next instruction.

 Change variables during a move using UpdMove.

GoTo GoTo label

A program can only GoTo a label in the same
scope. A GoTo may jump out of a For or While
loop, but not INTO one.

If…Then…Else IF condition1 THEN
...statement block1...
[ELSEIF condition2 THEN
...statement block2...]
[ELSE
...statement block3...]
END IF

IF...THEN...ELSE statements control program execution
based on the evaluation of numeric expressions. The
IF...THEN...ELSE decision structure permits the execution
of program statements or allows branching to other parts of
the program based on the evaluation of the expression.

There are two structures of IF...THEN...ELSE statements,
single line and block formats.

$Include $INCLUDE inclfile
$Include include-file-name

Textually include inclfile at this point in the compilation.

There can be no space between $ and include.
The $include directive must start at the
beginning of the line.

950BASIC Language Danaher Motion

1-18 MA950-LR

Input Input [prompt-string][,|;]input-variable

Input reads a character string received by the serial
communications port, terminated by a carriage return.

As an option, the prompt message is transmitted when the
Input statement is encountered. If the prompt string is
followed by a semicolon, a question mark is printed at the
end of the prompt string. If a comma follows the prompt
string, no question mark is printed.

Interrupt …
End Interrupt

Interrupt {Interrupt-Source-Name}
..program statements...
End Interrupt

Interrupt handlers can be located anywhere in the program text
(e.g., before main).

Laninterrupt[] Laninterrupt ‘[‘axis‘]'
Laninterrupt invokes an interrupt to the PacLAN controller
specified by [AXIS#].

This command is only available with PacLAN
controllers.

On Error GoTo On Error Goto Error-Handler-Name

or

On Error Goto 0

When a firmware runtime error condition occurs, Error-
Handler-Name is called, the error handler is de-installed,
and an internal flag (in-error-handler) is set. Any
subsequent runtime error (including attempting to set the
error handler, or return from the On Error handler) causes
an immediate Stop.

On Error Goto 0 disables the current On Error handler. If an
error occurs when no error handler is installed, Stop is
invoked.

Pause() Pause(Pause_Time) causes the program to pause the
amount of time specified by the Pause_Time argument.
The motion of the motor is not affected.

This implementation differs from the SC750.

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-19

Print Print expression1 [[,;] expression2] [;]

Print a list of expressions, separated by delimiters. Any number
of delimiters (including zero) can appear before or after the list
of expressions. At least one delimiter must appear between each
pair of expressions in the print list.

Expressions are optional.

Example PRINT ‘ print a newline
PRINT , ‘ advance a single tab stop
PRINT a,b ‘ print a and b, tab between
PRINT a,b, ‘ print a and b, tab between and at end
PRINT ,,,x,,, ‘ tab tab tab x tab tab tab

Restart Restart clears the run time error variables and causes program
execution to start again from the beginning of the program. Any
Interrupts, Subroutines, WHEN statements or loops in process
are aborted. This statement is used to continue program
execution after a Run Time Error Handler or to abort from
WHEN statements without satisfying the condition.

Restart does not clear the data area or change any
program or motion variables.

950BASIC Language Danaher Motion

1-20 MA950-LR

Select Case Select Case test-expression
Case expression-list1
...statement block1...
Case expression-list2
...statement block1...
Case expression-list3
...statement block1...
Case Else
...else block...
End Select

test-expression must evaluate to an INTEGER or FLOAT
value.

expression-list1 is a non-empty list of case-defn, separated by
commas.

There can be only one Case Else and, if present, it must
appear as the last case. It is selected only if all other tests fail.

case-defn can be any of the following:
expr
expr TO expr (tests inclusive (closed range))
IS relop expr (<, £, =, ³ , >)
IS expr (equiv to “IS = expr”)

Select-case statements where the case-defn
expressions are composed solely of integer
constants are evaluated much quicker at run-time.
(Cases involving variables must be transformed to
logically equivalent if-then-else statements.)

Static Restart clears the run time error variables and causes program
execution to start again from the beginning of the program.
Any Interrupts, Subroutines, WHEN statements or loops in
process are aborted. This statement is used to continue
program execution after a Run Time Error Handler or to abort
from WHEN statements without satisfying the condition.

Stop Stops the execution of the program.

Sub…End
Sub

Sub [argument-list]
...body of the sub-procedure...
End Sub

Declare a subroutine. Invoked via Call. Optionally takes
arguments. As with Function, it is illegal to provide an empty
parameter list (‘()’) if the subroutine takes no parameters.

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-21

Swap Swap x, y
Swaps the values of the variables. The variable types must
be the same. Does not work on arrays or strings.

UpdMove UpdMove (Update Move) updates a move in process with
new variables. This allows you to change motion “on the
fly” without having to stop and restart the motion function
with new variables.

When When when-condition , when-action

When is used for very fast output response to certain input
conditions. You specify the condition and action. Upon
encountering When, program execution waits until the
defined condition is satisfied. The program immediately
executes the action and continues with the next line of the
program.

The When statement provides latching of several variables
when the When condition is satisfied. These variables are:

WhenEncpos WhenRespos

WhenPosCommand WhenTime

WhenPosition

The software checks for the defined condition every 0.5 millisecond
and performs the action within 0.5 ms of condition satisfaction.

While…Wend While condition
...statement block...
Wend

While...Wend tells the program to execute a series of
statements as long as an expression after the While statement
is true.

If the expression is true, the loop statements between While
and Wend are executed. The expression is evaluated again
and if the expression is still true, the loop statements are
executed again. This continues until the expression is no
longer true. If the expression is not true, the statement
immediately following the Wend statement is executed.

950BASIC Language Danaher Motion

1-22 MA950-LR

1.6 Built-in Functions
A function that takes a numeric argument (either FLOAT or INTEGER) returns
the same type. Coercion between INTEGER and FLOAT is not performed
unless necessary. (notation — the arguments n and m refer to INTEGER types,
as in the definition of the MID$ function, whose signature is MID$(string,
integer, integer).

Name Args Return Semantics

ABS numeric numeric absolute value
ATAN float float arc tangent (radians)

CINT numeric int truncate (round to nearest int)
COS float float cosine

EXP float float e ^ arg, arg 88.02969 (o/w overflow)

FIX numeric int truncate (round toward zero)
INT numeric int truncate (round towards -INFINITY)

LOG float float natural log

LOG10 float float log base 10
SGN numeric integer sign of argument: -1, 0, 1

SIN float float sine (radians)

SQR float float square root of arg
TAN float float tangent (radians)

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-23

String function Description

ASC string int ASCII code for 1st char

CHR$ int string One-character string containing the
character with the ASCII code of arg.
If arg 255, returns CHR$(arg % 256).

HEX$ int string Printable hexadecimal rep of arg
(without leading &H).

INKEY$ string One-character string, read from serial
port.Returns “” if no char available.

INSTR [pos],str1,str2 int Index of str2 in str1, or 0 if not found.
Optional first arg specifies where to
start search (defaults to position 1).

LCASE$ str str Returns lower-case copy of arg.

LEFT$ str,n str Returns n leftmost chars of str.

LEN str int Returns length of str in bytes.

LTRIM$ str str Trim leading spaces.

MID$ str,n[,m] str Returns substring starting at position
n [for up to to m bytes].

OCT$ n str Octal string representation of arg.

RIGHT$ str,n str Rightmost n chars of str.

RTRIM$ str str Trim trailing spaces.

SPACE$ n str Returns a string of n spaces.

STR$ n str Decimal string representation of str.

STRING$ n,str str Return n copies of first char of str.

STRING$ n,ch str Return n copies of char.

TRIM$ str str Trim leading AND trailing spaces.

UCASE$ str str Returns upper-case copy of arg.

VAL str numeric Returns numeric value of str.

950BASIC Language Danaher Motion

1-24 MA950-LR

Pre-defined
Variables
and
Commands

The 950BASIC language is augmented by a set of pre-
defined variables, whose purpose is to set motor-specific
control parameters, and by a set of‘pre-defined commands,
whose purpose is to control the motor.

For example, AccelRate, DecelRate, and RunSpeed are used
to set the acceleration rate, deceleration rate, and
commanded motor speed for the next commanded move:

AccelRate = 1000.0
DecelRate = 1000.0
RunSpeed = 500.0
GoVel

The program fragment above sets up the relevant motion
parameters, and commands the motor to move in velocity
mode.

You cannot create variables (or function names, etc.) that
shadow pre-defined ones. For a complete list of pre-defined
variables and commands, refer to the detailed Language
Reference section in this manual.

1.7 Expressions

Arithmetic
Expressions

Arithmetic expressions (expressions involving INTEGER
and FLOAT values) use the following operators.

Operators higher in the table have greater
precedence than those below.

Numeric
Operators

Operator Assoc Name

^ right exponentiation

- right unary minus

* left multiply

/ left divide

MOD left modulo

+ left add

- left subtract

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-25

Logical
Operators

Operator Assoc Explanation

=, < >, ³ , £, <, > left the usual

NOT, BITNOT right not, boolean not

AND, BITAND left and, boolean and

OR, BITOR, XOR,
BITXOR

left or, boolean or, xor,
boolean xor

Logical expressions (as, for example, in the condition of an
‘if’ statement) also use these operators. Strings are
concatenated with the ‘+’ operator. Logical expressions are
formed from strings, using the comparison operators, NOT,
AND, OR, and XOR, with the meaning of an empty string
being FALSE, and a non-empty string being TRUE.

Integer values are coerced to floating point values as needed.
Floating-point values are rounded when coerced to integer
values.

950BASIC Language Danaher Motion

1-26 MA950-LR

 Logical operators are NOT short-circuiting (i.e., when
executing the code).
if a(x) or b(y) or c(z) then ...
if a(x) is true, b(y) and c(z) are still invoked.

BITxxx boolean operators are provided to support bitwise
operations on integer values. They operate quite differently
from their logical equivalents. For example:

2 and 1 has the value –1
(TRUE, since each operand is ‘true’),

but

2 bitand 1 has the value 0
(since no matching bits are 1).

Similarly,

3 or 4 has the value –1
(TRUE since at least one operand is not FALSE),

while

3 bitor 4 has the value 7
(the three lsb’s are set).

Remember that relational and logical operators return
numeric values — 0 for FALSE and -1 for TRUE. Any
value not equal to FALSE is considered to be logically
equivalent to TRUE for purposes of the logical operators.

It is syntactically incorrect to code:

DIM a, b, c, x AS INTEGER
x = a < b < c

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-27

String
Operators

Operator Assoc Name
<, >, £, ³ nonassoc string comparisons
=, <> nonassoc string comparisons
 left string concatenation

There is no implicit coercion between strings and numeric
types.
String comparison is case-sensitive. Relative comparisons
are made using ASCII lexical ordering. The empty string
sorts before all other strings.
String comparison operators are non-associative because
they evaluate to a numeric value.

Example It makes no sense to say a$ = b$ = c$.
It is sensible to say x = a$ = b$
x is assigned the value TRUE if a$ is the same as b$, and
FALSE otherwise.

1.8 Function Invocation
A function invocation is denoted as:

var = func(arg1, arg2, ..., argn)

The arguments are passed by value (i.e., modifications made to the formal
parameters inside a function are not reflected in the actuals). Arrays are also
passed by value to functions. Arrays cannot be returned by a function. A
function of no arguments is invoked by using the function name alone. For
example, if func_none takes no arguments, then func_none is correct and
func_none() is invalid.

The return value of a function may not be ignored by the caller. If the return
value of a function is regularly ignored, the function should be rewritten as a
subroutine (a function with no return value).

$INCLUDE Use $INCLUDE to textually include one file in another. The
$INCLUDE facility is a simple, powerful way to create a
consistent family of applications. By including source files
containing commonly used functions, subroutines, constant
definitions, aliases, etc., you have control over the source for
each application. When you change the source, you update
each application simply by recompiling (see Optimizations).

A file cannot include itself, either directly or indirectly.
Include file nesting is allowed, but limited to a pre-defined
maximum depth (currently 16).

950BASIC Language Danaher Motion

1-28 MA950-LR

 The path of an include file is relative to the directory of the
included file, not the current working directory of the
compiler. Suppose, for example, the source program is in
directory C:\WORK, and includes the file .C\H\HEADER,
and the file HEADER includes COMMON. The compiler
looks for COMMON in C:\H, not in C:\WORK.

C:\WORK
 A.BAS
 $INCLUDE “..\H\HEADER”
C:\H
 HEADER
 $INCLUDE “COMMON”

Compilation errors occur when a file is included multiple
times. For example, if B.BAS includes files MATH and
INCL, and INCL also includes MATH, MATH is included
twice, causing a compile-time error.

B.BAS
 $INCLUDE “MATH”
 $INCLUDE “INCL”
INCL
 $INCLUDE “MATH”

1.9 Arrays and Function Parameter Lists
When an array parameter (formal) of a function or subroutine is declared, the
number of dimensions is specified, but the extent of (number of elements in)
each dimension is not specified. This allows the programmer some freedom
when invoking such a function.

For example, a function may be defined to take a one-dimensional array and
compute the sum of the elements in the array. A single function can be written to
take a one-dimensional array of any size and correctly compute the sum.

(Because 950BASIC checks array bounds at run time on each access, there is no
risk that a function will read or write outside the bounds of the array.)

When a formal parameter to a function is an array, instead of specifying the
extent of each dimension, a list of variables is used to both implicitly specify the
number of dimensions and to hold the extent of each dimension. These variables
are read-only and cannot be modified within the function.

Adopt a convention for assigning names to placeholders. One such convention
is to use the name of the array with a numerical suffix. For example,

function f(a(a1,a2,a3) as integer) as integer

where a1, a2, and a3 are the variables that get the extents of the array, a.

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-29

The function f above would be called as follows:
dim x_array(3,4,5) as integer
dim y_array(1,2,10) as integer
print f(x_array()) + f(y_array())

In both invocations of f, the function correctly determines the extent of each
dimension of the passed array.

Remember that when passing an array to a function, the type of the array must
match EXACTLY with the type expected by the function. Unlike scalar
arguments (implicitly coerced from float to int or int to float), arrays are NOT
coerced. An attempt to pass an integer array to a function that expects a float
array results in a compile-time error.

Optimizations As mentioned in an earlier section, constant definitions are
completely ‘folded’ at the point of definition. This is
efficient code. Constant expressions inside 950BASIC
statements are also folded under certain conditions. For
example, in the statement:

const PI = 3.1415926535
main
 print PI^2
end main

The value of PI^2 is not computed at run-time. It is
detected as a constant value and pre-computed by the
compiler as a single literal constant to be printed.

Similarly, the literal constant 3*4*PI in
x = 3 * 4 * PI * x

is folded at compile-time, leaving only one multiplication
to be performed at run-time.

However, certain constant expressions are not folded. For
example:

x = 3 * PI * x * 4
is computed at run-time, involving 3 multiplications
because the analysis of constant expressions does not
attempt to exploit algebraic commutativity laws. Since
the basic arithmetic operators are ‘left associative’, you
can ensure the best performance by grouping constant
factors together towards the left (or using a new
constant definition).

950BASIC Language Danaher Motion

1-30 MA950-LR

 If a function is not referenced (transitively from MAIN, plus
any interrupt handlers), the compiler does not generate code
for it. So, you can freely $include libraries with unused
code (e.g., a comprehensive library containing functions
supporting several possible axis configurations). Although
the compiler parses and type-checks all the included source,
it does not generate code into the downloaded program.

If select-case cases are all constants, more efficient code is
generated. If a case is a variable, the generated code is
equivalent to a string of if-then-else statements for all cases.

If any of the cases is an open-ended range (e.g., is 10), or
covers a large range (e.g., 1 to 1000), a fast table-lookup is
generated.

If all of the cases are constant, and can be grouped into
locally dense subsets, the fastest possible code is generated
— a binary search of dispatch tables, followed by an
indirect jump through the table. If speed is a consideration,
keep your cases constant and close together. (values form a
reasonably dense set.)

The compiler performs limited dead-code elimination based
on simple constant analysis. For example:

const DEBUGGING = FALSE
main
dim i, sum as integer
 for i = 1 to 10
 sum = sum + i
 if DEBUGGING then print “partial sum is ”;sum
 next i
end main

Since the value of DEBUGGING is FALSE, the compiler
recognizes that the printing of the partial sum never happens
and does not generate the print statement. This allows you
to place debugging code in strategic locations in your
programs and effectively disable it when shipping a
production version (shrinks the size of the generated code).

This dead-code elimination also applies to functions whose
only point of reference lies in eliminated code. The
functions themselves become dead-code and no code is
generated for their definitions.

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-31

 The compiler does not eliminate the print statement from
the following program:

dim DEBUGGING as integer
main
dim i, sum as integer
 DEBUGGING = FALSE
 for i = 1 to 10
 sum = sum + i
 if DEBUGGING print “partial sum is ”;sum
 next i
end main

In this case, the print statement never executes, but the code
to implement is generated because the value of the integer
DEBUGGING could be changed by the 950’s Integrated
Development Environment Debugger at runtime, causing
the print statement to be executed!

1.10 PACLAN
PACLAN is a local area network (LAN) providing high-speed (2.5 MBaud)
inter-axis serial communication between Pacific Scientific SC950 single-axis
programmable position controllers. The PACLAN provides support for up to
255 SC950 controllers. Information is passed between any two axes on a peer-
to-peer basis. This capability is supported by specific features built into the
BASIC language on the OC950.
PACLAN connectivity is an option and is only available on the OC950-503-01
and OC950-504-01 and OC950-603-01 and OC950-604-01 models. Use
ModelExt to determine what type of OC950 you have.
Pre-defined variables on any other SC950 connected to the PACLAN are read
using PACLAN. You can also generate interrupts on any of those axes, causing
them to perform specific actions.

Configuration Implementing a PACLAN network involves the following
simple steps:

l Configure each SC950 on the PACLAN with a unique
address using the address selection DIP switch on the
OC950 card.

l Connect the SC950s with RG62 coax cable,
terminating it at both ends with a 93 W terminator.

l Develop programs for the axes that incorporate inter-
axis communications.

See Section 3.5 in MA950 - 0C950 Hardware and
Installation Manual for cabling and hardware
information.

950BASIC Language Danaher Motion

1-32 MA950-LR

Reading
and Writing
Pre-defined
Variables

PACLAN provides interaxis communication of the pre-defined
variables and PACLAN array variables. Inter-axis pre-defined
variables are used in the same manner as local pre-defined
variables. The SC950 accesses the variables over PACLAN.

Within a program, all off-axis variable accesses require the
variable name to be appended with the axis address in square
brackets. Axis designation is not required for on-axis variable
usage.

Accessing
Pre-defined
Variables
Over
PACLAN

PACLAN provides read/write access to all pre-defined
variables on all SC950s connected to the PACLAN. Use care
in writing to pre-defined variables on another axis because
extensive use of this capability leads to programs that are
difficult to debug.

Each SC950 contains two uncommitted variable arrays
(LANFlt and LANInt) specifically intended for inter-axis
communications. These array variables also have read-write
capability. See LANFlt() and LANInt().

Attempting to read from or write to a controller not
present on the PACLAN results in a run-time error
on the initiating controller. Use the pre-defined
variable Status[Axis #] to determine if an axis is
present on the PACLAN.

Example PACLAN accesses any pre-defined variable on any other axis
by appending the axis address in square brackets after the
variable name.

For instance, to set the variable x equal to the value of Velocity
on axis 3, use:

x = Velocity[3]

To set index distance on axis 5 equal to 10,000 counts, use:

IndexDist[5] = 10000

Pre-defined variables with an axis specifier are used wherever any
other variables are used, with the exception of the WHEN statement.

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-33

LANInt() and
LANFlt()
Arrays

Two general purpose read/write variable arrays (one integer,
one floating point) are available for user-defined inter-axis
message passing. There are 32 elements in each array. These
arrays are pre-defined variables with no pre-defined
functionality. The integer array syntax is designated as:

x = LANInt(y)[n]
LANInt(y)[n] = x

where y is the array element (1-32) and n specifies the axis
address containing the LAN array. The floating point array
syntax is designated as:

x = LANFlt(y)[n]
LANFlt(y)[n] = x

where y is the array element (1-32) and n specifies the axis
address containing the LAN array. For additional informationm
see LANint() and LANFlt().

PACLAN
Interrupts

PACLAN sends interrupts from a source axis to a destination
axis. To send an interrupt to a program running on another
axis, use SendLANInterrupt. This function allows you to
specify the axis address of the program to which the interrupt is
being sent. SendLANInterrupt allows you to send an integer
argument along with the interrupt.

The receiving axis must have a PACLAN interrupt handler
defined or SendLANInterrupt fails. There is a queue on each
axis allowing each axis to buffer PACLAN interrupt requests.

Example If axis 3 receives an interrupt from axis 5, it automatically
jumps to a PACLAN interrupt handler and starts servicing the
PACLAN interrupt. If axis 3 receives a PACLAN interrupt
request from axis 2 before the request from axis 5 is complete,
it buffers that request and services it after the request from axis
5. This queue holds 32 interrupt requests.

1.11 ModBus

The following functionality applies only to OC950s with Enhanced
Firmware. Standard OC950s are are not capable of communicating
on a ModBus network.

ModBus is a serial (RS232 or RS485) communications protocol consisting of
one master and multiple slaves. The ModBus master initiates all transactions on
the ModBus network. These transactions consist primarily of messages to read
the values of data on a slave or to write new data values to a slave. The ModBus
slaves generates responses to messages initiated by the master.

950BASIC Language Danaher Motion

1-34 MA950-LR

An OC950 is configured to operate as either a ModBus master or slave. In either
case, there must be a program running on the OC950 for it to communicate on
ModBus. When there is no program running on the OC950, the OC950
communicates using its native protocol.
ModBus Register
and Data Types

There are two fundamental data types defined by
ModBus: bits and registers

Bits Bits are one bit of information. Bits are located at
addresses 1-9999 (0x references) and 10001-19999 (1x
references) in the ModBus address space. In ModBus
terminology, bits are either coils (0x references) or
inputs (1x references). Inputs are read-only while Coils
are read-write.

An MMI or touchscreen uses a bit reference to read the
value of the OC950’s Moving pre-defined variable or to
write a new value to the Dir variable.

Registers Registers contain 16 bits of information. In the ModBus
address space, registers are located at addresses 30001-
39999 (3x references) and 40001-49999 (4x references).
In ModBus terminology, registers are either Input
Registers (3x references) or Holding Registers
(4x references). Input Registers are read-only while
Holding Registers are read-write.

Examples of using register references include an MMI
or touchscreen using a register reference to read the
value of Velocity or write a new value to IndexDist.

Floating-Point and
32 bit Integer
Registers

There are two additional register data types which, while
not explicitly defined by ModBus, are supported by
many ModBus devices. These are 32-bit integer registers
and 32-bit IEEE floating-point registers. Each of these
extended types uses two adjacent 16-bit registers to hold
the 32-bit value. The OC950 supports 32-bit integers
and 32-bit floating-point as both a master and slave. The
word-order of the two adjacent 16-bit registers are
combined to form the extended type is configurable
using MB32WordOrder and MBFloatWordOrder.

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-35

Using an OC950
as a ModBus
Slave

Set up the OC950 as a ModBus slave to allow a ModBus
master, such as a touchscreen or an MMI, to read and/or
write values on the OC950. Configuring an OC950 to
operate as a ModBus slave consists of adding the
following items to your program:

1. An MBInfo block to map pre-defined variables
and/or user-global variables to specific ModBus
addresses.

The MBInfo block contains multiple $MBMap<xxx>
statements that specify this mapping. You can use
the ModBus Map Wizard in the 950 IDE to assist
you in creating this map. There is also an example
program MBDEMO.BAS in the examples directory
(\950win\examples) that contains a complete MBInfo
block.

2. Adding a line to set RuntimeProtocol to 2 (ModBus
Slave).

You must set RuntimeProtocol to 2 to tell the OC950
to operate as a ModBus slave. After you set this, the
OC950 responds to ModBus messages (both read
and write), without any intervention from the user
program.

Keep in mind the following when configuring an
OC950 as a ModBus slave:

− the OC950 baud rate must match the master’s.
See BaudRate variable.

− the OC950 parity must match the master’s. See
RuntimeParity.

− the OC950 supports 1 start bit, 8 data bits and 1
stop bit

− the OC950 does not require or support
hardware handshaking. If the master requires
it, defeat it on the master.

− 255 is not a valid ModBus slave address.
Setting RuntimeProtocol to 2 with an AxisAddr
of 255 causes Runtime Error 38.

950BASIC Language Danaher Motion

1-36 MA950-LR

Using an OC950
as a ModBus
Master

The ModBus Master functionality allows an OC950 to
communicate with one or more ModBus slaves. Use an
OC950 as a ModBus master to communicate with a
Modicon PLC or some other device that operate only as
a ModBus slave. As ModBus master, the OC950
initiates all traffic on the ModBus network.

To use an OC950 as ModBus master, set
RuntimeProtocol to 3 (ModBus Master) and use any of
the eight ModBus functions and statements to implement
ModBus master functionality. If try to use one of these
functions or statements without first setting
RuntimeProtocol to 3, you’ll get Runtime Error 37.

 There are four ModBus statements added to the OC950
BASIC language to allow the OC950 to operate as a
ModBus master to write data to a ModBus Slave. These
are:

MBWriteBit(a, b, c) write a bit
 (0x or 1x reference)

MBWrite16(a, b, c) write a 16 bit integer
 (3x or 4x reference)

MBWrite32(a, b, c) write a 32 bit integer
 (double 3x or 4x reference)

MBWriteFloat(a, b, c) write a float
 (double 3x or 4x reference)

where, in each case:

a is the slave’s ModBus address
b is the register address where the data is to be written
c is the new data

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-37

 There are four ModBus functions added to the OC950
BASIC language to allow the OC950 to operate as a
ModBus master to read data from a ModBus slave. These
are:

x = MBReadBit(a, b) read a bit
 (0x or 1x reference)

x = MBRead16(a, b) read a 16 bit integer
 (3x or 4x reference)

x = MBRead32(a, b) read a 32 bit integer
 (double 3x or 4x reference)

x = MBReadFloat(a, b) read a float
 (double 3x or 4x reference)

where, in each case:

a is the slave’s ModBus address
b is the register address containing the data being read

 When one of these functions or statements is executed in
your program, the OC950 sends a ModBus message to the
specified slave and waits to process the response message.
If any error occurs while sending or receiving the message,
it is indicated in the variable MBErr.

ModBus master statements and functions cannot be nested.
If you get an interrupt while waiting for the response to a
ModBus master message, you cannot initiate another
ModBus transaction (by executing one of the eight
ModBus functions or statements) in the interrupt service
routine. If you try, you generate Runtime Error 36.

Keep in mind the following when configuring an OC950
as a ModBus master:

− the OC950 baud rate must match the slaves’. See
BaudRate variable.

− the OC950 parity must match the slaves’. See
RuntimeParity.

− the OC950 supports 1 start bit, 8 data bits and 1
stop bit

− the OC950 does not require or support hardware
handshaking. If a slave requires it, defeat it on the
slave.

950BASIC Language Danaher Motion

1-38 MA950-LR

ModBus
Reference

Refer to the following items in the reference section for
additional information on ModBus:

Item Used for Master or Slave?

BaudRate Both

MB32WordOrder Both

MBErr Master

MBFloatWordOrder Both

MBInfo Block Slave

MBMap16 Slave

MBMap32 Slave

MBMapBit Slave

MBMapFloat Slave

MBRead16 Master

MBRead32 Master

MBReadBit Master

MBReadFloat Master

MBWrite16 Master

MBWrite32 Master

MBWriteBit Master

MBWriteFloat Master

RuntimeParity Both

RuntimeProtocol Both

1.12 Allen-Bradley DF1 Communications
Protocol

The following functionality applies only to OC950s with Enhanced
Firmware. Standard OC950s are are not capable of communicating
on an Allen Bradley Communications network.

Allen-Bradley DF1 is a communications utility based on the DF1 peer-to-peer
communications protocol. The functionality allows the SC950 to communicate
with other devices supporting AB DF1on a peer-to-peer basis.

The SC950 is capable of responding to messages initiated by other devices
(unsolicited commands) as well as initiating messages to read and write registers
on other devices (solicited commands).

The SC950 support communications with the following Allen-Bradley PLCs.
l SLC500 family of processors — both solicited and unsolicited commands.
l PLC5 family of processors — solicited commands only (the SC950 can

initiate read/write commands, but does not respond to read/write commands
initiated by the PLC5).

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-39

Other devices supporting Allen Bradley DF1 Serial Communications protocol
may be able to communicate with the SC950.
Procedure To establish Allen-Bradley DF1 communications between the

SC950 and another device:
1. The SC950 comm port (J51) must be properly wired to the

other device.
2. All the software communication settings on both devices

must match. For more detail, see ABCrc, BaudRate, and
RuntimeProtocol. In general, the following settings are
appropriatey for AB DF1..

 SC950 Other Device
Mode RunTimeProtocol = 5 * Full Duplex *
BaudRate 19200 19200
Data Bits n/a 8 *
Stop Bits n/a 1 *
Parity Parity = 0 None
Error Detect ABCrc = 1

ABCrc = 0
CRC
BCC

* This parameter must be set to the value (setting) indicated.
Related
Instructions

The 950BASIC language supports Allen-Bradley DF1
communications using the following commands / functions:

ABInfo Block
ReadPLC5Binary
ReadPLC5Float
ReadPLC5Integer
ReadSLC5Binary
ReadSLC5Float
ReadSLC5Integer
WritePLC5Binary
WritePLC5Float
WritePLC5Integer
WriteSLC5Binary
WriteSLC5Float
WriteSLC5Integer

950BASIC Language Danaher Motion

1-40 MA950-LR

Diagnostic
Variables

There are several “diagnostic” counters maintained by the
OC950 firmware as it processes Allen-Bradley DF1 messages.
They can be helpful in diagnosing problems in setting up or
maintaining an Allen-Bradley DF1 application. The variables
and a brief expanation are shown below:

Variable Explanation

ABAcksRcvd # of message ACKs received
ABAcksSent # of message ACKssent
ABAckTimeouts # of messages received without an ACK
ABDupMsgs # of duplicate messages discarded
ABErrCount # of times ab_error(..) called
ABMsgsRcvd # of messages received
ABMsgsSent # of messagessent
ABNaksRcvd # of message NAKs received
ABNaksSent # of message NAKs sent
ABRspTimeouts # of messages received without a response
ABTXQMax max # of outbound messages stacked up
ABUnsRsps # of unsolicited ‘response’ messagesreceived

ACK = Acknowledgement — received message is valid
(correct CRC\BCC and frame).

NAK = Negative Acknowledgement — received message is
invalid.

Map Wizard This wizard creates and/or updates an ABInfo block in your
program. The ABInfo block is used to map pre-defined
variables or user-defined global variables to specific ABComm
elements so an Allen-Bradley DF1device can read or write
them. This mapping is only used when the OC950 is processing
ABComm messages initiated by another device, not when it is
initiating commands.
The wizard allows you to map OC950 variables (in Allen-
Bradley DF1 terminology) as Integer file elements (Allen-
Bradley pre-defined file # 7), or as Float file elements (Allen-
Bradley pre-defined file # 8).

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-41

Procedure To create a mapping of an OC950 variable to an Allen-Bradley
DF1 element:
1. Select file type (Integer or Float)
2. Specify the element address
3. Specify the OC950 variable name
You may also specify an optional scale factor (the default=1.0).
This scale factor is automatically applied when the Allen-
Bradley DF1 element is read or written by the Allen-Bradley
DF1 master. This is particularly useful for mapping floating-
point OC950 variables into integer Allen-Bradley DF1
elements. It can also be used for mapping integer OC950.

Example You could map RunSpeed as a 16-bit integer element and
specify a scale factor of 10.

$ABMapInteger(1,runspeed,10.0)

Whenever the Allen-Bradley DF1 master reads integer element
1, the OC950 automatically multiplies the present value of
RunSpeed by 10 and returns this value to the master. When
the master writes to integer element 1, the OC950
automatically divides the new value by 10.0 before writing it to
RunSpeed.
In this case, if the value of RunSpeed was 22.5 the Master
reads 225 for integer element 1. Similarly, if the master wrote a
value of 307, the RunSpeed is set to 30.7.

SLC500 to
OC950
Cable

To establish Allen-Bradley DF1 communications between the
SC950 and the SLC500 PLC, the following connections are
required:

SC950 (J51) DB9 SLC500 (Channel 0) DB9

2 (RS232 TX) 2 (RS232 RX)

3 (RS232 RX) 3 (RS232 TX)

5 (Common) 5 (Common)
PLC5 to
OC950
Cable

To establish Allen-Bradley DF1 communications between the
SC950 and the PLC5, the following connections are required:

SC950 (J51) DB9 PLC5 (Channel 0) DB25
2 (RS232 TX) 3 (RS232 RX)
3 (RS232 RX) 2 (RS232 TX)
5 (Common) 7 (Common)

950BASIC Language Danaher Motion

1-42 MA950-LR

1.13 Cam Profiling

The following functionality applies only to OC950s with Enhanced
Firmware. Standard OC950s are are not capable of cam profiling

In the 950, a cam is a cyclic, generally non-linear relationship between master
encoder position and slave (motor) position. The relationship between slave and
master counts is no longer a constant ratio, but changes as a function of master
counts. As in electronic gearing, once a cam is active, the program no longer
needs to do anything special to maintain it - the motion profile is repeated
indefinitely until the cam is deactivated.

In camming terminology, a master is typically an external encoder. The encoder
is wired into the SC950 encoder input port (connector J4 pins 21-24). It is also
possible to use the SC950’s virtual (internal) encoder.

Procedure To use a cam profile on the SC950, you must:
1. Declare the cam ($DeclareCam).
2. Create the cam profile (CreateCam).
3. Activate the cam profile (ActiveCam).

Related
Variables

CamMaster Specifies the source of the input to the cam
table for cam profiling.

 CamCorrectDir Specifies the direction of the correction move
that is done when a new cam table is activated
(by setting ActiveCam = n).

 Addpoint() Adds the specified “point” (master position and
corresponding slave position) to the cam table
being created.

Cam
Wizard

The Cam Wizard is designed to solve cut to length applications.
The picture below shows a typical setup:

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-43

In this application, material is being fed beneath a rotary knife. The master
encoder measures forward movement of the material under the knife. The slave
motor controls rotation of the knife. In order for this to work properly, the slave
motor must be controlled (as a function of master encoder counts) so the blade
of the rotary knife:
1. Stays out of the way until the proper amount of material has passed,
2. Accelerates so the speed of the knife matches the speed of the material

during the cut and,
3. Decelerates back to the original speed until the material is almost in

position for the next cut.

The rotary knife either accelerates or decelerates to match the speed
of the material in the cut phase, depending on whether or not the
circumference of the rotary knife is less than or greater than the
length of the piece to be cut. You may need to interchange the terms
‘accelerate’ and ‘decelerate’, or simply think of them as signed
quantities.

950BASIC’s AddPoint statements specify a cam profile as a mapping from
master position to slave position. The problem refers to relative velocities and
accelerations. It is not always clear how to get from velocity and acceleration to
position.
The Cam Wizard was designed to make such applications easy to implement.
You provide:
1. the number of master counts corresponding to the length of material to be

cut,
2. the number of slave counts corresponding to one complete rotation of the

knife and,
3. the ratio of slave counts to master counts during the ‘cut’ phase of the cycle.

Once you have provided these three pieces of information, the Cam Wizard
automatically:
1. generates code to declare a cam table of the correct size,
2. generates a subroutine to create the cam table and,
3. generates a subroutine to activate the cam.

Example You can create a cam to approximate any continuous function,
but the Cam Wizard cannot help you with it. The basic technique
is to develop a 950BASIC expression (or function)defining the
slave position as a function of master position and use it to
generate a series of AddPoint statements at appropriate master
position intervals, such as the one shown in the next figure.

950BASIC Language Danaher Motion

1-44 MA950-LR

Program const MC = 10000

‘ master counts in total cycle
const NPOINTS = 501
‘ number of points in cam profile
const pi = 3.1415926535
‘ tuning constants for nice motion
const k = 0.69314718/100
const w = 1/(7.5*pi)
‘—————————————————————
$declarecam(2,NPOINTS)
‘—————————————————————
‘ sub ActivateCam_2
sub activatecam_2
 Enable = 1
 EncPosModulo = MC
 PosModulo = MC
 EncPos = 0
 ActiveCam = 2
end sub
‘—————————————————————
‘ sub CreateCam_2
‘ This code creates a cam whose profile is an exponentially
‘ damped sine wave.
sub CreateCam_2
 dim m,s as float
 dim i as integer
 CreateCam(2)
 for i = 0 to NPOINTS-1
 ‘ master position
 m = i*(MC/(NPOINTS-1))
 ‘ computed slave position
 s = (1/exp(1.5*k*i)) * sin(2*pi*w*i)
 addpoint(m,2000*s)
 next i
 end createcam
 end sub

Danaher Motion Kollmorgen 950BASIC Language

MA950-LR 1-45

Program
(continued)

‘————————————————————-
‘ Generate a cam that does exponentially-damped sinusoidal
‘ motion, and activate it. Please note that since we’re computing
‘ 500 points of slave profile here, several seconds will elapse
‘ during the calculation of the cam table.
main
 enable = 1
 vmdir = 0
 vmrunfreq = 1000
 vmgovel
 print “Creating cam 2"
 call CreateCam_2
 call ActivateCam_2
 print “Cam 2 is active now”

Virtual
encoder
(virtual
master)

The virtual encoder is an internal count generator that is used
as the input to the cam. It is controlled much like the profile
generator used to control the motion of the motor. The pre-
defined variables and statements associated with the virtual
encoder are listed below:

Move
Parameters

vmDir specifies direction for vmGoVel
vmIndexDist specifies distance for vmGoIncr
vmRunFreq specifies speed (frequency) for vmGoIncr
 and vmGoVel

Move
Statements

vmGoIncr executes incremental move
vmGoVel executes velocity move
vmUpdMove updates move parameters on move in progress
vmStopMotion stops motion

Other
Variables

vmEncpos gives the value of the internal counter
vmMoving indicates whether a move is in progress

The virtual encoder is used as the input to the cam, either alone (as a virtual
master) or in combination with the actual encoder (Encpos), to add an offset to
the master position. This functionality is controlled by the variable, CamMaster.

Danaher Motion Kollmorgen Quick Reference

MA950-LR 2-1

2 QUICK REFERENCE
This section contains functions, parameters, statements and variables for
950BASIC. Below is a summary table of the list of instructions.

The default value for parameters designates the value of the
instruction at power on and at program start. A numeric value
designates the power on/program start default value of a parameter.
Default values designated by “set up” are initialized to the value in
the PARAMS section of the program. Parameters may also be
modified during program execution, but always retain their power
on value at the start of program execution.

Name Type Default Value Page #
$ABMapFloat() Statement 3-2
$ABMapInteger() Statement 3-3
$DeclareCam() Statement 3-4
$Include Statement 3-5
$MBMapBit() Statement 3-6
$MBMap16() Statement 3-7
$MBMap32() Statement 3-8
$MBMapFloat() Statement 3-9
$PACLANAddr Compiler Directive 3-9
ABCrc Pre-defined Variable,

Integer
 3-10

ABErr Pre-defined Variable,
Integer

 3-10

ABInfo...End 3-11
AbortMotion Statement 3-12
Abs() Function 3-12
AccelGear Pre-defined Variable,

Integer
16,000,000 rpm/sec 3-13

AccelRate Pre-defined Variable,
Integer

10,000 rpm/sec 3-14

ActiveCam Pre-defined Variable,
Integer

 3-15

AddPoint() Statement 3-17
ADF0 Pre-defined Variable, Float 1,000 Hz 3-18
ADOffset Pre-defined Variable, Float 0 volts 3-18
Alias Statement 3-19
AnalogIn Pre-defined Variable, Float,

Status Variable, Read Only
 3-19

AnalogOut1 Pre-defined Variable, Float,
Control Variable

0 volts 3-20

AnalogOut2 Pre-defined Variable, Float,
Control Variable

0 volts 3-20

And Operator 3-20
ARF0 Pre-defined Variable, Float,

NV Parameter
set up 3-21

Quick Reference Danaher Motion

2-2 MA950-LR

Name Type Default Value Page #
ARF1 Pre-defined Variable, Float,

NV Parameter
set up 3-21

ARZ0 Pre-defined Variable, Float 0 Hz 3-22
ARZ1 Pre-defined Variable, Float 0 Hz 3-22
Asc() Function 3-23
Atan() Function 3-23
Autostart Pre-defined Variable,

Integer
0 3-23

AxisAddr Pre-defined Variable,
Integer, Read-Only

255 3-24

Band Operator 3-24
BaudRate Pre-defined Variable,

Integer
19200 3-25

BDInp1 Pre-defined Variable,
Integer, Status Variable,
Read Only

 3-25

BDInp2-BDInp4 Pre-defined Variable,
Integer, Status Variable,
Read Only

 3-26

BDInp5-BDInp6 Pre-defined Variable,
Integer, Status Variable,
Read Only

 3-27

BDInputs Pre-defined Variable,
Integer, Status Variable,
Read-Only

 3-27

BDIOMap1 Pre-defined Variables,
Integer, NV Parameter

 3-28

BDIOMap2 Pre-defined Variables,
Integer, NV Parameter

 3-29

BDIOMap3 Pre-defined Variables,
Integer, NV Parameter

 3-30

BDIOMap4 Pre-defined Variables,
Integer, NV Parameter

 3-31

BDIOMap5 Pre-defined Variables,
Integer, NV Parameter

 3-32

BDIOMap6 Pre-defined Variables,
Integer, NV Parameter

 3-33

BDLgcThr Pre-defined Variable,
Integer

0 3-34

BDOut1 Pre-defined Variable,
Integer, Control Variable

1 3-34

BDOut2-BDOut4 Pre-defined Variable,
Integer, Control Variable

1 3-35

BDOut5-BDOut6 Pre-defined Variable,
Integer, Control Variable

1 3-36

BDOutputs Pre-defined Variable,
Integer, Control Variable

63 3-37

Beep Statement 3-37
BlkType Pre-defined Variable,

Integer
2 3-38

Bnot Operator 3-38
Bor Operator 3-39

Danaher Motion Kollmorgen Quick Reference

MA950-LR 2-3

Name Type Default Value Page #
Brake Pre-defined Variable,

Integer, Mappable Output
Function, Read-Only

 3-39

Bxor Operator 3-40
Call Statement 3-40
CamCorrectDir Pre-defined Variable,

Integer
2 3-41

CamMaster Pre-defined Variable,
Integer

0 3-42

CamMasterPos Pre-defined Variable,
Integer, Read Only

 3-42

CamSlaveOffset Pre-defined Variable,
Integer, Read Only

 3-43

CCDate Pre-defined Variable, Status
Variable, Read Only

factory 3-43

CCSNum Pre-defined Variable,
Integer, Status Variable,
Read Only

factory 3-43

CcwInh Pre-defined Variable,
Integer

 3-44

Ccwot Pre-defined Variable,
Integer

0 3-44

Chr$() Function 3-44
Cint() Function 3-45
Cls Statement 3-45
CmdGain Pre-defined Variable, Float 0.5 3-45
CommEnbl Pre-defined Variable,

Integer, Control Variable
1 3-46

CommOff Pre-defined Variable, Float,
NV Parameter

set up 3-46

CommSrc Pre-defined Variable,
Integer

0 3-47

ConfigPLS() Statement 3-48
Const Statement 3-49
Cos() Function 3-49
CountsPerRev Pre-defined Variable,

Integer
4096 3-49

CreateCam() Statement 3-50
CwInh Pre-defined Variable 3-51
Cwot Pre-defined Variable 3-52
DecelGear Pre-defined Variable,

Integer
16,000,000 rpm/sec 3-52

DecelRate Pre-defined Variable,
Integer

10,000 rpm/sec 3-53

Dim Statement 3-54
Dir Pre-defined Variable,

Integer
0 3-54

DM1F0 Pre-defined Variable,
Integer

1,000 Hz 3-55

DM1Gain Pre-defined Variable, Float 0.6667 3-56
DM1Map Pre-defined Variable,

Integer
9 3-57

Quick Reference Danaher Motion

2-4 MA950-LR

Name Type Default Value Page #
DM1Out Pre-defined Variable, Float,

Status Variable, Read-Only
 3-58

DM2F0 Pre-defined Variable, Float 1,000 Hz 3-58
DM2Gain Pre-defined Variable, Float 2.0 3-59
DM2Map Pre-defined Variable,

Integer
1 3-60

DM2Out Pre-defined Variable, Float,
Status Variable, Read-Only

 3-61

Enable Pre-defined Variable,
Integer

0 3-61

Enabled Pre-defined Variable,
Integer, Read-Only

 3-62

EnablePLS0 Pre-defined Variable,
Integer

0 3-62

EnablePLS1-
EnablePLS2

Pre-defined Variable,
Integer

0 3-63

EnablePLS3-
EnablePLS4

Pre-defined Variable,
Integer

0 3-64

EnablePLS5-
EnablePLS6

Pre-defined Variable,
Integer

0 3-65

EnablePLS7 Pre-defined Variable,
Integer

0 3-66

EncFreq Pre-defined Variable, Float,
Status Variable, Read-Only

 3-66

EncIn Pre-defined Variable,
Integer

1024 3-67

EncInF0 Pre-defined Variable, Float 800,000 3-68
EncMode Pre-defined Variable,

Integer
0 3-69

EncOut Pre-defined Variable,
Integer

1024 3-69

EncPos Pre-defined Variable,
Integer

 3-70

EncPosModulo Pre-defined Variable,
Integer

0 3-70

End Statement 3-71
Err Pre-defined Variable 3-71
Exit Statement 3-74
Exp() Function 3-74
ExtFault Pre-defined Variable,

Integer, Status Variable
 3-75

Fault Pre-defined Variable,
Integer, Mappable Output
Function

 3-76

FaultCode Pre-defined Variable,
Integer, Status Variable,
Read-Only

 3-77

FaultReset Pre-defined Variable,
Integer, Mappable Input
Function

0 3-78

Fix() Function 3-78
For...Next Statement 3-79

Danaher Motion Kollmorgen Quick Reference

MA950-LR 2-5

Name Type Default Value Page #
Function Statement 3-80
FVelErr Pre-defined Variable, Float,

Status Variable, Read-Only
 3-81

FwV Pre-defined Variable,
Integer, Status Variable,
Read-Only

 3-81

GearError Pre-defined Variable,
Integer

 3-82

Gearing Pre-defined Variable,
Integer

0 3-83

GearLock Pre-defined Variable, Float,
Read-Only

 3-84

GetMotor$() Function 3-85
GoAbs Statement 3-85
GoAbsDir Pre-defined Variable,

Integer
3 3-86

GoHome Statement 3-87
GoIncr Statement 3-87
Goto Statement 3-88
GoVel Statement 3-88
Hex$() Function 3-89
HSTemp Pre-defined Variable, Float,

Status Variable, Read-Only
 3-89

HwV Pre-defined Variable,
Integer, Status Variable,
Read-Only

 3-90

ICmd Pre-defined Variable, Float,
Status Variable, Read-Only

 3-90

IFB Pre-defined Variable, Status
Variable, Read-Only

 3-90

If...Then...Else Statement 3-91
ILmtMinus Pre-defined Variable,

Integer, NV Parameter
set up 3-91

ILmtPlus Pre-defined Variable,
Integer, NV Parameter

set up 3-92

IndexDist Pre-defined Variable,
Integer

4096 3-92

Inkey$ String Function 3-93
Inp0-Inp20 Pre-defined Variable,

Integer, Read-Only
 3-93

InPosition Pre-defined Variable,
Integer, Read-Only

 3-94

InPosLimit Pre-defined Variable 5 3-94
Input Statement 3-95
Inputs Pre-defined Variable,

Integer, Read-Only
 3-95

Insert() Function 3-96
Int() Function 3-96
Interrupt...End Interrupt Statement 3-97
Intr{source} Pre-defined Variable,

Integer
 3-98

Quick Reference Danaher Motion

2-6 MA950-LR

Name Type Default Value Page #
Ipeak Pre-defined Variable, Float,

Status Variable, Read-Only
 3-100

ItF0 Pre-defined Variable, Float 0.02 Hz 3-100
ItFilt Pre-defined Variable, Float,

Status Variable, Read-Only
 3-101

ItThresh Pre-defined Variable,
Integer, NV Parameter

set up 3-102

ItThreshA Pre-defined Variable, Float,
Status Variable, Read-Only

 3-102

I_R Pre-defined Variable, Float,
Status Variable, Read-Only

 3-102

I_S Pre-defined Variable, Float,
Status Variable, Read-Only

 3-102

I_T Pre-defined Variable, Float,
Status Variable, Read-Only

 3-103

Kii Pre-defined Variable, Float 50 Hz 3-103
Kip Pre-defined Variable, Float,

NV Parameter
set up 3-103

Kpp Pre-defined Variable, Float,
NV Parameter

set up 3-104

Kvff Pre-defined Variable, Float 0 % 3-104
Kvi Pre-defined Variable, Float,

NV Parameter
set up 3-105

Kvp Pre-defined Variable, Float,
NV Parameter

set up 3-105

LanFLT() Pre-defined Array Variable,
Float

0.0 3-106

LANint() Pre-defined Array Variable,
Integer

0 3-106

LANInterrupt[] Statement 3-107
LANIntrArg Pre-defined Array Variable,

Integer
 3-107

LANIntrSource Pre-defined Variable,
Integer

 3-108

Lcase$() Function 3-108
Left$() Function 3-109
Len() Function 3-109
Log() Function 3-109
Log10() Function 3-110
Ltrim$() Function 3-110
Main Statement 3-111
MB32WordOrder Pre-defined Variable 1 3-111
MBErr Pre-defined Variable,

Integer
0 3-112

MBFloatWordOrder Pre-defined Variable 1 3-113
MBInfo Block…End Statement 3-114
MBReadBit() Pre-defined Function 3-115
MBRead16() Pre-defined Function 3-116
MBRead32() Pre-defined Function 3-117
MBReadFloat() Pre-defined Function 3-118
MBWriteBit() Statement 3-119
MBWrite16() Statement 3-120

Danaher Motion Kollmorgen Quick Reference

MA950-LR 2-7

Name Type Default Value Page #
MBWrite32() Statement 3-121
MBWriteFloat() Statement 3-122
Mid$() Function 3-123
Mod Operator 3-123
Model Pre-defined Variable,

Integer, Status Variable,
Read-Only

 3-123

ModelExt Pre-defined Variable,
Integer, Status Variable,
Read-Only

 3-124

ModifyEncPos() Statement 3-124
Motor Pre-defined Variable sine(1, 162, 758,

483)
3-125

Moving Pre-defined Variable,
Integer, Read-Only

0 3-125

OCDate Pre-defined Variable,
Integer, Status Variable,
Read-Only

factory 3-126

OCSNum Pre-defined Variable,
Integer, Status Variable,
Read-Only

factory 3-126

Oct$() Function 3-126
On Error Goto Statement 3-127
Or Operator 3-128
Out0-Out20 Pre-defined Variable,

Integer
1 3-128

Outputs Pre-defined Variable,
Integer

2,097,151 3-129

Params...EndParams Statement 3-129
Pause() Statement 3-130
PoleCount Pre-defined Variable,

Integer, NV Parameter
set up 3-130

PosCommand Pre-defined Variable,
Integer

 3-131

PosError Pre-defined Variable,
Integer, Status Variable,
Read-Only

 3-131

PosErrorMax Pre-defined Variable,
Integer

40960 3-132

Position Pre-defined Variable,
Integer, Read-Only

 3-132

PosModulo Pre-defined Variable,
Integer

0 3-133

PosPolarity Pre-defined Variable,
Integer

0 3-134

Print Statement 3-135
PulsesIn Pre-defined Variable,

Integer
1 3-135

PulsesOut Pre-defined Variable,
Integer

1 3-136

Random Pre-defined Variable, Float,
Read-Only

 3-137

Quick Reference Danaher Motion

2-8 MA950-LR

Name Type Default Value Page #
Randomize Statement 3-138
Ratio Pre-defined Variable,

Floating point
1.0 3-139

ReadPLC5Binary() Pre-defined Function 3-140
ReadPLC5Float() Pre-defined Function 3-141
ReadPLC5Integer() Pre-defined Function 3-142
ReadSLC5Binary() Pre-defined Function 3-143
ReadSLC5Float() Pre-defined Function 3-144
ReadSLC5Integer() Pre-defined Function 3-145
Reg1HiEncpos Pre-defined Variable,

Integer, Read-Only
 3-146

Reg1HiFlag Pre-defined Variable,
Integer

0 3-146

Reg1HiPosition Pre-defined Variable,
Integer, Read-Only

 3-147

Reg1LoEncpos Pre-defined Variable,
Integer, Read-Only

 3-147

Reg1LoFlag Pre-defined Variable,
Integer

0 3-148

Reg1LoPosition Pre-defined Variable,
Integer, Read-Only

 3-148

Reg2HiEncpos Pre-defined Variable,
Integer, Read-Only

 3-149

Reg2HiFlag Pre-defined Variable,
Integer

0 3-149

Reg2HiPosition Pre-defined Variable,
Integer, Read-Only

 3-150

Reg2LoEncpos Pre-defined Variable,
Integer, Read-Only

 3-150

Reg2LoFlag Pre-defined Variable,
Integer

0 3-151

Reg2LoPosition Pre-defined Variable,
Integer, Read-Only

 3-151

RegControl Pre-defined Variable,
Integer

0 3-152

RemoteFB Pre-defined Variable,
Integer

0 3-153

ResPos Pre-defined Variable,
Integer, Status Variable,
Read-Only

 3-154

Restart Statement 3-154
Right$() Function 3-155
Rtrim$() Function 3-155
RunSpeed Pre-defined Variable,

Floating Point
1,000 3-155

RuntimeParity Pre-defined Variable 0 3-156
RuntimeProtocol Pre-defined Variable 0 3-156
ScurveTime Pre-defined Variable,

Floating Point
0 3-157

Select Case Statement 3-158
SendLANInterrupt()[] Pre-defined function 3-159
SetMotor() Function 3-161

Danaher Motion Kollmorgen Quick Reference

MA950-LR 2-9

Name Type Default Value Page #
Sgn() Function 3-161
SHL Left Shift Operator 3-161
SHRA Arithmetic Right Shift

Operator
 3-162

SHRL Logial right Shift Operator 3-162
Sin() Function 3-162
Space$() Function 3-162
Sqr() Function 3-163
Static Statement 3-163
Status[] Pre-defined Variable 3-164
Stop Statement 3-164
Str$() Function 3-165
String$() Function 3-165
Sub...End Sub Statement 3-166
Swap Statement 3-167
SysLanWindow1-8 Pre-defined Variable 3-167
Tan() Function 3-167
TargetPosition Pre-defined Variable,

Integer
0 3-168

Time Pre-defined Variable, Float,
Status Variable, Read-Only

 3-168

Trim$() Function 3-169
Ucase$() Function 3-169
UpdMove Statement 3-170
Val() Function 3-170
VBus Pre-defined Variable, Float,

Status Variable, Read-Only
 3-171

VBusThresh Pre-defined Variable, Float -1 3-171
VelCmd Pre-defined Variable, Float,

Status Variable, Read-Only
 3-172

VelErr Pre-defined Variable, Float,
Status Variable, Read-Only

 3-172

VelFB Pre-defined Variable, Float,
Status Variable, Read-Only

 3-172

VelLmtHi Pre-defined Variable, Float 10,000 3-173
VelLmtLo Pre-defined Variable, Float -10,000 3-173
Velocity Pre-defined Variable, Float,

Status Variable, Read-Only
 3-174

vmDir Pre-defined Variable,
Integer

0 3-174

vmEncpos Pre-defined Variable,
Integer

 3-175

vmGoIncr Statement 3-176
vmGoVel Statement 3-177
vmMoving Pre-defined Variable, Float,

Read Only
 3-178

vmRunFreq Pre-defined Variable, Float 10,000 3-179
vmStopMotion Statement 3-179
vmUpdMove Statement 3-180
When Statement 3-181

Quick Reference Danaher Motion

2-10 MA950-LR

Name Type Default Value Page #
WhenEncPos Pre-defined Variable,

Integer, Status Variable,
Read-Only

 3-182

WhenPosCommand Pre-defined Variable,
Integer, Status Variable,
Read-Only

 3-183

WhenPosition Pre-defined Variable,
Integer, Status Variable,
Read-Only

 3-183

WhenResPos Pre-defined Variable,
Integer, Status Variable,
Read-Only

 3-184

WhenTime Pre-defined Variable, Float,
Status Variable, Read-Only

 3-184

While...Wend Statement 3-184
WritePLC5Binary() Statement 3-185
WritePLC5Float() Statement 3-186
WritePLC5Integer() Statement 3-187
WriteSLC5Binary() Statement 3-188
WriteSLC5Float() Statement 3-189
WriteSLC5Integer() Statement 3-190
Xor Operator 3-191

Danaher Motion Kollmorgen Instructions

MA950-LR 3-1

3 INSTRUCTIONS
This section is an alphabetical reference to 950BASIC instructions:
l commands
l functions
l statements
l string functions
l parameters
l statements
l string variables
l variables

The name and type of each instruction is listed at the top of each page. The
instruction is then described based on the following categories:

Purpose: The purpose of the instruction.

Syntax: The complete notation of the instruction.

Related instructions: Other commands that are similar to this particular
instruction.

Programming guidelines: Pertinent information about the instruction and its
use.

Example program: Possible use of the instruction in a program.

Instructions Danaher Motion Kollmorgen

3-2 MA950-LR

$ABMAPFLOAT()
(STATEMENT)

Purpose $ABMapFloat() maps a float variable (pre-defined or user
defined) to the SC950 Float File register.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax $ABMapFloat(x, MyFloat)
x = register number
MyFloat = Pre-defined or global user-defined float variable.

Guidelines Only needed when the SLC500 initiates read (write)
transactions from (to) the SC950.

Related
Instructions ABInfo
Example This example maps a predefined variable (RunSpeed) and a

global user variable (MyFlt) to SC950 ABComm Float file
registers. RunSpeed is mapped to Register 1 of the SC950
Float file. MyFlt is mapped to Register 5 of the SC950 Float
file.

Dim MyFlt as float
ABInfo
 $ABMapFloat(1, RunSpeed)
 $ABMapFloat(5, MyFlt)
End

Danaher Motion Kollmorgen Instructions

MA950-LR 3-3

$ABMAPINTEGER()
(STATEMENT)

Purpose $ABMapInteger() maps an integer variable (pre-defined or
user defined) to the SC950 Integer File register.

 This feature is only available in the Enhanced
OC950 Firmware.

Syntax $ABMapInteger(x, MyVar)
x = register number.
MyVar = Predefined or global user-defined integer variable.

Guidelines Only needed when the SLC500 initiates read (write)
transactions from (to) the SC950.

Related
Instructions ABInfo
Example This example maps a pre-defined variable (IndexDist) and a

global user variable (MyInt) to SC950 Allen-Bradley Integer
file registers. IndexDist is mapped to Register 1 of the SC950
Integer file. MyInt is mapped to Register 27 of the SC950
Integer file.

Dim MyInt as integer
ABInfo
 $ABMapInteger(1, IndexDist)
 $ABMapInteger(27, MyInt)
End

Instructions Danaher Motion Kollmorgen

3-4 MA950-LR

$DECLARECAM()
(STATEMENT)

Purpose $DeclareCam() allocates memory for the specified cam
table. You must declare a cam table before you can create the
cam table. The $DeclareCam() statement must be put before
the word, MAIN, in your program.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax $DeclareCam(x, y)
 where x is the cam number (1-8) and y is the maximum

number of points put into the cam table. y must be less than
1000.

Guidelines This statement allocates memory for the cam table. You
cannot put in more points than you declare, but you can put in
less.

Related
Instructions CreateCam(), AddPoint(), ActiveCam
Example To declare cam #1 with 10 points, the statement is:

$DeclareCam(1, 10).

The $DeclareCam statement must appear before
main.

$DeclareCam(1, 10)

main
 . . .
end

Danaher Motion Kollmorgen Instructions

MA950-LR 3-5

$INCLUDE
(STATEMENT)

Purpose The $Include statement allows you to textually include
multiple separate files in a single source file.

Syntax $Include “include-file-name”
Guidelines A file cannot include itself, either directly or indirectly.

Include file nesting is allowed to a depth of 16. Relative paths
in a nested include file are relative to the directory location of
the include file, not the current working directory of the
compiler.

Example This example shows two files, myinc.inc and myfile.bas. The
file myinc.inc has a sub-procedure for doing and incremental
move that is used by the main program in myfile.bas.
MyInc.Inc
Sub DoIndexMove(Distance as integer)
 IndexDist = Distance
 GoIncr
 while Moving : wend
End Sub
MyFile.Bas
$Include “myinclude.inc”
Main
while 1
 call DoIndexMove(4096)
 Pause(0.5)
wend
End Main

Instructions Danaher Motion Kollmorgen

3-6 MA950-LR

$MBMAPBIT()
(STATEMENT)

Purpose $MBMapBit() maps a pre-defined variable or a global user
variable to a ModBus Bit Register Address (0x reference or 1x
reference).

This feature is only available in the Enhanced
OC950 Firmware.

Syntax $MapBit(ModBus Address, Variable Name)
Guidelines This statement is used to map a pre-defined variable or a

global user variable to a ModBus address when the 950 is
acting as a ModBus slave.

 Once a variable has been mapped and the ModBus Slave
Protocol has been turned on (RuntimeProtocol=2), the
ModBus master can read and/or write to this variable.

 The $MBMapBit statement must be located inside an MBInfo
block.

Related
Instructions RuntimeProtocol
Example In the example below, Dir is mapped to ModBus address 1 and

Enable is mapped to the ModBus address 10002.
MBInfo
 $MBMapBit(1, Dir)
 $MBMapBit(10002, Enable)
End

Danaher Motion Kollmorgen Instructions

MA950-LR 3-7

$MBMAP16()
(STATEMENT)

Purpose $MBMap16() maps a pre-defined variable or a global user
variable to a ModBus 16 Bit Register Address (3x reference or
4x reference).

This feature is only available in the Enhanced
OC950 Firmware.

Syntax $Map16(ModBus Address, Variable
Name[,ScaleFactor])

Guidelines Once a variable has been mapped and the ModBus Slave
Protocol has been turned on (RuntimeProtocol=2), the
ModBus master can read and/or write to these variables
without any interaction by the user’s program.

Related
Instructions $MBMap32()
Example In the example below, Faultcode is mapped to ModBus

address 30001, RunSpeed is mapped to ModBus address
40001, and Velocity is mapped to ModBus address 40002
with a scale factor of 10.
MBInfo
 $MBMap16(30001, Faultcode)
 $MBMap16(40001, RunSpeed)
 $MBMap16(40002, Velocity, 10)
End

Instructions Danaher Motion Kollmorgen

3-8 MA950-LR

$MBMAP32()
(STATEMENT)

Purpose $MBMap32() maps a pre-defined variable or a global user
variable to two contiguous ModBus 16 Bit Register Addresses
(3x reference or 4x reference) as a 32 bit integer.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax $Map32(ModBus Address, Variable Name[,ScaleFactor])
Guidelines Once a variable has been mapped and the ModBus Slave

Protocol has been turned on (RuntimeProtocol=2), the
ModBus master can read and/or write to these variables
without any interaction by the user’s program.

Related
Instructions MB32WordOrder , MBFloatWordOrder
Example MBInfo

 $MBMap32(30001, Position)
 $MBMap32(30003, PosCommand)
 $MBMap32(40001, IndexDist)
 $MBMap32(40003, TargetPos)
End

Danaher Motion Kollmorgen Instructions

MA950-LR 3-9

$MBMAPFLOAT()
(STATEMENT)

Purpose $MBMapFloat() maps a pre-defined variable or a global user
variable to two contiguous ModBus 16 Bit register addresses
(0x reference or 1x reference) as a floating point number.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax $MapFloat(ModBus Address, Variable Name,[scale factor])
Guidelines Once a variable is mapped and the ModBus slave protocol is

on (RuntimeProtocol=2), the ModBus master reads and/or
writes to these variables without user program interaction. The
default [scale factor] is 1.0.

Related
Instructions MB32WordOrder, MBFloatWordOrder

Example MBInfo
 $MBMapFloat(30001, Velocity, 1.0)
 $MBMapFloat(30003, Time, 1.0)
 $MBMapFloat(40001, RunSpeed, 1.0)
End

$PACLANADDR()
(COMPILER DIRECTIVE)

Purpose $PACLANAddr() specifies the axes to which a program is
downloaded. The $PACLANAddr directive must be enclosed
in a ProgramInfo block. This is created automatically by the
OC950 IDE when you use File|New to create a new program.

Syntax ProgramInfo
 $PACLANAddr(axis list)

End ProgramInfo

Guidelines Specify the number of axes in the axis list by separating them
with commas. Specify a range of addresses using To.

Examples The first example shows a simple $PACLANAddr() directive
that specifies axis 255. The second, a more complicated
PACLANAddr() directive, specifies axes 1 - 3 and 6 - 9.
ProgramInfo
 $PACLANAddr(255)
End ProgramInfo

ProgramInfo
 $PACLANAddr(1,3, 6 to 9)
End ProgramInfo

Instructions Danaher Motion Kollmorgen

3-10 MA950-LR

ABCRC
(PRE-DEFINED VARIABLE, INTEGER)

Purpose ABCrc sets the method by which an Allen-Bradley DF1
message is checked for validity.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax ABCrc = 1 Sets message check method to CRC
 ABCrc = 0 Sets message check method to BCC
Guidelines The setting in the SC950 MUST match the setting in the PLC.
Example The following program reads an integer from a SLC500 PLC.

It then sets RunSpeed to twice the integer read.

All communication settings on both devices
(SC950 and SLC500) must match.

main
dim SLC5Speed as integer

runtimeprotocol = 5 ‘Allen-Bradley DF1 protocol
baudrate = 19200 ‘baudrate must match PLC setting
abcrc = 1 ‘Set check to CRC — MUST
match PLC setting
SLC5Speed = ReadSLC5Integer(5,7,19)
RunSpeed = SLC5Speed * 2

end

ABERR
(PRE-DEFINED VARIABLE, INTEGER)

Purpose ABErr contains the error code of the last Allen-Bradley DF1
transaction.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax x = ABErr
Guidelines ABErr Meaning

0 No error
1 Response error
2 Response timeout
3 Max number of NAKs received
4 Max number of ENQs (enquiries) sent and still no response
5 SC950 Allen-Bradley DF1 receive buffer is full

Danaher Motion Kollmorgen Instructions

MA950-LR 3-11

ABINFO...END
Purpose The ABInfo block section of a program is used to map pre-

defined variables and/or global user variables to specific
SC950 register addresses so that the OC950 can respond to
unsolicited messages from a SLC500.

 This feature is only available in the Enhanced
OC950 Firmware.

Syntax ABInfo
 <$ABMap Statements>
End

Guidelines This ABInfo block is only used when you are configuring the
OC950 as an Allen-Bradley DF1device communicating with a
SLC500. The ABInfo block is only needed when the SLC500
initiates read/wrtie commands to the SC950. If the SC950
initiates all read/write commands, the ABInfo block is
unnecessary.

 There can be only one ABInfo block in a program. It should be
put before the Main section of the program.

Related
Instructions $ABMapFloat(), $ABMapInteger()
Example This example maps several pre-defined variables and one

global user variable (MyFloat) to SC950 Allen-Bradley Df1
file registers. IndexDist is mapped to Register 1 of the SC950
Integer file. Position is mapped to Register 27 of the SC950
Integer file. MyFloat is mapped to Register 9 of the SC950
Float file.

ABInfo
 $ABMapInteger(1, IndexDist)
 $ABMapInteger(27, Position)
 $ABMapFloat(9, MyFloat)
End
Dim MyFloat As Float

Main
 RuntimeProtocol = 5
 ...

Instructions Danaher Motion Kollmorgen

3-12 MA950-LR

ABORTMOTION
(STATEMENT)

Purpose AbortMotion stops motor motion, while allowing continued
program execution.

 Deceleration is determined by the motor torque capability in
conjunction with the current limit parameters.

Syntax AbortMotion
Example This program segment commands the motor at constant

velocity until input 1 goes to a logic 0. Then, the motor is
commanded to stop.

AccelRate = 12000
‘Set acceleration rate equal to 12,000 rpm/sec
RunSpeed = 120
‘Set Run speed equal to 120 rpm
GoVel
When Inp1 = 0, AbortMotion
Print “Move Aborted!”

ABS()
(FUNCTION)

Purpose Abs() converts the associated value (x) to an absolute value
(positive value).

Syntax result = Abs(x)
Guidelines Enter the argument (x) immediately following the term, Abs.
Example for x = -10 to 10

print Abs(x)
next

Danaher Motion Kollmorgen Instructions

MA950-LR 3-13

ACCELGEAR
(PRE-DEFINED VARIABLE, INTEGER)

Purpose AccelGear sets the maximum acceleration commanded on the
follower when Gearing is turned ON or the electronic gearing
ratio (Ratio, PulsesOut, PulsesIn) is increased. This
maximum acceleration limit remains in effect until Gearlock
is achieved. Once Gearlock is achieved, the follower follows
the master with the required acceleration or deceleration.

AccelGear is independent of DecelGear.
Each variable must be set, independently, to
the appropriate value for the desired motion.

Syntax AccelGear = x
Units rpm/sec
Range 1 to 16,000,000 rpm/sec
Default 16,000,000 rpm/sec
Guidelines Set AccelGear prior to initiating Gearing.
Related
Instructions DecelGear, GearError, GearLock
Example This example shows how to use AccelGear to limit

acceleration and make up the lost distance.
AccelGear = 10000 ‘set AccelGear
Ratio = 1.0
Enable = 1
GearError = 0 ‘clear GearError
Gearing = 1
While GearLock = 0
Wend ‘wait for LOCK
IndexDist = GearError
GoIncr

Instructions Danaher Motion Kollmorgen

3-14 MA950-LR

ACCELRATE
(PRE-DEFINED VARIABLE, INTEGER)

Purpose AccelRate (acceleration rate) sets the maximum commanded
acceleration rate when the speed is increased.

AccelRate is independent of DecelRate. Each
variable must be set, independently, to the
appropriate value for the desired motion.

Syntax AccelRate = x
Units rpm/sec
Range 1 to 16,000,000 rpm/sec
Default 10,000 rpm/sec
Guidelines Set AccelRate prior to initiating the move. You can update

AccelRate during a move by executing an UpdMove
statement.

Related
Instructions DecelRate
Example This example sets AccelRate to 10,000 rpm/sec and does an

incremental move of 10 motor revolutions (assuming
CountsPerRev is 4096).

RunSpeed = 1000
AccelRate = 10000
DecelRate = 10000
IndexDist = 40960
GoIncr

Danaher Motion Kollmorgen Instructions

MA950-LR 3-15

ACTIVECAM
(PRE-DEFINED VARIABLE, INTEGER)

Purpose ActiveCam activates the specified cam table. The Position
Command is calculated according to the Master Position
(CamMasterPos) and the points in the specified cam table.

 When you activate a new cam, the drive accelerates (at
AccelGear) or decelerates (at DecelGear) as necessary to the
speed required by the present motion of the Cam Master and
the slave position profile defined in the cam table.

 When speed synchronization is achieved, GearLock is set to
one and a correction move is performed to bring the slave into
position lock with the cam table. The direction of this move is
controlled by CamCorrectDir. The parameters of this
correction move are the same as for any other move (i.e.,
AccelRate, DecelRate, RunSpeed).

 If the master is not moving or if the slave position profile in
the cam table does not require cam motion when the cam is
activated, the speed synchronization occurs instantly and the
correction move is executed as soon as the cam is activated.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax ActiveCam = x
Range 0 to 8
Guidelines ActiveCam is automatically set to zero (i.e., any cam is

disengaged) when the drive is disabled.
 To disable the correction move, set CamCorrectDir = 3.
 You must declare and create a cam table before you make it

active.
 If RunSpeed is equal to zero when you set ActiveCam, a

run-time error is generated because the correction move
cannot be performed.

Related
Instructions CamCorrectDir

Instructions Danaher Motion Kollmorgen

3-16 MA950-LR

Example The following example declares, creates, and activates a cam.
$DeclareCam(1, 5) ‘allocate space for cam #1, 5
points
main
 CreateCam(1)
‘start the cam create block
 AddPoint(0, 0)
 AddPoint(200, 100)
 AddPoint(400, 200)
‘add the points
 AddPoint(600, 300)
 AddPoint(800, 400)
 End
‘end the cam create block
Enable = 1 ‘enable the motor
EncPosModulo = 800
‘set EncPosModulo to master counts per cycle
PosModulo = 400
‘sets PosModulo to slave (SC950) counts per cycle
EncPos = 0 ‘clear the counter
ActiveCam = 1 ‘activate cam #1
End

Danaher Motion Kollmorgen Instructions

MA950-LR 3-17

ADDPOINT()
(STATEMENT)

Purpose Addpoint() adds the specified “point” (master position and
corresponding slave position) to the cam table being created.
This statement is only used inside a CreateCam block.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax AddPoint(master_position, slave_position)
Guidelines You must be inside a CreateCam block to use the Addpoint

statement.
 The master position for the first Addpoint statement in a

CreateCam block must always be zero.
 The master position must always increase as you add points to

the cam table.
 There must be at least three points in your cam table.
Related
Instructions $DeclareCam()
Example In the following example, a cam is declared, created, and

activated.
$DeclareCam(1, 5) ‘allocate space for cam #1, 5 points
main
 CreateCam(1)
‘start the cam create block
 AddPoint(0, 0)
 AddPoint(200, 100)
 AddPoint(400, 200)
‘add the points
 AddPoint(600, 300)
 AddPoint(800, 400)
 End ‘end the cam create block
Enable = 1 ‘enable the motor
EncPosModulo = 800
‘set EncPosModulo to master counts per cycle
PosModulo = 400
‘set PosModulo to slave counts per cycle
EncPos = 0 ‘clear the counter
ActiveCam = 1 ‘activate cam #1
End

Instructions Danaher Motion Kollmorgen

3-18 MA950-LR

ADF0
(PRE-DEFINED VARIABLE, FLOAT)

Purpose ADF0 is the first-order low-pass filter corner frequency for the
analog input channel (J4-1 to J4-2).

Syntax ADF0 = x
Units Hertz
Range 0.01 to 4.17e7
Default 1,000 Hertz
Guidelines ADF0 is the corner frequency in Hz of the single-order low-

pass filter. The purpose of the filter is to attenuate the high
frequency components from the digitized input signal.
Decreasing ADF0 lowers the response time to input changes,
but also increases the effective resolution of AnalogIn.

AnalogIn
ADF0 Effective Bits LSB Size

Max 14 1.6 mV
150 16 0.4 mV
10 18 0.1 mV

ADOFFSET
(PRE-DEFINED VARIABLE, FLOAT)

Purpose ADOffset adjusts the steady-state value of the analog
command input.

Syntax ADOffset = x
Units Volts
Range -15 to +15
Default 0 volts
Guidelines AnalogIn is equal to the differential voltage between J4-1 and

J4-2 plus ADOffset.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-19

ALIAS
(STATEMENT)

Purpose Alias allows you to define your own names for system
resources, such as Input or Output pins.

Syntax Alias <name> = <expression>
Guidelines ALIAS is much more powerful than CONST. Constant

expressions are computable at compile-time, whereas an alias
has a value that may only be known at the time that it is being
used. For this reason aliases should be used with care—-too
much aliasing can make it very difficult for you to read your
own program.

Related
Instructions Const
Example Alias CONVEYOR_IS_RUNNING = (inp1=0)

If CONVEYOR_IS_RUNNING Then
 print “The conveyor is running”
End If

ANALOGIN
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ

ONLY)

Purpose AnalogIn (Analog input) contains the digitized value of the
analog input channel, which is the differential voltage of J4-1
(+) relative to J4-2 (-) after ADOffset is added and passed
through ADFO low-pass filter.

Syntax x = AnalogIn
Units Volts
Range -13.5 to +13.5
Default None
Guidelines AnalogIn can be monitored to check the presence and voltage

of signals at the analog input terminals.

Instructions Danaher Motion Kollmorgen

3-20 MA950-LR

ANALOGOUT1
(PRE-DEFINED VARIABLE, FLOAT, CONTROL VARIABLE)

Purpose AnalogOut1 (Analog Output1) sets the voltage level of the
DAC Monitor 1 (J4-3) when DM1Map = 0.

Syntax AnalogOut1 = x
Units Volts
Range -5.0 to +4.961
Default 0 volts
Guidelines When DM1Map is not equal to 0, AnalogOut1 is not used.

ANALOGOUT2
(PRE-DEFINED VARIABLE, FLOAT, CONTROL VARIABLE)

Purpose AnalogOut2 (Analog Output1) sets the voltage level of the
DAC Monitor 2 (J4-4) when DM2Map = 0.

Syntax AnalogOut2 = x
Units Volts
Range -5.0 to +4.961
Default 0 volts
Guidelines When DM2Map is not equal to 0, AnalogOut2 is not used.

AND
(OPERATOR)

Purpose And performs a logical AND operation on two expressions.
Syntax result = A and B
Guidelines The result evaluates to True if, and only if, both expressions

are True. Otherwise, the result is False.
Related
Instructions Or, Xor, Band, Bor, Bxor
Example x = 17

y = 27
If (x > 20) And (y > 20) Then
 print “This won’t get printed”
End If
If (x < 20) And (y > 20) Then
 print “This will get printed”
End If

Danaher Motion Kollmorgen Instructions

MA950-LR 3-21

ARF0
(PRE-DEFINED VARIABLE, FLOAT, NV PARAMETER)

Purpose ARF0 is the first velocity loop compensation anti-resonance
low-pass filter corner frequency.

Syntax ARF0 = x
Units Hertz
Range 0.01 to 10e6

-10e6 to -0.01
Default Parameter values are specified in the Params...End Params

section of the program. The 950 IDE New Program function
calculates this value based upon the specified motor and drive.

Guidelines ARF0 is the corner frequency (in Hz) of one of two single-
order low-pass anti-resonant filters or (if < 0) is the under-
damped pole pair frequency in Hz and ARF1 is the pole pair
Q. The purpose of the anti-resonant filters is to attenuate the
velocity loop gain at the mechanical resonant frequency.

Related
Instructions ARF1, ARZ0, ARZ1

ARF1
(PRE-DEFINED VARIABLE, FLOAT, NV PARAMETER)

Purpose ARF1 is the second velocity loop compensation anti-
resonance low-pass filter corner frequency.

Syntax ARF1 = x
Units Hertz
Range 0.01 to 10,000,000

1 to 100 (Q)
Default Parameter values are specified in the Params...End Params

section of the program. The 950 IDE New Program function
calculates this value based upon the specified motor and drive.

Guidelines ARF1 is the corner frequency, in Hz, of one of two single-
order low-pass anti-resonant filters or if ARF0 is < 0, ARF1 is
the Q of the under damped pole pair. The purpose of the anti-
resonant filters is to attenuate the velocity gain at the
mechanical resonant frequency.

Related
Instructions ARF0, ARZ0, ARZ1

Instructions Danaher Motion Kollmorgen

3-22 MA950-LR

ARZ0
(PRE-DEFINED VARIABLE, FLOAT)

Purpose ARZ0 is the first velocity loop compensation zero.
Syntax ARZ0 = x
Units Hertz
Range 20 to 1e5

-1e5 to -35
Default 0 Hertz
Guidelines For very demanding compensation schemes, ARZ0 is used to

add lead compensation or (with ARZ1) to add a notch filter.
Otherwise, it is set to 0. ARZ0 positive sets the zero
frequency in Hz and if < 0, sets the under damped zero pair
frequency in Hz.

Related
Instructions ARF0, ARF1, ARZ1

ARZ1
(PRE-DEFINED VARIABLE, FLOAT)

Purpose ARZ1 is the second velocity loop compensation zero.
Syntax ARZ1 = x
Units Hertz
Range 20 to 1e6

-100 to 100 (Q)
Default 0 Hertz
Guidelines For very demanding compensation schemes, ARZ1 is used to

add lead compensation or (with ARZ0) to add a notch filter.
Otherwise, it is set to 0. ARZ1 sets the zero frequency in Hz
unless ARZ0 is set < 0. Then, ARZ1 sets the under damped
zero pair Q.

Related
Instructions ARF0, ARF1, ARZ0

Danaher Motion Kollmorgen Instructions

MA950-LR 3-23

ASC()
(FUNCTION)

Purpose ASC (string expression) returns a decimal numeric value that
is the ASCII code for the first character of the string
expression(x$).

Syntax x = Asc(s$)
Guidelines If the string begins with an uppercase letter, the value of

Asc() is between 65 and 90.
 If the string begins with a lowercase letter, the value of Asc()

is between 97 and 122.
 Values 0 to 9 return 48 to 57.

ATAN()
(FUNCTION)

Purpose Atan() (arc tangent) returns the arctangent of its argument in
radians.

Syntax result = atan(x)
Guidelines The result is always between - ð/2 and ð/2.

The value of x may be any numeric type.
To convert from degrees to radians, multiply by 0.01745329

AUTOSTART
(PRE-DEFINED VARIABLE, INTEGER)

Purpose Autostart specifies whether or not the program in the OC950
starts executing automatically when AC power is applied.

0 = Program does not start automatically
1 = Program starts automatically

Syntax Autostart = x
Units none
Range 0 or 1
Default 0
Guidelines Set Autostart to 0 or 1 in the Variables Window (Compiler

Menu, Variables option) of the 950 IDE.

Instructions Danaher Motion Kollmorgen

3-24 MA950-LR

AXISADDR
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose AxisAddr indicates the PacLAN address of the OC950. It is
also used as a general configuration parameter, allowing you
to have the same program in different drives that behave
differently on some of them, depending on the value of the
DIP switch.

Syntax x = AxisAddr
Units none
Range 1 to 255
Default Set by Address DIP Switch S1 on OC950.
Guidelines Every OC950 in a PacLAN network must have a unique

address.

BAND
(OPERATOR)

Purpose Band performs a bitwise And of two integer expressions.
Syntax result = x Band y
Guidelines The Band operator performs a bitwise And operation on the

two numeric expressions. The expressions are converted to
integers (32 bits) before the Band operation takes place.

 For each of the 32 bits in the result, the bit is set to 1 if, and
only if, the corresponding bit in both of the arguments is 1.

Example x = 45 ‘0010 1101 binary
y = 99 ‘0110 0011 binary
print x Band y ‘prints: 33 (0010 0001)

Danaher Motion Kollmorgen Instructions

MA950-LR 3-25

BAUDRATE
(PRE-DEFINED VARIABLE, INTEGER)

Purpose BaudRate specifies the baudrate used on the OC950 Serial
Port, either 19200 or 9600 baud.

Syntax BaudRate = x
Range 9600 or 19200
Default 19200
Guidelines When you configure your OC950 to communicate at 9600

baud, it communicates at this baudrate while the program is
running and when the program is stopped. Therefore, it is
essential that you also configure the 950IDE software on your
PC to communicate at the same baudrate.

 Once you configure your OC950 to communicate at 9600
baud, this information is retained after cycling power.

 See Appendix A, “Operating at 9600 Baud” for additional
information.

BDINP1
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ

ONLY)

Purpose BDInp1 reads the state of BDIO1, J4-7.
Syntax x = BDInp1
Range 0 or 1
Guidelines BDInp1 indicates whether BDIO1 input voltage is above or

below the logic threshold selected by the variable BDLgcThr.
BDInp1 = 0 indicates a logic low input
BDInp1 = 1 indicates a logic high input

Instructions Danaher Motion Kollmorgen

3-26 MA950-LR

BDINP2
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ

ONLY)

Purpose BDInp2 reads the state of BDIO2, J4-8.
Syntax x = BDInp2
Range 0 or 1
Guidelines BDInp2 indicates whether BDIO2 input voltage is above or

below the logic threshold selected by the variable BDLgcThr.
BDInp2 = 0 indicates a logic low input
BDInp2 = 1 indicates a logic high input

BDINP3
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ

ONLY)

Purpose BDInp3 reads the state of BDIO3, J4-9.
Syntax x = BDInp3
Range 0 or 1
Guidelines BDInp3 indicates whether BDIO3 input voltage is above or

below the logic threshold selected by the variable BDLgcThr.
BDInp3 = 0 indicates a logic low input
BDInp3 = 1 indicates a logic high input

BDINP4
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ

ONLY)

Purpose BDInp4 reads the state of BDIO4, J4-10.
Syntax x = BDInp4
Range 0 or 1
Guidelines BDInp4 indicates whether BDIO4 input voltage is above or

below the logic threshold selected by the variable BDLgcThr.
BDInp4 = 0 indicates a logic low input
BDInp4 = 1 indicates a logic high input

Danaher Motion Kollmorgen Instructions

MA950-LR 3-27

BDINP5
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ

ONLY)

Purpose BDInp5 reads the state of BDIO5, J4-11.
Syntax x = BDInp5
Range 0 or 1
Guidelines BDInp5 indicates whether BDIO5 input voltage is above or

below the logic threshold selected by the variable BDLgcThr.
BDInp5 = 0 indicates a logic low input
BDInp5 = 1 indicates a logic high input

BDINP6
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ

ONLY)

Purpose BDInp6 reads the state of BDIO6, J4-12.
Syntax x = BDInp6
Range 0 or 1
Guidelines BDInp6 indicates whether BDIO6 input voltage is above or

below the logic threshold selected by the variable BDLgcThr.
BDInp6 = 0 indicates a logic low input
BDInp6 = 1 indicates a logic high input

BDINPUTS
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-

ONLY)

Purpose BDInputs reads the state of the BDIO inputs in parallel. This
variable is determined by the voltage levels applied to the
BDIO input pins J4-7 to J4-12.

Syntax x = BDInputs
Range 0 to 63 (6 BDIOs)
Guidelines BDInputs = 1*BDIO1 + 2*BDIO2 + 4*BDIO3 + 8*BDIO4 +

16*BDIO5 + 32*BDIO6.
 0 = low input
 1 = high input.
 For example, BDInputs = 12 means that BDIO 1, 2, 5, 6 are

low and BDIO 3, 4 are high. See BDInp1-BDInp6 to query
inputs individually.

Instructions Danaher Motion Kollmorgen

3-28 MA950-LR

BDIOMAP1
(PRE-DEFINED VARIABLES, INTEGER, NV PARAMETER)

Purpose BDIOMap1 sets the logical function of the BDIOs on J4-7.
Syntax BDIOMap1 = x
Range -2,147,482,648 to 2,147,482,648
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
assigns BDIOMap1=Fault Reset Input Active Low.

Guidelines To use BDIO1 as a programmable Input/Output, set
BDIOMap1 to zero.

 Although the value is a 32 bit integer, the value is easily set in
the Variables Screen or in the program using the following
pre-defined constants for setting BDIOMap1:

Fault_Reset_Inp_Hi Fault_Out_Hi
Fault_Reset_Inp_Lo Fault_Out_Lo
CW_Inhibit_Inp_Hi Enabled_Out_Hi
CW_Inhibit_Inp_Lo Enabled_Out_Lo
CCW_Inhibit_Inp_Hi Brake_Out_Hi
CCW_Inhibit_Inp_Lo Brake_Out_Lo

Related
Instructions Input Functions: FaultReset, CwInh, CcwInh

Output Functions: Fault, Enabled, Brake
Example BDIOMap1 = Enabled_Out_Lo maps Enabled as an active

low output to J4-7.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-29

BDIOMAP2
(PRE-DEFINED VARIABLES, INTEGER, NV PARAMETER)

Purpose BDIOMap2 sets the logical function ofBDIO on J4-8.
Syntax BDIOMap2 = x
Range -2,147,482,648 to 2,147,482,648
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
assigns BDIOMap2=CW Inhibit Input Active Low.

Guidelines To use BDIO2 as a programmable Input/Output, set
BDIOMap2 to zero.

 Although the value is a 32 bit integer, the value is easily set in
the Variables Screen or in the program using the following
pre-defined constants for setting BDIOMap2:

Fault_Reset_Inp_Hi Fault_Out_Hi
Fault_Reset_Inp_Lo Fault_Out_Lo
CW_Inhibit_Inp_Hi Enabled_Out_Hi
CW_Inhibit_Inp_Lo Enabled_Out_Lo
CCW_Inhibit_Inp_Hi Brake_Out_Hi
CCW_Inhibit_Inp_Lo Brake_Out_Lo

Related
Instructions Input Functions: FaultReset, CwInh, CcwInh

Output Functions: Fault, Enabled, Brake
Example BDIOMap2 = Enabled_Out_Lo maps Enabled as an active

low output to J4-8.

Instructions Danaher Motion Kollmorgen

3-30 MA950-LR

BDIOMAP3
(PRE-DEFINED VARIABLES, INTEGER, NV PARAMETER)

Purpose BDIOMap3 sets the logical function ofBDIO on J4-9.
Syntax BDIOMap3 = x
Range -2,147,482,648 to 2,147,482,648
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
assigns BDIOMap3=CCW Inhibit Input Active Low.

Guidelines To use BDIO3 as a programmable Input/Output, set
BDIOMap3 to zero.

 Although the value is a 32 bit integer, the value is easily set in
the Variables Screen or in the program using the following
pre-defined constants for setting BDIOMap3:

Fault_Reset_Inp_Hi Fault_Out_Hi
Fault_Reset_Inp_Lo Fault_Out_Lo
CW_Inhibit_Inp_Hi Enabled_Out_Hi
CW_Inhibit_Inp_Lo Enabled_Out_Lo
CCW_Inhibit_Inp_Hi Brake_Out_Hi
CCW_Inhibit_Inp_Lo Brake_Out_Lo

Related
Instructions Input Functions: FaultReset, CwInh, CcwInh

Output Functions: Fault, Enabled, Brake
Example BDIOMap3 = Enabled_Out_Lo maps Enabled as an active

low output to J4-9.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-31

BDIOMAP4
(PRE-DEFINED VARIABLES, INTEGER, NV PARAMETER)

Purpose BDIOMap4 sets the logical function ofBDIO on J4-10.
Syntax BDIOMap4 = x
Range -2,147,482,648 to 2,147,482,648
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
assigns BDIOMap4=OFF.

Guidelines To use BDIO4 as a programmable Input/Output, set
BDIOMap4 to zero.

 Although the value is a 32 bit integer, the value is easily set in
the Variables Screen or in the program using the following
pre-defined constants for setting BDIOMap4:

Fault_Reset_Inp_Hi Fault_Out_Hi
Fault_Reset_Inp_Lo Fault_Out_Lo
CW_Inhibit_Inp_Hi Enabled_Out_Hi
CW_Inhibit_Inp_Lo Enabled_Out_Lo
CCW_Inhibit_Inp_Hi Brake_Out_Hi
CCW_Inhibit_Inp_Lo Brake_Out_Lo

Related
Instructions Input Functions: FaultReset, CwInh, CcwInh

Output Functions: Fault, Enabled, Brake
Example BDIOMap4 = Enabled_Out_Lo maps Enabled as an active

low output to J4-10.

Instructions Danaher Motion Kollmorgen

3-32 MA950-LR

BDIOMAP5
(PRE-DEFINED VARIABLES, INTEGER, NV PARAMETER)

Purpose BDIOMap5 sets the logical function of BDIO on J4-11.
Syntax BDIOMap5 = x
Range -2,147,482,648 to 2,147,482,648
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
assigns BDIOMap5=Brake Output Active High.

Guidelines To use BDIO5 as a programmable Input/Output, set
BDIOMap5 to zero.

 Although the value is a 32 bit integer, the value is easily set in
the Variables Screen or in the program using the following
pre-defined constants for setting BDIOMap5:

Fault_Reset_Inp_Hi Fault_Out_Hi
Fault_Reset_Inp_Lo Fault_Out_Lo
CW_Inhibit_Inp_Hi Enabled_Out_Hi
CW_Inhibit_Inp_Lo Enabled_Out_Lo
CCW_Inhibit_Inp_Hi Brake_Out_Hi
CCW_Inhibit_Inp_Lo Brake_Out_Lo

Related
Instructions Input Functions: FaultReset, CwInh, CcwInh

Output Functions: Fault, Enabled, Brake
Example BDIOMap5 = Enabled_Out_Lo maps Enabled as an active

low output to J4-11.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-33

BDIOMAP6
(PRE-DEFINED VARIABLES, INTEGER, NV PARAMETER)

Purpose BDIOMap6 sets the logical function of BDIO on J4-12.
Syntax BDIOMap6 = x
Range -2,147,482,648 to 2,147,482,648
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
assigns BDIOMap6=Fault Output Active High.

Guidelines To use BDIO6 as a programmable Input/Output, set
BDIOMap6 to zero.

 Although the value is a 32 bit integer, the value is easily set in
the Variables Screen or in the program using the following
pre-defined constants for setting BDIOMap6:

Fault_Reset_Inp_Hi Fault_Out_Hi
Fault_Reset_Inp_Lo Fault_Out_Lo
CW_Inhibit_Inp_Hi Enabled_Out_Hi
CW_Inhibit_Inp_Lo Enabled_Out_Lo
CCW_Inhibit_Inp_Hi Brake_Out_Hi
CCW_Inhibit_Inp_Lo Brake_Out_Lo

Related
Instructions Input Functions: FaultReset, CwInh, CcwInh

Output Functions: Fault, Enabled, Brake
Example BDIOMap6 = Enabled_Out_Lo maps Enabled as an active

low output to J4-12.

Instructions Danaher Motion Kollmorgen

3-34 MA950-LR

BDLGCTHR
(PRE-DEFINED VARIABLE, INTEGER)

Purpose BDLgcThr sets the switching threshold for the Base drive
inputs (BDInp1 - BDInp6) and the pull up voltage for the
Base drive outputs (BDOut1 - BDOut6).

Syntax BDLgcThr = x
Range 0 or 1
Default 0 (5 volt compatible)
Guidelines 0 selects 5 volt logic compatibility

1 selects 24 volt logic compatibility

BDLgcThr Low (Volts) High (Volts) Pull up (Volts)

0 2.1 3.1 5.0
1 4.0 5.0 12.0

BDOUT1
(PRE-DEFINED VARIABLE, INTEGER, CONTROL VARIABLE)

Purpose BDOut1 allows setting the output logic state of BDIO1 not
mapped to an output function via BDIOMap1. BDOut1 sets
the state of BDIO1, J4-7.

Syntax BDOut1 = x
Range 0 or 1
Default 1 (transistor turned off)
Guidelines 0 turns on the pull down transistor

1 turns off the pull down transistor
 To use BDIO1 as an input, BDOut1 must be set to 1 (default).

Danaher Motion Kollmorgen Instructions

MA950-LR 3-35

BDOUT2
(PRE-DEFINED VARIABLE, INTEGER, CONTROL VARIABLE)

Purpose BDOut2 allows setting the output logic state of BDIO2 not
mapped to an output function via BDIOMap2. BDOut2 sets
the state of BDIO2, J4-8.

Syntax BDOut2 = x
Range 0 or 1
Default 1 (transistor turned off)
Guidelines 0 turns on the pull down transistor

1 turns off the pull down transistor
 To use BDIO2 as an input, BDOut2 must be set to 1 (default).

BDOUT3
(PRE-DEFINED VARIABLE, INTEGER, CONTROL VARIABLE)

Purpose BDOut3 allows setting the output logic state of BDIO3 not
mapped to an output function via BDIOMap3. BDOut3 sets
the state of BDIO3, J4-9.

Syntax BDOut3 = x
Range 0 or 1
Default 1 (transistor turned off)
Guidelines 0 turns on the pull down transistor

1 turns off the pull down transistor
 To use BDIO3 as an input, BDOut3 must be set to 1 (default).

BDOUT4
(PRE-DEFINED VARIABLE, INTEGER, CONTROL VARIABLE)

Purpose BDOut4 allows setting the output logic state of BDIO4 not
mapped to an output function via BDIOMap4. BDOut4 sets
the state of BDIO4, J4-10.

Syntax BDOut4 = x
Range 0 or 1
Default 1 (transistor turned off)
Guidelines 0 turns on the pull down transistor

1 turns off the pull down transistor
 To use BDIO4 as an input, BDOut4 must be set to 1 (default).

Instructions Danaher Motion Kollmorgen

3-36 MA950-LR

BDOUT5
(PRE-DEFINED VARIABLE, INTEGER, CONTROL VARIABLE)

Purpose BDOut5 allows setting the output logic state of BDIO5 not
mapped to an output function via BDIOMap5. BDOut5 sets
the state of BDIO5, J4-11.

Syntax BDOut5 = x
Range 0 or 1
Default 1 (transistor turned off)
Guidelines 0 turns on the pull down transistor

1 turns off the pull down transistor
 To use BDIO5 as an input, BDOut5 must be set to 1 (default).

BDOUT6
(PRE-DEFINED VARIABLE, INTEGER, CONTROL VARIABLE)

Purpose BDOut6 allows setting the output logic state of BDIO6 not
mapped to an output function via BDIOMap6. BDOut6 sets
the state of BDIO6, J4-12.

Syntax BDOut6 = x
Range 0 or 1
Default 1 (transistor turned off)
Guidelines 0 turns on the pull down transistor

1 turns off the pull down transistor
 To use BDIO6 as an input, BDOut6 must be set to 1 (default).

Danaher Motion Kollmorgen Instructions

MA950-LR 3-37

BDOUTPUTS
(PRE-DEFINED VARIABLE, INTEGER, CONTROL VARIABLE)

Purpose For BDIO outputs not mapped to an output function via
BDIOMap, allows setting their output logic state in parallel.

Syntax BDOutputs = x
Range 0 to 63 (6 BDIOs)
Default 63
Guidelines BDOutputs = 1*BDIO1 + 2*BDIO2 + 4*BDIO3 + 8

*BDIO4 + 16*BDIO5 + 32*BDIO6.
 0 turns on the corresponding pull down transistor

1 turns off the corresponding pull down transistor.

BDIOs mapped to output functions via their
BDIOMap are determined by that function and
their value in BDOutputs is ignored.

Example BDInputs = 12 pulls down BDIO 1, 2, 5, 6 and open circuit
BDIO 3, 4. See BDOut1-BDOut6 to control outputs
individually.

BEEP
(STATEMENT)

Purpose Beep transmits a BEEP character (ASCII 07) to the serial
port.

Syntax Beep
Example print “Listen to this...”

pause(0.5)
Beep

Instructions Danaher Motion Kollmorgen

3-38 MA950-LR

BLKTYPE
(PRE-DEFINED VARIABLE, INTEGER)

Purpose BlkType specifies configuration as a position, velocity, or
torque block.

Syntax BlkType = x
Range 0, 1 or 2
Default 2 (Position Mode)
Guidelines BlkType sets the overall control functionality of the drive.

For block diagrams of the drive configurations, refer to the
manual (alternative BlkType settings). When used in any of
the analog modes, the analog control is the differential voltage
applied to the Analog Cmd+ (Analog Command +) and
Analog Cmd- (Analog Command -) inputs (J4-1 and J4-2
respectively).

BlkType Servo Configuration

0 Analog Torque Block
1 Analog Velocity Block
2 Digital Position Block

BNOT
(OPERATOR)

Purpose Bnot performs a bitwise NOT of the integer expression.
Syntax result = Bnot x
Guidelines The Bnot operator performs a bitwise NOT operation on a

numeric expression. The expression is converted to an integer
(32 bits) before the BNOT operation takes place.

 For each of the 32 bits in the result, the bit is set to 1 if the
corresponding bit in the argument is 0. The bit is set to 0 if the
corresponding bit in the argument is 1.

Example x = 45
‘0010 1101 binary
print Bnot x
‘prints: -46

Danaher Motion Kollmorgen Instructions

MA950-LR 3-39

BOR
(OPERATOR)

Purpose Bor performs a bitwise OR of two integer expressions.
Syntax result = x Bor y
Guidelines Bor performs a bitwise OR operation on the two numeric

expressions. The expressions are converted to integers (32
bits) before the BOR operation takes place.

 For each of the 32 bits in the result, the bit is set to 1 if the
corresponding bit in either of the arguments is 1.

Example x = 45 ‘0010 1101 binary
y = 99 ‘0110 0011 binary
print x Bor y ‘prints: 111 (0110 1111)

BRAKE
(PRE-DEFINED VARIABLE, INTEGER, MAPPABLE OUTPUT

FUNCTION, READ-ONLY)

Purpose Brake indicates when the motor is not powered and a
mechanical brake needs to hold the motor.

Syntax x = Brake
Range 0 or 1
Guidelines 0 = the motor is powered and the brake should be off.

1 = the mechanical brake should engage
 To insure that a mechanical brake is engaged when a drive’s

control power is removed, map the active high Brake function
to a BDIO pin.

Instructions Danaher Motion Kollmorgen

3-40 MA950-LR

BXOR
(OPERATOR)

Purpose Bxor performs a bitwise XOR of two integer expressions.
Syntax result = x Bxor y
Guidelines Bxor performs a bitwise XOR operation on the two numeric

expressions. The expressions are converted to integers (32
bits) before the BXOR operation takes place.

 For each of the 32 bits in the result, the bit is set to 1 if the
corresponding bits in the two arguments are different from
each other. If the corresponding bits are identical (both 0 or
both 1), the bit is set to 0.

Example x = 45 ‘0010 1101 binary
y = 99 ‘0110 0011 binary
print x Bor y ‘prints: 78 (0100 1110)

CALL
(STATEMENT)

Purpose Call transfers program control to a subroutine. When the
subroutine is complete, control is transferred to the line
following the Call. Call statement replaces the GoSub
statement (no longer supported).

Syntax Call sub [(arg1, arg2, ...)]
Guidelines A subroutine is essentially a function with no return value.

Arguments to subroutines are passed by value. This means
that the subroutine receives a copy of these arguments. Any
assignments to these arguments made by the subroutine have
no effect on these variables in the calling function or
subroutine.

Related
Instructions Sub
Example Call PrintSum(3, 4)

...
Sub PrintSum(i, j as integer)
 print i+j
End Sub

Danaher Motion Kollmorgen Instructions

MA950-LR 3-41

CAMCORRECTDIR
(PRE-DEFINED VARIABLE, INTEGER)

Purpose CamCorrectDir specifies the direction of the correction move
when a new cam table is activated (set ActiveCam = n) or
when speed synchronization is achieved.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax CamCorrectDir = x
Range 0 to 3
Default 2 (shortest distance)
Guidelines CamCorrectDir takes one of the following values:

0 move is done clockwise
1 move is done counter-clockwise
2 move is done in the direction yielding the shortest move

(see below)
3 no correction move is performed.

 Use AccelRate, DecelRate and RunSpeed for a correction
move. Even if CamCorrectDir specifies a clockwise
correction move, it only specifies the direction of the
superimposed move. If the cam generated speed is the
opposite direction and larger than RunSpeed, the slave slows
down.

 For CamCorrectDir = 2, the direction of the correction is
calculated (based upon PosModulo) to yield the shortest
distance move. For example, if PosModulo = 10000 and the
clockwise correction move is 8000, a counter-clockwise move
of 2000 is performed instead.

Related
Instructions ActiveCam
Example In the following example, the correction move is in the

direction yielding the shortest move distance.
....
‘The cam table for Cam #1 needs to have been
‘already declared and created
‘——————————————————————
CamCorrectDir = 2
ActiveCam = 1

Instructions Danaher Motion Kollmorgen

3-42 MA950-LR

CAMMASTER
(PRE-DEFINED VARIABLE, INTEGER)

Purpose CamMaster is used to specify the source of the input to the
cam table for cam profiling.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax CamMaster = x
Range 0 to 2
Default 0 (“real” encoder + “virtual” encoder)
Guidelines CamMaster takes one of the following values:

0 Encpos + vmEncpos
1 vmEncpos only (Encpos is ignored)
2 Encpos only (vmEncpos is ignored)

Related
Instructions CamMasterPos

CAMMASTERPOS
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose CamMasterPos gives the value of the master position
presently being used as the input to the cam table. The value
of CamMasterPos depends upon Encpos, vmEncpos and
CamMaster as follows:

Value of CamMaster Value of CamMasterPos

0 vmEncpos + Encpos
1 vmEncpos
2 Encpos

This feature is only available in the Enhanced
OC950 Firmware.

Syntax x = CamMasterPos
Units encoder counts
Range 0 - EncposModulo
Related
Instructions CamMaster, Encpos, vmEncpos

Danaher Motion Kollmorgen Instructions

MA950-LR 3-43

CAMSLAVEOFFSET
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose CamSlaveOffset indicates the offset (or difference) between
PosCommand and the position command that is calculated
from the active cam table based upon the present value of
Encpos and/or vmEncpos. This offset is the result of
incremental (GoIncr) or velocity (GoVel) moves
superimposed (by you) on the cam table.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax x = CamSlaveOffset
Units feedback counts
Range 0 - PosModulo
Guidelines If there is no active cam (ActiveCam = 0), the value of this

variable is undefined.

CCDATE
(PRE-DEFINED VARIABLE, STATUS VARIABLE, READ ONLY)

Purpose CCDate gives the Control Card date code.
Syntax CCDate = x
Range 0 to 231
Default Set at factory

CCSNUM
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ

ONLY)

Purpose CCSNum gives the Control Card serial number.
Syntax CCSNum = x
Range 0 to 231
Default Set at factory

Instructions Danaher Motion Kollmorgen

3-44 MA950-LR

CCWINH
(PRE-DEFINED VARIABLE, INTEGER)

Purpose CcwInh indicates the current state of the CCWINH (Inhibit -)
Input. It can also be used as an interrupt source.

Syntax x = CcwInh
Range 0 or 1
Units none
Default none

CCWOT
(PRE-DEFINED VARIABLE, INTEGER)

Purpose Ccwot sets the counter-clockwise software over-travel limit.
When the position of the motor becomes more negative than
this limit, a counter-clockwise over-travel interrupt occurs if
that interrupt is active.

Syntax Ccwot = x
Range -134,217,728 to 134,217,727 resolver counts
Units resolver counts
Default 0

CHR$()
(FUNCTION)

Purpose Chr$() returns a one character string whose ASCII value is
the argument.

Syntax s$ = Chr$(x)
Guidelines The argument to Chr$() must be a numeric value in the range

0 to 255.
Example This example prints an uppercase B.

dim a$ as string
a$ = Chr$(66)
print a$

Danaher Motion Kollmorgen Instructions

MA950-LR 3-45

CINT()
(FUNCTION)

Purpose Cint() converts a numeric expression to the closest integer
number.

Syntax x = Cint(numeric-expression)
Related
Instructions Int(), Fix()

CLS
(STATEMENT)

Purpose Cls transmits 40 line feed characters (ASCII code = 10) to the
serial port. Cls clears the display of a terminal.

Syntax Cls
Example print “Take a good look now ...”

pause(2)
cls

CMDGAIN
(PRE-DEFINED VARIABLE, FLOAT)

Purpose CmdGain sets the scale factor of the analog input for
BlkTypes 0 and 1.

Syntax CmdGain = x.x
Units, Range BlkType = 0 amperes/volt ±1010*IPEAK

BlkType = 1 krpm/volt ±1010
Default 0.5
Guidelines CmdGain is a floating point variable that sets the command

gain on the analog input (voltage from J4-1 to J4-2) for
BlkTypes 0 (Analog torque block) and 1 (Analog velocity
block).

Instructions Danaher Motion Kollmorgen

3-46 MA950-LR

COMMENBL
(PRE-DEFINED VARIABLE, INTEGER, CONTROL VARIABLE)

Purpose CommEnbl allows/disallows normal commutation.
Syntax CommEnbl = x
Range 0 or 1
Default 1
Guidelines 0 (disables commutation. Commutation angle set by CommOff)
 1 (enables commutation)

CommEnbl must always be 1 for normal operation.
Leaving CommEnbl at 0 can overheat and possibly
damage the motor.

COMMOFF
(PRE-DEFINED VARIABLE, FLOAT, NV PARAMETER)

Purpose CommOff sets the origin for the electrical commutation angle.
Syntax CommOff = x.x
Units degrees
Range 0 to 360
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
sets this value to 0 degrees.

Guidelines The value for standard Danaher Motion's Pacific Scientific
motors is 0.

For CommSrc = 1 (incremental encoder commutation)
CommOff is set to 0 on every power up, independent of
the value in the non-volatile memory. Drive RAM value
is always read/write.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-47

COMMSRC
(PRE-DEFINED VARIABLE, INTEGER)

Purpose CommSrc selects resolver or incremental encoder feedback
for motor commutation.

Syntax CommSrc = x
Range 0 or 1
Default 0 (resolver)
Guidelines 0 selects resolver feedback commutation — PoleCount set to

number of motor pole pairs.
 1 selects incremental encoder feedback commutation —

PoleCount set to number of quadrature encoder counts per
motor electrical cycle.

Writing to CommSrc sets Polecount = 0. Therefore,
first set CommSrc to the correct value and then set
PoleCount.

Instructions Danaher Motion Kollmorgen

3-48 MA950-LR

CONFIGPLS()
(STATEMENT)

Purpose ConfigPLS() configures the functionality of one of the eight
Programmable Limit Switches (PLS) on the OC950.

Syntax ConfigPLS(PLSNumber, StartPosition, Duration,
ActiveLevel, Source)
PLSNumber: the PLS being configured (0-7)
StartPosition: the position where the PLS turns on
Duration: the distance for which the PLS is on
ActiveLevel: 0 - output is set to zero when the PLS is ON
 1 - output is set to one when the PLS is ON
Source: 0 - Resolver Position
 1 - Encoder Position

Guidelines ConfigPLS() configures the PLS. You must enable the PLS
using the appropriate EnablePLSx pre-defined variable
before the PLS starts executing.

 PLSs are used to generate position based interrupts. The I/O
points are bi-directional on the OC950. Therefore, configure
an interrupt to occur on the rising/falling edge of the Input
(IntrI0Hi) associated with the Output (Out0) that the PLS
(PLS0) is controlling.

Related
Instructions EnablePLSx
Example The statements below configures PLS0 such that Out0 is set to

1 when Position is between 4096 and 4196. Out0 is set to 0 at
all other times.
 ConfigPLS(0, 4096, 100, 1, 0)
 EnablePLS0 = 1

 The example below configures PLS0 to generate an interrupt
once during each revolution of the motor.
Main
 PosModulo = 4096
 ConfigPLS(0, 2048, 500, 1, 0)
 EnablePLS0 = 1
 Enable = 1
 IntrI0Hi = 1
 Runspeed = 1000
 GoVel
 While 1:wend
End
Interrupt I0Hi
 Print “Interrupt generated on PLS0”
 IntrI0Hi = 1 ‘Re-enable “I0Hi” interrupt on exit”
End Interrupt

Danaher Motion Kollmorgen Instructions

MA950-LR 3-49

CONST
(STATEMENT)

Purpose Const declares symbolic constants to be used instead of
numeric values.

Syntax Const name = x
Guidelines The CONST statement makes your program much more

readable and self-documenting. Unlike variables, constants
assume only one value in a program.

Related
Instructions Alias
Example Const SLEW_SPEED = 2500

Const WORK_SPEED = 100
RunSpeed = SLEW_SPEED : GoVel
Pause(0.5)
RunSpeed = WORK_SPEED : GoVel

COS()
(FUNCTION)

Purpose Cos(x) returns the cosine of x, where x is in radians.
Syntax y = Cos(x)
Guidelines x must be in radians. To convert from degrees to radians,

multiply by 0.017453.

COUNTSPERREV
(PRE-DEFINED VARIABLE, INTEGER)

Purpose CountsPerRev specifies the scaling of all position-based pre-
defined variables.

Syntax CountsPerRev = x
Units Resolver Counts
Range 4096, 8192, 16384, 32768, 65536
Default 4096
Guidelines CountsPerRev specifies the scaling and hence, the resolution,

of all position based variables. The default value is 4096
resolver counts per motor revolution (5.27 arc-min).

This variable controls the resolution of position
variables. It does not affect accuracy.

Instructions Danaher Motion Kollmorgen

3-50 MA950-LR

CREATECAM()
(STATEMENT)

Purpose CreateCam() initiates the creation of a cam table. The actual
points in the cam table are inserted with a series of AddPoint()
statements. The CreateCam() block must terminated by an
End statement.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax CreateCam(n)
 AddPoint(0, y1)

 AddPoint(xx, yy)
End

 where n is the cam number (1-8) of the cam table that you are
creating.

Guidelines You must declare a cam table before you create the cam table.
You can create a cam table as many times as you want. You
must create a cam table before you make it active. You cannot
create a cam table if it is active. The master position for the
first entry must be 0. The master positions must keep
increasing as you add points. EncPosModulo must equal the
total master distance in you CAM. For a repeating CAM,
PosModulo should be set equal to the distance that the slave
travels in one CAM cycle.

Related
Instructions $DeclareCam(), AddPoint(), ActiveCam

Danaher Motion Kollmorgen Instructions

MA950-LR 3-51

Example In the following example, a cam is declared, created, and
activated.
$DeclareCam(1, 5)
‘allocate space for cam #1, 5 points
main
 CreateCam(1)
‘start the cam create block
 AddPoint(0, 0)
 AddPoint(200, 100)
 AddPoint(400, 200)
‘add the points
 AddPoint(600, 300)
 AddPoint(800, 400)
 End
‘end the cam create block
Enable = 1 ‘enable the motor
EncPosModulo = 800 ‘set EncPosModulo to master
 counts/cycle
PosModulo = 400
‘set PosModulo to slave (SC950) counts/cycle
EncPos = 0 ‘clear the counter
ActiveCam = 1 ‘activate cam #1
End

CWINH
(PRE-DEFINED VARIABLE)

Purpose CwInh indicates the current state of the CWINH (Inhibit +)
Input. It can also be used as an interrupt source.

Syntax x = CwInh
Range 0 or 1

CWOT
(PRE-DEFINED VARIABLE)

Purpose Cwot sets the clockwise software over-travel limit. When the
position of the motor becomes more positive than this limit, a
clockwise over-travel interrupt occurs if the interrupt is active.

Syntax Cwot = x
Range -134,217,728 to 134,217,727 resolver counts
Units resolver counts
Default 0

Instructions Danaher Motion Kollmorgen

3-52 MA950-LR

DECELGEAR
(PRE-DEFINED VARIABLE, INTEGER)

Purpose DecelGear sets the maximum deceleration commanded on
the follower when Gearing is turned ON or the electronic
gearing ratio (Ratio, PulsesOut, PulsesIn) is decreased.
This maximum acceleration limit remains in effect until
Gearlock is achieved. Once Gearlock is achieved, the
follower follows the master with whatever acceleration or
deceleration is required.

DecelGear is independent of AccelGear. Each
variable must be set, independently, to the appropriate
value for the desired motion.

Syntax DecelGear = x
Units rpm/sec
Range 1 to 16,000,000 rpm/sec
Default 16,000,000 rpm/sec
Guidelines Set DecelGear prior to initiating gearing.
Related
Instructions AccelGear, GearError, GearLock

Danaher Motion Kollmorgen Instructions

MA950-LR 3-53

DECELRATE
(PRE-DEFINED VARIABLE, INTEGER)

Purpose DecelRate (deceleration rate) sets the maximum commanded
deceleration rate when the speed is decreased.

DecelRate is independent of AccelRate. Each
variable must be set independently to the appropriate
value for the desired motion.

Syntax DecelRate = x
Units rpm/sec
Range 1 to 16,000,000 rpm/sec
Default 10,000 rpm/sec
Guidelines Set DecelRate prior to initiating the move. You can update

DecelRate during a move by executing an UpdMove
statement.

Related
Instructions AccelRate
Example This example sets DecelRate to 5,000 rpm/sec and does an

incremental move of 10 motor revolutions (assuming
CountsPerRev is 4096).

RunSpeed = 1000
AccelRate = 10000
DecelRate = 5000
IndexDist = 40960
GoIncr

Instructions Danaher Motion Kollmorgen

3-54 MA950-LR

DIM
(STATEMENT)

Purpose Dim is used for declaring variables before use. All variables
(except pre-defined variables) must be declared before they
are used.

 Dim also specifies that a global variable is non-volatile. When
the controller is power-cycled non-volatile variables retain the
value present when the controller was powered down. All
other user variables are initialized to zero.

Syntax Dim var1 [, var2 [...]] as type [NV]
where type is:

INTEGER = 32 bit integer
FLOAT = IEEE single precision float
STRING = default length is 32 characters

Guidelines The default length for strings is overridden by following the
STRING type designator with a * (see example). See the
examples to use Dim to dimension an array.

Related
Instructions Static
Example Dim x, y, z as Integer NV ‘3 non-volatile integers

Dim q as float ‘1 floating point
Dim Array1(4,5) as integer ‘a 4x5 array
Dim A$ as String*50 ‘a 50 character string

DIR
(PRE-DEFINED VARIABLE, INTEGER)

Purpose Dir specifies the direction the motor turns when a GoVel
statement is executed. It has no effect on any other motion
statements. If Dir = 0, the motor turns in the positive
direction. If Dir = 1, the motor turns in the negative direction.

Syntax Dir = x
Units none
Range 0 or 1
Default 0
Guidelines Positive and negative directions of motor motion are defined

by the PosPolarity variable.
Related
Instructions GoVel, PosPolarity

Danaher Motion Kollmorgen Instructions

MA950-LR 3-55

DM1F0
(PRE-DEFINED VARIABLE, INTEGER)

Purpose DM1F0 sets the frequency in Hz of a single pole low-pass
filter on the DAC Monitor 1 output (J4-3).

Syntax DM1F0 = x
Units Hertz
Range 0.01 to 4.17e7
Default 1000 Hertz
Guidelines DM1F0 is used to attenuate high frequency components from

the DM1Map selected signal. Setting DM1F0 to 1 Hz and
using DM1Out to examine the filtered value is an easy way to
accurately measure the selected signal’s DC value.

Instructions Danaher Motion Kollmorgen

3-56 MA950-LR

DM1GAIN
(PRE-DEFINED VARIABLE, FLOAT)

Purpose Sets the multiplicative scale factor applied to the DM1Map
selected signal before outputting on DAC Monitor 1 (J4-3).

Syntax DM1Gain = x
Default 0.6667
Guidelines Changing DM1Map changes DM1Gain’s value unless

DM1Map changes to a signal with identical units, such as
VelCmdA to VelFB (DM1Map = 1 to 2). Set DM1Gain to
keep the signal in the DAC Monitor in the ±5 volt range.
Below lists units when DM1Gain = 1.

Monitor # Scale Factor Monitor # Scale Factor

0 No Effect 15 1 V/cycle
1 1 V/krpm 16 1 V/amp
2 1 V/krpm 17 1 V/amp
3 1 V/krpm 18 1 V/amp
4 1 V/krpm 19 1 V/100%
5 1 V/rev 20 1 V/100%
6 1 V/rev 21 1 V/100%
7 1 V/rev 22 1 V/V
8 1 V/amp 23 1 V/rev
9 1 V/amp 24 1 V/amp
10 1 V/V 25 1 V/amp
11 1 V/Hz 26 1 V/100%
12 10 V/4096 27 1 V/100%
13 1 V/100% 28 1 V/krpm
14 1 V/ °C

Related
Instructions DM1Map, DM1F0, and DM1Out.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-57

DM1MAP
(PRE-DEFINED VARIABLE, INTEGER)

Purpose DM1Map selects signal sent to the DAC Monitor 1 output on
J4-3.

Syntax DM1Map = x
Range 0 to 65,537
Default 9 (IFB, Current Feedback)
Guidelines See Hardware manual for definitions of mnemonics.

Monitor # Mnemonic Monitor # Mnemonic

0 AnalogOut1 16 IR

1 VelFB 17 IS

2 VelCmdA 18 IT

3 VelErr 19 VR

4 FVelErr 20 VS

5 Position* 21 VT

6 PosError* 22 VBus

7 PosCommand* 23 ResPos *

8 ICmd 24 Cmd Non-Torque
Current

9 IFB 25 Non-Torque IFB

10 AnalogIn 26 Torque Voltage Duty
Cycle

11 EncFreq 27 Non-Torque Voltage
Duty Cycle

12 EncPos* 28 VelCmd

13 ItFilt 65536 Clamp Off **

14 HSTemp 65537 Clamp On **

15 Comm Ang *

*Wraps around when the signal exceeds the output voltage level.
**The value of the selected signal does not change.

Related
Instructions DM1Gain, M1F0, and DM1Out

Instructions Danaher Motion Kollmorgen

3-58 MA950-LR

DM1OUT
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-
ONLY)

Purpose DM1Out indicates the value of the selected, filtered variable
output to DAC Monitor 1 (J4-3). The value is reported in the
units of the selected variable. For example, DM1Map = 1
selects VelCmdA and the units are rpm.

Syntax x = DM1Out
Range Depends on DM1Map selected signal.
Guidelines With DM1F0 set low (such as 1 Hz), DM1Out’s value

accurately measures the DM1Map selected signal’s DC
component.

 DM1Out also examines variables that cannot be directly
queried, such as motor phase voltage duty cycle, DM1Map =
19, 20 or 21.

DM2F0
(PRE-DEFINED VARIABLE, FLOAT)

Purpose DM2F0 sets the frequency in Hz of a single pole low-pass
filter on the DAC Monitor 2 output (J4-4).

Syntax DM2F0 = x
Units Hertz
Range 0.01 to 4.17e7
Default 1000 Hertz
Guidelines DM2F0 is used to attenuate high frequency components from

the DM2Map selected signal. Setting DM2F0 to 1 Hz and
using DM2Out to examine the filtered value is an easy way to
accurately measure the selected signal’s DC value.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-59

DM2GAIN
(PRE-DEFINED VARIABLE, FLOAT)

Purpose DM2Gain sets the multiplicative scale factor applied to the
DM2Map selected signal before outputting on DAC Monitor
2 (J4-4).

Syntax DM2Gain = x
Default 2.0
Guidelines Changing DM2Map changes DM2Gain’s value unless

DM2Map changes to a signal with identical units, such as
VelCmdA to VelFB (DM2Map = 1 to 2). Set DM2Gain to
keep the signal in the DAC Monitor in the ±5 volt range.
Below lists units when DM2Gain = 1.

Monitor # Scale Factor Monitor # Scale
Factor

0 No Effect 15 1 V/cycle
1 1 V/krpm 16 1 V/amp
2 1 V/krpm 17 1 V/amp
3 1 V/krpm 18 1 V/amp
4 1 V/krpm 19 1 V/100%
5 1 V/rev 20 1 V/100%
6 1 V/rev 21 1 V/100%
7 1 V/rev 22 1 V/V
8 1 V/amp 23 1 V/rev
9 1 V/amp 24 1 V/amp
10 1 V/V 25 1 V/amp
11 1 V/Hz 26 1 V/100%
12 10 V/4096 27 1 V/100%
13 1 V/100% 28 1 V/krpm
14 1 V/ °C

Related
Instructions DM2Map, DM2F0, DM2Out.

Instructions Danaher Motion Kollmorgen

3-60 MA950-LR

DM2MAP
(PRE-DEFINED VARIABLE, INTEGER)

Purpose DM2Map selects signal sent to the DAC Monitor 2 output on
J4-3.

Syntax DM2Map = x
Range 0 to 65,537
Default 1 (VelFB, Velocity Feedback)
Guidelines See Hardware manual for definitions of mnemonics.

Monitor # Mnemonic Monitor # Mnemonic

0 AnalogOut2 16 IR
1 VelFB 17 IS

2 VelCmdA 18 IT

3 VelErr 19 VR

4 FVelErr 20 VS

5 Position* 21 VT

6 PosError* 22 VBus

7 PosCommand* 23 ResPos *

8 ICmd 24 Cmd Non-
Torque
Current

9 IFB 25 Non-Torque
IFB

10 AnalogIn 26 Torque
Voltage Duty
Cycle

11 EncFreq 27 Non-Torque
Voltage Duty
Cycle

12 EncPos* 28 VelCmd

13 ItFilt 65536 Clamp Off **

14 HSTemp 65537 Clamp On **

15 Comm Ang *

*Wraps around when the signal exceeds the output voltage level.
**The value of the selected signal does not change.

Related
Instructions DM2Gain, DM2F0, DM2Out

Danaher Motion Kollmorgen Instructions

MA950-LR 3-61

DM2OUT
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-

ONLY)

Purpose DM2Out indicates the value of the selected, filtered variable
output to DAC Monitor 2 (J4-4). The value is reported in the
units of the selected variable. For example, DM2Map = 1
selects VelCmdA and the units are rpm.

Syntax x = DM2Out
Range Depends on DM2Map selected signal.
Guidelines With DM2F0 set low (1 Hz), DM1Out’s value accurately

measures the DM1Map selected signal’s DC component.
DM2Out also examines variables that cannot be directly
queried, such as motor phase voltage duty cycle, DM2Map =
19, 20 or 21.

ENABLE
(PRE-DEFINED VARIABLE, INTEGER)

Purpose Enable controls whether or not power can flow to the motor,
(drive is enabled).

0 (disables the drive)
1 (enables the drive)

Syntax Enable = x
Units none
Range 0 or 1
Default 0
Guidelines Before power can flow to the motor, the following must all be

true:
1. Drive is not faulted.
2. Enable* input (J4-6) is connected to I/O RTN.
3. Enable pre-defined variable is set to 1.

Related
Instructions Enabled

Instructions Danaher Motion Kollmorgen

3-62 MA950-LR

ENABLED
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Enabled indicates whether or not power can flow to the
motor, (drive is enabled).

Syntax x = Enabled
Units none
Range 0 or 1
Default none
Guidelines Before power can flow to the motor, the following must all be

true:
1. Drive is not faulted.
2. Enable* input (J4-6) is connected to I/O RTN.
3. Enable pre-defined variable is set to 1.

Related
Instructions Enable
Example If (Enabled = 1) Then

 print “Drive is Enabled!”
Else
 print “Drive is NOT Enabled”
End If

ENABLEPLS0
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EnablePLS0 is a pre-defined variable for PLS0. It is used
to enable or disable Out0.

Syntax EnablePLS0 = x
Range 0 or 1
Default 0
Guidelines Use EnablePLS0 = 1 to enable a Programmable Limit

Switch. Use ConfigPLS() to configure the Programmable
Limit Switch.

Related
Instructions ConfigPLS()
Example The statements below configure PLS0 so Out0 is set to 1

when Position is between 4096 and 4196. Out0 is set to 0 at
all other times.

ConfigPLS(0, 4096, 100, 1)
EnablePLS0 = 1

Danaher Motion Kollmorgen Instructions

MA950-LR 3-63

ENABLEPLS1
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EnablePLS1 is a pre-defined variable for PLS1. It is used
to enable or disable Out1.

Syntax EnablePLS1 = x
Range 0 or 1
Default 0
Guidelines Use EnablePLS1 = 1 to enable a Programmable Limit

Switch. Use ConfigPLS() to configure the Programmable
Limit Switch.

Related
Instructions ConfigPLS()
Example The statements below configure PLS1 so Out1 is set to 1

when Position is between 4096 and 4196. Otherwise, set Out1
to 0.
ConfigPLS(0, 4096, 100, 1)
EnablePLS1 = 1

ENABLEPLS2
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EnablePLS2 is a pre-defined variable for PLS2. It is used
to enable or disable Out2.

Syntax EnablePLS2 = x
Range 0 or 1
Default 0
Guidelines Use EnablePLS2 = 1 to enable a Programmable Limit

Switch. Use ConfigPLS() to configure the Programmable
Limit Switch.

Related
Instructions ConfigPLS()
Example The statements below configure PLS2 so Out2 is set to 1

when Position is between 4096 and 4196. Otherwise, set
Out2 to 0.

ConfigPLS(0, 4096, 100, 1)
EnablePLS2 = 1

Instructions Danaher Motion Kollmorgen

3-64 MA950-LR

ENABLEPLS3
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EnablePLS3 is a pre-defined variable for PLS3. It is used to
enable or disable Out3.

Syntax EnablePLS3 = x
Range 0 or 1
Default 0
Guidelines Use EnablePLS3 = 1 to enable a Programmable Limit

Switch. Use ConfigPLS() to configure the Programmable
Limit Switch.

Related
Instructions ConfigPLS()
Example The statements below configure PLS3 so Out3 is set to 1

when Position is between 4096 and 4196. Otherwise, set
Out3 to 0.

ConfigPLS(0, 4096, 100, 1)
EnablePLS3 = 1

ENABLEPLS4
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EnablePLS4 is a pre-defined variable for PLS4. It is used
to enable or disable Out4.

Syntax EnablePLS4 = x
Range 0 or 1
Default 0
Guidelines Use EnablePLS4 = 1 to enable a Programmable Limit

Switch. Use ConfigPLS() to configure the Programmable
Limit Switch.

Related
Instructions ConfigPLS()
Example The statements below configure PLS4 so Out4 is set to 1

when Position is between 4096 and 4196. Otherwise, set Out4
to 0.

ConfigPLS(0, 4096, 100, 1)
EnablePLS4 = 1

Danaher Motion Kollmorgen Instructions

MA950-LR 3-65

ENABLEPLS5
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EnablePLS5 is a pre-defined variable for PLS5. It is used to
enable or disable Out5.

Syntax EnablePLS5 = x
Range 0 or 1
Default 0
Guidelines Use EnablePLS5 = 1 to enable a Programmable Limit

Switch. Use ConfigPLS() to configure the Programmable
Limit Switch.

Related
Instructions ConfigPLS()
Example The statements below configure PLS5 so Out5 is set to 1

when Position is between 4096 and 4196. Otherwise, set
Out5 to 0.

ConfigPLS(0, 4096, 100, 1)
EnablePLS5 = 1

ENABLEPLS6
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EnablePLS6 is a pre-defined variable for PLS6. It is used to
enable or disable Out6.

Syntax EnablePLS2 = x
Range 0 or 1
Default 0
Guidelines Use EnablePLS6 = 1 to enable a Programmable Limit

Switch. Use ConfigPLS() to configure the Programmable
Limit Switch.

Related
Instructions ConfigPLS()
Example The statements below configure PLS6 so Out6 is set to 1

when Position is between 4096 and 4196. Otherwise, set
Out6 to 0.

ConfigPLS(0, 4096, 100, 1)
EnablePLS6 = 1

Instructions Danaher Motion Kollmorgen

3-66 MA950-LR

ENABLEPLS7
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EnablePLS7 is a pre-defined variable for PLS7. It is used to
enable or disable Out7.

Syntax EnablePLS7 = x
Range 0 or 1
Default 0
Guidelines Use EnablePLS7 = 1 to enable a Programmable Limit

Switch. Use ConfigPLS() to configure the Programmable
Limit Switch.

Related
Instructions ConfigPLS()
Example The statements below configure PLS7 so Out7 is set to 1

when Position is between 4096 and 4196. Otherwise, set
Out7 to 0.

ConfigPLS(0, 4096, 100, 1)
EnablePLS7 = 1

ENCFREQ
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-
ONLY)

Purpose EncFreq (Encoder Frequency) is the frequency in quadrature
pulses per second of the external encoder, (or steps per second
if step-and-direction format is used).

Syntax x = EncFreq
Units Quadrature encoder counts per second (EncMode = 0)

Steps per second (EncMode = 1)
Range -3,000,000 to +3,000,000

Calculation
Guidelines Calculated from delta EncPos at position loop update rate.

Although the values returned do not have fractional parts, this
variable is communicated as a floating point quantity. See
EncInF0 for recommended maximum count frequencies.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-67

ENCIN
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EncIn specifies the line count of the encoder being used, (or
one-fourth the steps/revolution if step-and-direction input
format is used).

Syntax EncIn = x
Units Encoder line count (EncMode = 0)

Steps per quarter-revolution (EncMode = 1)
Range 1 to 65535
Default 1024
Guidelines EncIn ensures proper units in KPP, KVP, VelFB when using

an encoder for servo feedback (RemoteFB = 1 or 2).
 EncIn is also used when using the encoder input port for

electronic gearing and using the Ratio variable to specify the
electronic gearing ratio.

Instructions Danaher Motion Kollmorgen

3-68 MA950-LR

ENCINF0
(PRE-DEFINED VARIABLE, FLOAT)

Purpose EncInF0 selects digital low pass filter frequency on the
incremental encoder input connected to J4-21 through J4-24.

Syntax EncInF0 = x
Units Hertz
Range 4 values depending on EncMode:

EncInF0
(Hz)

Max Hardware Quad
Count Limit (Hz)

Min Hardware Pulse Width
(micro second)

1,600,000 3,333,333 0.6
800,000 952,400 2.1

400,000 476,200 4.2

200,000 238,100 8.4

EncInF0
(Hz)

Max Hardware Quad
Count Limit (Hz)

Min Hardware Pulse Width
(micro second)

800,000 833,333 0.6

200,000 238,000 2.1

100,000 119,000 4.2

50,000 59,500 8.4

Default 800,000
Guidelines EncInF0 is the maximum recommended count frequency for

reliable operation. If the maximum input frequency is
<EncInF0, lowering it gives better noise rejection.

 The maximum hardware count limits require ideal timing with
exact 50% duty cycle, perfect quadrature symmetry, etc. The
recommended EncInF0 count takes real world signal
tolerances into account. With the SC900’s emulated encoder
out wired to another SC900’s encoder in, and EncInF0 =
1,600,000 Hz, the count frequency works reliably up to
2,000,000 Hz.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-69

ENCMODE
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EncMode specifies the type of digital command expected at
the incremental position command port.

Syntax EncMode = x
Range 0, 1, 2, or 3
Default 0 (quadrature)
Guidelines EncMode replaces StepDir.

Value of EncMode Description

0 Selects quadrature encoder pulses

1 Selects step and direction input signals

2 Selects up/down input signals

3 Ignores input signal, EncPos value held

ENCOUT
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EncOut selects the resolution of the incremental shaft position
output port (J4-14, J4-15, J4-16, J4-17, and J4-19, J4-20).

Syntax EncOut = x
Units Emulated encoder line count
Range 0, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,

125, 250, 500, 1000, 2000, 4000, 8000, 16000
Default 1024
Guidelines EncOut = 0 cross-connects the Encoder input (J4-21, J4-22

and J4-23, J4-24) to the Encoder output to provide buffering.
CH Z out (J4-19, J4-20) is held fixed for EncOut = 0.

Instructions Danaher Motion Kollmorgen

3-70 MA950-LR

ENCPOS
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EncPos indicates the position of the external encoder. For
example, with a 1024 line-count encoder, each increment of
EncPos is equal to 1/4096 of a revolution of the encoder
shaft.
If Encoder Position Modulo functionality is active
(EncPosModulo � 0), EncPos is automatically reset to zero
every time it reaches the modulo value.

Syntax x = Encpos or Encpos = x
Units encoder counts
Range -2,147,483,648 to -2,147,483,648 or

0 to EncPosModulo-1
Default none
Guidelines EncPos is not affected by the value of EncIn. EncMode

must be set to the appropriate value for the type of encoder
input you are using.

Related
Instructions EncIn, EncInF0, EncMode, EncPosModulo

ENCPOSMODULO
(PRE-DEFINED VARIABLE, INTEGER)

Purpose EncPosModulo specifies the encoder modulo value. The
encoder modulo value is the value of EncPos where EncPos
is automatically reset to zero.

Syntax EncPosModulo = x
Units encoder counts
Range 0 to 2,147,483,647
Default 0
Guidelines Setting EncPosModulo to 0 turns off the Encoder Position

Modulo function and EncPos is never automatically reset
(default).

Related
Instructions EncPos, PosModulo

Danaher Motion Kollmorgen Instructions

MA950-LR 3-71

END
(STATEMENT)

Purpose End is used to mark the end of a program, a subroutine, a
function, an If...Then...Else block, a Select Case block, an
Interrupt service routine or a Params section.

Syntax End {[Main|Sub|Function|If|Select|Interrupt| Params]}
Guidelines Once the End statement is encountered the block structure is

terminated.
Related
Instructions Main, Sub, Function, Select Case, Interrupt, Params

ERR
(PRE-DEFINED VARIABLE)

Purpose Err indicates what caused the most recent Runtime Error. The
table below shows what each value of Err means.

Value of Err Error Caused by

1 Division by zero in arithmetic

2 Stack is full.

3 - 5 (not used)

6 Out of Memoryr

7 - 10 (not used)

11 Attempt to use Feature not available in this firmware

12 Internal Firmware Error

13 Invalid Predefined Variable ID Number

14 Attempt to write to a Read-Only Variable

15 DSP Read Error

16 DSP Write Error

17 DSP Command Error

18 - 21 (not used)

22 No Interrupt Handler defined

23 (not used)

24 PACLAN Transmit Error

Instructions Danaher Motion Kollmorgen

3-72 MA950-LR

Value of Err Error Caused by

25 PACLAN Response Timeout

26 PACLAN Response Error

27 Interrupt Error

28 Maximum String Length Exceeded

29 String Overflow

30 Array Index Bounds Error

31 Invalid Axis in PACLAN Message

32 No LAN Interrupt Handler

33 LAN Interrupt Queue is full

34 LAN Interrupt is not available

35 LAN Interrupt: Destination is busy

36 ModBus: Attempt to do nested master functions

37 ModBus: Attempt to use master without setting
RuntimeProtocol

38 ModBus: Illegal Slave Address (255)

39 AB DF1: Invalid PLC Address (0-255)

40 AB DF1: Invalid PLC File Number Specified

41 AB DF1: Invalid PLC Element Number Specified

42 AB DF1: too many unresolved messages outstanding

43 AB DF1: Attempt to use AB DF1 without setting
RunTimeProtocol

44 AB DF1: Transmit queue overflow

45 $DeclareCam: Invalid Cam Number specified

46 $DeclareCam: Too many points specified.

47 CreateCam: Tried to create a new cam before finished
creating the first one.

48 CreateCam: Tried to create cam without declaring it.

49 Addpoint: Tried to add more points than declared.

50 Addpoint: Starting Master position is non-zero.

51 AddPoint: Used AddPoint outside a CreateCam block.

52 CreateCam: EndList without Create

Danaher Motion Kollmorgen Instructions

MA950-LR 3-73

Value of Err Error Caused by

53 CreateCam: Tried to create a cam with less than three
points.

54 AddPoint: Used the same master position for two points or
master position was negative

55 CreateCam: Tried to create the ActiveCam.

56 ActiveCam: Tried to activate a cam that was not created.

57 ActiveCam: Tried to activate a cam while it is being
created.

58 ActiveCam: Tried to activate a cam while RunSpeed =0.

59 ActiveCam: Tried to activate a cam with master position
outside the cam table.

Runtime errors are caused by the program running on the OC950 trying to do
something that is not allowed. For example, runtime errors occur when you attempt
to write a value that is too high or too low to a particular variable. We try to catch as
many errors as possible when the program is compiled, but some errors are only
detected when the program is running.

Determine the particular problem causing Runtime Error (F4 Fault) by looking at the
value of the Err variable. Use the Variables Window to find the value of Err.

Instructions Danaher Motion Kollmorgen

3-74 MA950-LR

EXIT
(STATEMENT)

Purpose Exit is used to exit from a subroutine, a function, an interrupt,
a For...Next or a While...Wend.

Syntax Exit {{Sub|Function|Interrupt|For|While}]
Guidelines Do not confuse Exit with End. Exit causes program control to

pass to the end of the block structure. End defines the end of
the structure.

Related
Instructions Sub, Function, Interrupt, For...Next, While...Wend

EXP()
(FUNCTION)

Purpose Exp() returns e (the base of natural logarithms) raised to a
power.

Syntax result = Exp(x)
Guidelines Exp() complements Log().
Related
Instructions Log(), Log10()

Danaher Motion Kollmorgen Instructions

MA950-LR 3-75

EXTFAULT
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE)

Purpose ExtFault provides additional information on fault codes
blinking 1 (1) or E (14) and alternating F 3 (243). Otherwise,
the value is 0.

Range 0 to 16
Guidelines In the variables window, poll the value of ExtFault for

additional fault information.. Values listed below:

LED
Display

Value of
ExtFault

Description

1 1 |VelFB| < 21038
1 2 |VelFB| < 1.5*max(|VelLmtxx|)
E 0 No ExtFault information
E 1 Resolver calibration data corrupted
E 2 Excessive DC offset in current feedback

sensor
E 3 DSP incompletely reset by line power

dip
E 6 Excessive DC offset in Analog

Command A/D
E 7 Unable to determine option card type
E 8 DSP stack overflow
E 10 Firmware and control card ASIC

incompatible
E 11 Actual Model does not match value in

non-volatile memory
E 12 Unable to determine power stage
E 13 Control card non-volatile parameters

corrupt
E 14 Option card non-volatile parameters

corrupt
F3 15 RAM failure
F3 16 Calibration RAM failure

Instructions Danaher Motion Kollmorgen

3-76 MA950-LR

FAULT
(PRE-DEFINED VARIABLE, INTEGER, MAPPABLE OUTPUT

FUNCTION)

Purpose Fault indicates whether the drive has faulted and is disabled.
Syntax x = Fault
Range 0 or 1
Guidelines 0 = not faulted, normal operation.

1 = faulted, no power flow to the motor.
Related
Instructions FaultCode, ExtFault

Danaher Motion Kollmorgen Instructions

MA950-LR 3-77

FAULTCODE
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-

ONLY)

Purpose FaultCode indicates a fault has occurred. When the status
display is not a 0 or an 8, a fault has occurred. Reset the drive
by asserting the fault reset signal or by cycling drive AC
power.

Syntax x = FaultCode
Range 0 to 255
Guidelines 0 means the drive is not faulted and not enabled, while 8

means the drive is not faulted and enabled. Alternating 8
means actively inhibiting CW motion and alternating 8
means actively inhibiting CCW motion.

Status LED Value Fault Meaning

(Blinking) 1 1 Velocity feedback (VelFB) over
speed

(Blinking) 2 2 Motor Over-Temp

(Blinking) 3 3 Drive Over-Temp

(Blinking) 4 4 Drive I*t

(Blinking) 5 5 l-n Fault (9x3)

(Blinking) 6 6 Control ±12 V supply under voltage

(Blinking) 7 7 Output over current or bus over
voltage

(Blinking) 9 9 Shunt regulator overload

(Blinking) A 10 Bus OV detected by DSP

(Blinking) b 11 Auxiliary +5V Low

(Blinking) C 12 Not assigned

(Blinking) d 13 Not assigned

(Solid) E* 14 Processor throughput fault

(Blinking) E* 14 Power Up Self Test Failure

(Alternating) E1 225 Bus UV, Bus Voltage VBusThresh

(Alternating) E2 226 Ambient Temp Too Low

(Alternating) E3 227 Encoder commutation align failed
(Only CommSrc=1)

(Alternating) E4 228 Drive software incompatible with NV
memory version

(Alternating) E5* 229 Control Card hardware not
compatible with drive software
version

Instructions Danaher Motion Kollmorgen

3-78 MA950-LR

Status LED Value Fault Meaning

(Alternating) E6 230 Drive transition from unconfigured to
configured while enabled

(Alternating) E7 231 Two AInNull events too close
together

(Alternating) F1 241 Excessive Position Following Error

(Alternating) F3 243 Parameter Checksum Error (Memory
Error)

(Alternating) F4 Run-time Error.

*FaultReset cannot reset these faults.
See ExtFault for further information on Blinking E, Blinking 1 and
Alternating F3. See Err for Alternating F4.

FAULTRESET
(PRE-DEFINED VARIABLE, INTEGER, MAPPABLE INPUT

FUNCTION)

Purpose FaultReset resets drive faults.
Syntax FaultReset = x
Range 0 or 1
Default 0 at power up if not mapped
Guidelines FaultReset active automatically disables the drive. When not

mapped to a BDIO, setting FaultReset to 1 via the serial port
resets the latched function.
If the fault persists when FaultReset is active, the drive
remains faulted. If the Fault condition does not persist, setting
FaultReset to 1 clears the latched fault and returning
FaultReset to 0 resumes normal operation.

FIX()
(FUNCTION)

Purpose Fix() returns the truncated integer part of x.
Syntax result = Fix(x)
Guidelines Fix() does not round off numbers, it simply eliminates the

decimal point and all digits to the right of the decimal point.
Related
Instructions Abs(), Cint(), Int()

Danaher Motion Kollmorgen Instructions

MA950-LR 3-79

FOR...NEXT
(STATEMENT)

Purpose For...Next allows a series of statements to be executed in a
loop a specified number of times.

Syntax For loop_counter = Start_Value To End_Value [Step
increment]
...statements...
Next

Guidelines You can exit from a For...Next loop using the Exit For. If
step increment is omitted then increment defaults to 1.
The loop_counter is floating point or integer.
The Step increment is positive or negative, integer or floating
point.

Related
Instructions While...Wend, Exit
Example Dim x as integer

For x = 1 to 100 Step 2
 Print x
’print 2 to 100 in 2’s
Next

dim x as float
for x = 0.5 to 1.2 step 0.1
 print x
‘print 0.5 to 1.2 in 0.1 increments
next

Instructions Danaher Motion Kollmorgen

3-80 MA950-LR

FUNCTION
(STATEMENT)

Purpose Function declares and defines the name, arguments and type
of a user defined function. The code for the function
immediately follows the function statement and must be
terminated by End Function.

Syntax Function function-name [(argument-list)] as function-type
...statements...
End Function

Guidelines On entry to the function, all local variables are initialized to
zero including all elements of local arrays. All local string
variables are initialized to the null string (“”).

 If a function takes no arguments then the argument-list
(including the parentheses) must be omitted, both when
declaring the function and when using the function.

 The return value for the function is specified by making an
assignment to the function name. See the example below.

 Arguments, including array arguments, are passed by value.
Arrays cannot be returned from functions.

Related
Instructions Dim, Static, End, Exit, Sub
Example This example declares a function that calculates the cube of a

floating point number.
Main
 dim LocalFloat as float
 LocalFloat = 1.234
 LocalFloat = cube(LocalFloat)
 print LocalFloat
End Main

Function cube(x as float) as float
 cube = x^3
End Function

Danaher Motion Kollmorgen Instructions

MA950-LR 3-81

FVELERR
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-

ONLY)

Purpose FVelErr is commanded velocity - measured velocity
(VelCmdA - VelFB) after being processed by the velocity
loop compensation anti-resonant filter section.

Syntax x = FVelErr
Units rpm
Range -48,000 to +48,000
Related
Instructions ARF0, ARF1, ARZ0, ARZ1

FWV
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-

ONLY)

Purpose FwV indicates the 950 firmware version number. For
example, FwV = 1100 is version 1.1.

Syntax x = FwV
Range 1000 to 65535

Instructions Danaher Motion Kollmorgen

3-82 MA950-LR

GEARERROR
(PRE-DEFINED VARIABLE, INTEGER)

Purpose GearError indicates the amount of position deviation that has
accumulated on the slave axis (in an electronic gearing
application) as a result of the slave axis limiting its
acceleration or deceleration while achieving velocity
synchronization.

Syntax x = GearError
Units resolver counts
Guidelines GearError is never automatically set to zero. It accumulates

position deviation each time acceleration limiting is activated.
Typically, set GearError to zero before doing something that
activates acceleration limiting.

 The slave axis’ acceleration or deceleration is limited to
AccelGear or DecelGear whenever:

1. Gearing is turned on or turned off.
2. Ratio is changed.
3. PulsesIn or PulsesOut is changed.

Related
Instructions AccelGear, DecelGear, GearLock
Example AccelGear = 10000

PulsesIn = 1
PulsesOut = 1
GearError = 0
Gearing = 1
While GearLock = 0 : Wend
‘catch up the position lost while acceleration was being limited
IndexDist = GearError
GoIncr

Danaher Motion Kollmorgen Instructions

MA950-LR 3-83

GEARING
(PRE-DEFINED VARIABLE, INTEGER)

Purpose Gearing controls the electronic gearing functionality. Turns
electronic gearing on or off and sets the allowed direction of
motion for electronic gearing.

Value Description

0 Off. No electronic gearing.
1 On. Motor motion allowed in either direction/

2 On. Motor motion allowed only in the positive direction.

3 On. Motor motion allowed only in the negative direction.

Syntax Gearing = x
Units none
Range 0, 1, 2, 3
Default 0
Guidelines Moving does not recognize motor motion caused by electronic

gearing.
 When unidirectional gearing is used (Gearing = 2 or 3),

motion in the allowed direction occurs only when the master
encoder returns to the point at which it originally reversed
direction. Other motion commands (GoVel or GoIncr) cause
motor motion in the disabled gearing direction.

 Other motion commands (GoVel or GoIncr), may be executed
while gearing is active. These moves are superimposed
(added to) on the electronic gearing motion.

Related
Instructions PulsesIn, PulsesOut, EncIn

Instructions Danaher Motion Kollmorgen

3-84 MA950-LR

GEARLOCK
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose GearLock indicates when the slave axis (follower axis) in an
electronic gearing application has achieved velocity
synchronization with the electronic gearing master.
GearError contains the amount of position deviation
accumulated while the slave axis was limiting its acceleration
or deceleration.

Syntax x = GearLock
where:
x = 0 indicates that the slave has not achieved velocity

synchronization.
x = 1 indicates that the slave has achieved velocity

synchronization.
Range 0 or 1
Guidelines The slave axis’ acceleration or deceleration is limited to

AccelGear or DecelGear whenever:
1. Gearing is turned on or turned off.
2. Ratio is changed.
3. PulsesIn or PulsesOut is changed.

Related
Instructions AccelGear, DecelGear, GearError
Example AccelGear = 10000

PulsesIn = 1
PulsesOut = 1
GearError = 0
Gearing = 1
While GearLock = 0 : Wend
‘catch up the position lost while acceleration was being limited
IndexDist = GearError
GoIncr

Danaher Motion Kollmorgen Instructions

MA950-LR 3-85

GETMOTOR$()
(FUNCTION)

Purpose GetMotor$() returns a string indicating the motor name
specified with the last SetMotor() function.

Syntax A$ = GetMotor$
Guidelines GetMotor$() returns the motor name in upper-case, even if

you specified the name with lower-case letters.
Related
Instructions SetMotor()

GOABS
(STATEMENT)

Purpose GoAbs (Go to Absolute Position) causes the motor to move to
the position specified by TargetPos. This is an absolute
position referenced to the position where PosCommand = 0.

Syntax GoAbs
Guidelines Program execution continues with the line immediately

following the GoAbs statement as soon as the move is
initiated. Program execution does not wait until the move is
complete.

Related
Instructions AbortMotion, GoHome, GoIncr, GoVel

Instructions Danaher Motion Kollmorgen

3-86 MA950-LR

GOABSDIR
(PRE-DEFINED VARIABLE, INTEGER)

Purpose GoAbsDir determines the direction of rotation when
PosModulo (or EncposModulo) is used and an absolute
move (GoAbs) is commanded.

GoAbsDir Direction

0 Clockwise (CW)
1 Counter-Clockwise (CCW)
2 Shortest Distance (CW or CCW)
3 None

Syntax GoAbsDir = x
Units none
Range 0, 1, 2, 3
Default 3
Guidelines Set GoAbsDir before GoAbs.
Example The following program illustrates GoAbsDir. Assume

Position = 550.
Enable = 1
PosModulo = 1000
AccelRate = 1000
DecelRate = 1000
RunSpeed = 5000
TargetPos = 850
GoAbsDir = 0
GoAbs ‘The motor travels CW 300 counts.
GoAbsDir = 1
GoAbs ‘The motor travels CCW 700 counts
GoAbsDir = 2
GoAbs ‘The motor travels 300 counts CW
GoAbsDir = 3
GoAbs ‘The motor travels CW 300 counts

Danaher Motion Kollmorgen Instructions

MA950-LR 3-87

GOHOME
(STATEMENT)

Purpose GoHome causes the motor to move to the position specified
where PosCommand = 0. GoHome is identical to GoAbs
with TargetPos = 0.
The motor speed follows a velocity profile as specified by
AccelRate, DecelRate, and RunSpeed. This profile may
be modified during the move using UpdMove.

Syntax GoHome
Guidelines Program execution continues with the line immediately

following the GoHome statement as soon as the move is
initiated. Program execution does not wait until the move is
complete.
The drive must be enabled in order for any motion to take
place.

Related
Instructions AbortMotion, GoAbs, GoIncr, GoVel

GOINCR
(STATEMENT)

Purpose GoIncr (Go Incremental) causes the motor to move a distance
specified by IndexDist.
The motor speed follows a velocity profile as specified by
AccelRate, DecelRate, and RunSpeed. This profile may
be modified during the move using UpdMove.

Syntax GoIncr
Guidelines Program execution continues with the line immediately

following the GoIncr statement as soon as the move is
initiated. Program execution does not wait until the move is
complete.
The drive must be enabled in order for any motion to take
place.

Related
Instructions AbortMotion, GoAbs, GoHome, GoVel

Instructions Danaher Motion Kollmorgen

3-88 MA950-LR

GOTO
(STATEMENT)

Purpose GoTo causes the software to jump to the specified label and
continue executing from there.

Syntax Goto Label
Guidelines GOTO is NOT RECOMMENDED as a looping technique.

Excessive use of GOTO statements lead to disorganized and
confusing programs. Preferred looping techniques are:

For...Next
If...Then...Else
While...Wend

Related
Instructions On Error Goto

GOVEL
(STATEMENT)

Purpose GoVel (Go at Velocity) moves the motor at a constant speed
specified by RunSpeed and direction specified by Dir.
The motor speed follows a velocity profile as specified by
AccelRate, DecelRate, and RunSpeed. This profile may
be modified during the move using UpdMove.

Syntax GoVel
Guidelines Program execution continues with the line immediately

following GoVel as soon as the move is initiated. Program
execution does not wait until the move is complete.
The drive must be enabled in order for any motion to take
place.

Related
Instructions AbortMotion, GoAbs, GoHome, GoIncr

Danaher Motion Kollmorgen Instructions

MA950-LR 3-89

HEX$()
(FUNCTION)

Purpose Hex$() converts an integer number to its equivalent
hexadecimal ASCII string.

Syntax result$ = Hex$(x)
Guidelines Hexadecimal numbers are numbers to the base 16 (rather than

base 10). The argument to Hex$() is rounded to an integer
before Hex$(x) is evaluated.

Related
Instructions Oct$(), Str$()
Example dim x,y as integer

dim result1$, result2$ as string
x = 20
y = &H6A
result1$ = Hex$(x)
result2$ = Hex$(y)
print result1$, result2$
Prints: 14 6A

HSTEMP
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-

ONLY)

Purpose HSTemp indicates the drive heatsink temperature.
Syntax x = HSTemp
Units Degrees Centigrade
Range -10 to +150
Guidelines The drive heat sink temperature is monitored to determine if

the drive is within a safe operating region for the power
electronics. This variable is used to see how much thermal
margin remains for a given application.

Related
Instructions ItThresh

Instructions Danaher Motion Kollmorgen

3-90 MA950-LR

HWV
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-
ONLY)

Purpose HwV indicates the drive’s control electronics hardware
version number.

Syntax x = HwV
Range Greater than 0
Guidelines 12 = first production control card version

ICMD
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-
ONLY)

Purpose ICmd indicates the commanded motor torque current.
ILmtMinus and ILmtPlus limit the range of this variable.

Syntax x = ICmd
Units Amperes
Range - Ipeak to + Ipeak

IFB
(PRE-DEFINED VARIABLE, STATUS VARIABLE, READ-ONLY)

Purpose IFB indicates the measured motor torque current value.
Syntax x = IFB
Units Amperes
Range - Ipeak to + Ipeak
Guidelines IFB can be monitored to observe the actual torque current

flowing in the motor. IFB should equal ICmd.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-91

IF...THEN...ELSE
(STATEMENT)

Purpose If...Then...Else controls program execution based on the
evaluation of numeric or string expressions

Syntax IF condition1 THEN
 ...statement block1...
[ELSEIF condition2 THEN
 ...statement block2...]
[ELSE
 ...statement block3...]
END IF

Guidelines If condition1 is True, statement block1 is executed. If
condition2 is True, statement block2 is executed. If the
original IF condition is False and all ELSEIF conditions are
False, the ELSE statement block (statement block3) is
executed.

Related
Instructions Select Case, While...Wend, Exit

ILMTMINUS
(PRE-DEFINED VARIABLE, INTEGER, NV PARAMETER)

Purpose ILmtMinus (Counter-Clockwise Current Limit) sets the
maximum allowable torque current amplitude in the counter-
clockwise direction. This is a percentage of the drive’s peak
current rating (IPEAK).

Syntax ILmtMinus = x
Units % (Percentage) of peak current rating of drive.
Range 0 to 100
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
calculates this value based upon the specified motor and drive.

Guidelines Only integer values may be entered (no fractions).

If ILmtMinus*0.01*IPEAK > twice the motor’s
continuous current rating, the motor’s over temperature
sensor is not guaranteed to always respond fast enough
to prevent motor winding damage.

Instructions Danaher Motion Kollmorgen

3-92 MA950-LR

ILMTPLUS
(PRE-DEFINED VARIABLE, INTEGER, NV PARAMETER)

Purpose ILmtPlus (Clockwise Current Limit) sets the maximum
allowable torque current amplitude in the clockwise direction.
This is a percentage of the drive’s peak current rating (IPEAK).

Syntax ILmtPlus = x
Units % (Percentage) of peak current rating of drive.
Range 0 to 100
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
calculates this value based upon the specified motor and drive.

Guidelines Only integer values may be entered (no fractions).

If ILmtPlus*0.01*IPEAK twice the motor’s continuous
current rating, the motor’s over temperature sensor is
not guaranteed to always respond fast enough to
prevent motor winding damage.

INDEXDIST
(PRE-DEFINED VARIABLE, INTEGER)

Purpose IndexDist specifies the distance the motor turns during an
incremental move (GoIncr).

Syntax IndexDist = x
Units resolver counts
Default 4096
Guidelines Specify IndexDist before initiating GoIncr.
Related
Instructions AccelRate, DecelRate, RunSpeed, GoIncr
Example This example sets IndexDist to 40,960 (10 motor revolutions,

assuming CountsPerRev is 4096) and does an incremental
move.

RunSpeed = 1000
AccelRate = 10000
DecelRate = 5000
IndexDist = 40960
GoIncr

Danaher Motion Kollmorgen Instructions

MA950-LR 3-93

INKEY$
(STRING FUNCTION)

Purpose Inkey$ returns a 1-character string corresponding to the
character in the serial port receive buffer. If there is no
character waiting, Inkey$ is a Null string (“”). If several
characters are pending, only the first one is returned.

Syntax x$ = Inkey$
Guidelines Assigning a string from Inkey$ removes the character from

the serial port’s receive buffer.
Related
Instructions Character Interrupt
Example The following program lines removes all characters from the

receive buffer and puts them into A$.
new$ = Inkey$
while new$ “”
 A$ = A$ + new$
 new$ = Inkey$
wend

INP0-INP20
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Inp0-Inp20 reports the value of one of the discrete digital
inputs on the OC950.

0 - indicates a logic low level
1 - indicates a logic high level

Syntax x = Inpn
Units none
Range 0 or 1
Default none
Guidelines Each of the 21 inputs can be used to trigger an interrupt on

either or both its high-to-low and/or low-to-high transition(s).
Related
Instructions Inputs
Example Wait for Inp0=0 and Inp1=1 before starting...

While (Inp0 = 1) OR (Inp1 = 0) : Wend
Print “Starting”

Instructions Danaher Motion Kollmorgen

3-94 MA950-LR

INPOSITION
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose InPosition indicates whether or not the motor has achieved
commanded position. InPosition is useful to monitor move
commands to ensure that the desired motion has been
completed. InPosition is always 0 (False) or 1 (True).

Syntax x = InPosition
Units none
Range 0 or 1
Default none
Guidelines InPosition is 1 (True) only if all the following are true:

- Moving = 0
- Position Error less than InPosLimit

Related
Instructions InPosLimit, Moving

INPOSLIMIT
(PRE-DEFINED VARIABLE)

Purpose InPosLimit specifies the tolerance of Position Error
(PosError) within which the InPosition flag is set to 1
(True).

Syntax InPosLimit = x
Units resolver counts
Default 5
Guidelines Set InPosLimit before using InPosition.
Related
Instructions InPosition

Danaher Motion Kollmorgen Instructions

MA950-LR 3-95

INPUT
(STATEMENT)

Purpose The Input statement reads a character string received from the
serial port, terminated by a carriage-return.

Syntax Input [prompt-string] [, | ;] input-variable
Guidelines The input variable can be integer, floating-point or a string.

As an option, the prompt-string is transmitted when the Input
statement is encountered. This prompt-string is either a string
constant or string variable. If the prompt-string is followed by
a semi-colon, a question mark is printed at the end of the
prompt-string. If the prompt-string is followed by a comma,
no question mark is printed.

Related
Instructions Inkey$
Example dim YourName$ as string

input “What’s your name”; YourName$
print “Hello ”;YourName$;", I’m leaving..."

INPUTS
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Inputs reports the status of the 21 bi-directional I/O points on
the OC950 as a parallel word. For each bit in Inputs:

0 - corresponds to a low logic level
1 - corresponds to a high logic level

Syntax x = Inputs
Units none
Range 0 - 21,757,952
Default none
Guidelines Use Inp0 through Inp20 to look at inputs individually.
Related
Instructions Inpn, BDInputs, Outputs, BDOutputs

Instructions Danaher Motion Kollmorgen

3-96 MA950-LR

INSTR()
(FUNCTION)

Purpose Instr() returns the starting location of a substring within a
string.

Syntax result = Instr([n], x$, y$)
x$= string
y$ = substring
n optionally sets the start of the search

Guidelines n must be in the range 1 to 255
Instr() returns 0 if:

n Len(x$)
y$ cannot be found in x$
If y$ is null (empty, “”), Instr() returns n)

Related
Instructions Len()

INT()
(FUNCTION)

Purpose Int() (convert to largest integer) truncates an expression to a
whole number.

Syntax result = Int(x)
Guidelines Int() behaves the same as Fix() for positive numbers. They

behave differently for negative numbers.
Related
Instructions Cint(), Fix()
Example Print Int(12.34) ‘ prints the value 12

Print Int(-12.34) ‘ prints the value -13

Danaher Motion Kollmorgen Instructions

MA950-LR 3-97

INTERRUPT...END INTERRUPT
(STATEMENT)

Purpose The Interrupt statement marks the beginning of an Interrupt
Service Routine. The Interrupt Service Routine is defined by
a program structure resembling a subroutine. The interrupt
feature permits execution of a user-defined subroutine upon
receipt of a hardware interrupt signal or a pre-defined interrupt
event.

Syntax Interrupt {Interrupt-Source-Name}
...program statements...
End Interrupt

Guidelines Interrupts are triggered by pre-defined events or external
hardware sources. The interrupt-source-name and interrupt
enable flag are unique for each interrupt source.
Receiving an interrupt suspends program execution and the
interrupt service routine is executed. Program execution
resumes at the point at which it was interrupted.
Interrupts are enabled (or disabled) by setting (or clearing) the
associated interrupt enable flag. Interrupts are disabled until
explicitly enabled. After an interrupt is triggered it is
automatically disabled until it is enabled again.

Related
Instructions Intr{source}, Sub...Endsub, Restart
Example main

 Time = 0
 IntrI0Lo = 1
 while 1
 pause(0.5)
 Out0=0 : Pause(0.005) : Out0=1
 wend
end main

Interrupt I0Lo
 print “I’m awake”
 If Time > 10 then
 print “OK. That’s it.”
 else
 IntrI0Lo = 1
 end if
End Interrupt

Instructions Danaher Motion Kollmorgen

3-98 MA950-LR

INTR{SOURCE}
(PRE-DEFINED VARIABLE, INTEGER)

Purpose Intr{source} is used to enable or disable interrupts from the
specified source. If you enable a given interrupt then there
must be an Interrupt Service Routine for that interrupt source
in your program.

Syntax Intr{source} = x
Units none
Range 0 (disabled) or 1 (enabled)
Default 0 (disabled)
Guidelines

IntrCcwinh when CCWInh goes True.
IntrCcwot when Position < CcwOt.
IntrCwinh when CWInh goes True.
IntrChar when a character is received.
IntrCwot when Position > CwOt.
IntrDisable when the drive gets disabled.
IntrFault when the drive faults.
IntrI0Hi when Inp0 goes from 0 to 1
IntrI0Lo when Inp0 goes from 1 to 0
IntrI1Hi when Inp1 goes from 0 to 1
IntrI1Lo when Inp1 goes from 1 to 0
IntrI2Hi when Inp2 goes from 0 to 1
IntrI2Lo when Inp2 goes from 1 to 0
IntrI3Hi when Inp3 goes from 0 to 1
IntrI3Lo when Inp3 goes from 1 to 0
IntrI4Hi when Inp4 goes from 0 to 1
IntrI4Lo when Inp4 goes from 1 to 0
IntrI5Hi when Inp5 goes from 0 to 1
IntrI5Lo when Inp5 goes from 1 to 0
IntrI6Hi when Inp6 goes from 0 to 1
IntrI6Lo when Inp6 goes from 1 to 0
IntrI7Hi when Inp7 goes from 0 to 1
IntrI7Lo when Inp7 goes from 1 to 0
IntrI8Hi when Inp8 goes from 0 to 1
IntrI8Lo when Inp8 goes from 1 to 0
IntrI9Hi when Inp9 goes from 0 to 1
IntrI9Lo when Inp9 goes from 1 to 0
IntrI10Hi when Inp10 goes from 0 to 1

Danaher Motion Kollmorgen Instructions

MA950-LR 3-99

IntrI10Lo when Inp10 goes from 1 to 0
IntrI11Hi when Inp11 goes from 0 to 1
IntrI11Lo when Inp11 goes from 1 to 0
IntrI12Hi when Inp12 goes from 0 to 1
IntrI12Lo when Inp12 goes from 1 to 0
IntrI13Hi when Inp13 goes from 0 to 1
IntrI13Lo when Inp13 goes from 1 to 0
IntrI14Hi when Inp14 goes from 0 to 1
IntrI14Lo when Inp14 goes from 1 to 0
IntrI15Hi when Inp15 goes from 0 to 1
IntrI15Lo when Inp15 goes from 1 to 0
IntrI16Hi when Inp16 goes from 0 to 1
IntrI16Lo when Inp16 goes from 1 to 0
IntrI17Hi when Inp17 goes from 0 to 1
IntrI17Lo when Inp17 goes from 1 to 0
IntrI18Hi when Inp18 goes from 0 to 1
IntrI18Lo when Inp18 goes from 1 to 0
IntrI19Hi when Inp19 goes from 0 to 1
IntrI19Lo when Inp19 goes from 1 to 0
IntrI20Hi when Inp20 goes from 0 to 1
IntrI20Lo when Inp20 goes from 1 to 0
IntrPACLAN when a PACLAN interrupt is received.
IntrPosError When a Position Error Fault would have occurred.

Related
Instructions Interrupt...End Interrupt
Example IntrI0Lo = 1

 while 1
 pause(0.5)
 Out0 = 0
 pause(0.005)
‘toggle I/O point 0
 Out0 = 1
 wend
End Main
Interrupt I0Lo
 print “Interrupt”
 IntrI0Lo = 1
End Interrupt

Instructions Danaher Motion Kollmorgen

3-100 MA950-LR

IPEAK
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-
ONLY)

Purpose IPEAK is the drive’s maximum 0-peak current rating.
Syntax x = IPEAK
Units Amperes
Range single value (see Default)
Default

Model Number IPEAK

952 7.5
953 15.0
954 30.0
955 60.0

ITF0
(PRE-DEFINED VARIABLE, FLOAT)

Purpose ItF0 specifies the corner frequency of the low-pass filters
implementing the I*t drive thermal protection circuit.

Syntax ItF0 = x
Units Hertz
Range Lower limit set by Model

Upper limit > 10
Default 0.02 Hertz
Guideline ItF0 with ItThresh specifies the thermal protection circuit for

the drive. ItF0 is the corner frequency of a low-pass filter,
which processes an estimate of the drive’s power dissipation.
Increasing ItF0 makes the response more sensitive to over-
current conditions.

The minimum frequency for ItF0 (slowest to fault)
is limited to protect the drive’s power electronics.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-101

ITFILT
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-

ONLY)

Purpose ItFilt is the drive’s output current amplitude low pass filtered
by ItF0 and normalized by IPEAK to a percentage. ItFilt is the
input to the drive’s I*t thermal protection fault.

Syntax x = ItFilt
Units % (percentage) of drive peak current (IPEAK).
Range 0 to 100
Guidelines ItFilt provides a means of evaluating the I*t protection circuit.

When ItFilt exceeds the threshold specified by ItThreshA, the
drive faults with Faultcode 4.

ItFilt = ItF0 low pass filter of (|IR| + |IS| + |IT|)*(50/IPEAK)

ITTHRESH
(PRE-DEFINED VARIABLE, INTEGER, NV PARAMETER)

Purpose ItThresh sets the maximum continuous output current, as a
percentage of IPEAK, before the I*t thermal protection faults the
drive.

Syntax ItThresh = x
Units % (percentage) of drive peak current
Range 0 to 100 (actual upper limit is model-dependent)
Default Parameter value specified in the Params...End Params section

of your program. The 950 IDE New Program function
calculates this value based upon the specified motor and drive.

Guidelines ItThresh with ItF0 specifies the thermal protection fault for
the drive. The actual I*t fault threshold may be lowered if the
heat sink temperature (HSTemp) gets too high.

The maximum value for ItThresh is limited to
protect the drive’s power electronics.

Related
Instructions ItThreshA

Instructions Danaher Motion Kollmorgen

3-102 MA950-LR

ITTHRESHA
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-
ONLY)

Purpose ItThreshA is the maximum continuous output current, as a
percentage of IPEAK, trip level for the I*t thermal protection
fault.

Syntax x = ItThreshA
Units percent
Range 0 to 100
Default none
Guidelines ItThresh, sets the desired value for ItThreshA and the two are

equal for lower heat sink temperatures (HsTemps). At higher
HSTemps, ItThreshA is lowered to protect the power stage.
When ItFilt exceeds ItThreshA, the drive I*t faults. When
doing a worst-case motion profile, examining ItThreshA,
ItFilt, and HSTemp indicate how much drive thermal margin
remains.

I_R
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-
ONLY)

Purpose I_R is the measured current flowing in Motor Phase R, J2-4.
Syntax x = I_R
Units Amps

I_S
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-
ONLY)

Purpose I_S is the measured current flowing in Motor Phase S, J2-3.
Syntax x = I_S
Units Amps

Danaher Motion Kollmorgen Instructions

MA950-LR 3-103

I_T
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-

ONLY)

Purpose I_T is the measured current flowing in Motor Phase T, J2-2.
Syntax x = I_T
Units Amps

KII
(PRE-DEFINED VARIABLE, FLOAT)

Purpose Kii sets the integral gain of the current loops.
Syntax Kii = x
Units Hertz
Range 0 to 2546
Default 50 Hertz
Guidelines Kii is the current loop’s integral gain. It defines the frequency

where the current loop compensation transitions from
predominantly integral characteristics (gain decreasing with
frequency) to predominantly proportional characteristics
(constant gain with frequency). This value should typically be
less than 10% of the current loop’s bandwidth.

Related
Instructions Kip

KIP
(PRE-DEFINED VARIABLE, FLOAT, NV PARAMETER)

Purpose Kip sets the proportional gain of the current loop.
Syntax Kip = x
Units Volts/Ampere
Range 0 to 2.15e5/IPEAK
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
calculates this value based upon the specified motor and drive.

Guidelines Current loop bandwidth in rad/sec is Kip/L, where L is the
motor’s line-to-line inductance (in henries).
Recommended bandwidth is 2ð * 1000 rad/sec.
Maximum bandwidth is 2ð * 1500 rad/sec.

Instructions Danaher Motion Kollmorgen

3-104 MA950-LR

KPP
(PRE-DEFINED VARIABLE, FLOAT, NV PARAMETER)

Purpose Kpp sets the proportional gain of the position loop.
Syntax Kpp = x
Units Hertz
Range 0.0 to 159.4
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
calculates this value based upon the specified motor and drive.

Guidelines Kpp is defined by the following relationship:

KVFF
(PRE-DEFINED VARIABLE, FLOAT)

Purpose Kvff sets the proportion of velocity feed-forward signal added
to the velocity command from differentiated position
command.

Syntax Kvff = x
Units % (Percentage)
Range 0 to 199.9
Default 0 %
Guidelines Kvff is functional only for positioning modes (BlkType = 2).

When Kvff = 0, the net velocity command in positioning mode
results entirely from PosError. There is a static nonzero
PosError when commanding a constant shaft speed, know as
the following error. Velocity feed forward adds a term to
VelCMd proportional to delta PosCommand at the position
loop update rate, which decreases following error.
Increasing Kvff reduces steady state following error and gives
faster response time. However, if Kvff is too large, it causes
overshoot. Typically, Kvff should not be set larger than 80%
for smooth dynamics and acceptable overshoot, but should be
set to 100% for minimum following error (necessary in
electronic gearing applications).

Danaher Motion Kollmorgen Instructions

MA950-LR 3-105

KVI
(PRE-DEFINED VARIABLE, FLOAT, NV PARAMETER)

Purpose Kvi sets the integral gain of the velocity loop.
Syntax Kvi = x
Units Hertz
Range 0.0 to 636.6
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
calculates this value based upon the specified motor and drive.

Guidelines Kvi is the velocity loop integral gain. It defines the frequency
where the velocity loop compensation transitions from
predominantly integral characteristics (gain decreasing with
frequency) to predominantly proportional characteristics
(constant gain with frequency). This value should typically be
less than 10% of the velocity loop bandwidth.

Related
Instructions Kvp

KVP
(PRE-DEFINED VARIABLE, FLOAT, NV PARAMETER)

Purpose Kvp sets the proportional gain of the velocity loop.
Syntax Kvp = x
Units Amps/(Radians/Second)
Range 0 to Ipeak*12.6
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
calculates this value based upon the specified motor and drive.

Guidelines Kvp is defined by the following relationship:
where commanded motor current has units of (amperes) and
Velocity Error has units of (radians/second).
Kvp must be adjusted for total load inertia and motor torque
constant.

Idealized velocity loop bandwidth (rad/sec) =
Kvp*(Kt/J(lb-in-sec2))(rad/sec2/amp)
Maximum recommended bandwidth = 2ð * 400 rad/sec.

Instructions Danaher Motion Kollmorgen

3-106 MA950-LR

LANFLT()
(PRE-DEFINED ARRAY VARIABLE, FLOAT)

Purpose LANFlt() is an array of 32 floating-point variables globally
accessible over PACLAN. Each OC950 has its own LANFlt()
array.

Syntax LANFlt(n)[y] = z or,
z = LANFlt(n)[y]

where (n) is the array index (1-32) and [y] is the axis
address of the OC950 whose LANFlt array being used.

Units none
Default 0.0 for all entries
Guidelines Omit the [axis #] designation when reading or writing your

own LANFlt(n) variables.
Related
Instructions LANInt()

LANINT()
(PRE-DEFINED ARRAY VARIABLE, INTEGER)

Purpose LANInt() is an array of 32 integer variables globally
accessible over PACLAN. Each OC950 has its own LANInt()
array.

Syntax LANInt(n)[y] = z or,
z = LANInt(n)[y]

where (n) is the array index (1-32) and [y] is the axis
address of the OC950 whose LANInt array being used.

Default 0 for all entries
Guidelines Omit the [axis #] designation when reading or writing your

own LANFlt(n) variables.
Related
Instructions LANFlt

Danaher Motion Kollmorgen Instructions

MA950-LR 3-107

LANINTERRUPT[]
(STATEMENT)

Purpose LANInterrupt[n] invokes the PACLAN interrupt on axis [n].
Syntax LANInterrupt[n]

where [n] identifies the address of the interrupt's destination.
Guidelines Before issuing this statement, ensure that the destination axis

is connected to the PACLAN and is running a program.
Otherwise, a runtime error is generated on the source axis.

Related
Instructions LANIntrSource, Interrupt, SendLANInterrupt()[]

LANINTRARG
(PRE-DEFINED ARRAY VARIABLE, INTEGER)

Purpose LANIntrArg contains an integer value specified by the source
axis of the PACLAN interrupt when that axis invokes a
PACLAN interrupt. LANIntrArg is used in the PACLAN
interrupt handler for any purpose.

Syntax x = LANIntrArg
Default 0
Related
Instructions LANIntrSource, SendLANInterrupt()[]

LANINTRSOURCE
(PRE-DEFINED VARIABLE, INTEGER)

Purpose LANIntrSource indicates the axis address of the source of a
PACLAN interrupt.

Syntax x = LANIntrSource
Range 1 - 255
Default none
Guidelines LANIntrSource is set automatically by the firmware when it

processes and dispatches a PACLAN interrupt. You can use it
in your PACLAN interrupt handler to do different things,
depending on the interrupt sent.

Related
Instructions LANIntrArg, SendLANInterrupt()[]

Instructions Danaher Motion Kollmorgen

3-108 MA950-LR

LCASE$()
(FUNCTION)

Purpose Lcase$() converts a string expression to lowercase
characters.

Syntax result$ = Lcase$(string-expression)
Guidelines Lcase$() affects only letters in the string expression. Other

characters (numbers) are unchanged.
Related
Instructions Ucase$()
Example dim x$ as string

x$ = “U.S.A”
print Lcase$(x$)
‘prints: u.s.a

LEFT$()
(FUNCTION)

Purpose Left$ () returns a string of the n leftmost characters in a string
expression.

Syntax result$ = Left$(x$,n)
Guidelines If n is greater than Len(x$), the entire string is returned.
Related
Instructions Len(), Mid$(), Right$()
Example a$ = “Mississippi”

print Left$(a$, 5) ‘prints: Missi

LEN()
(FUNCTION)

Purpose Len() returns the number of characters in a string expression.
Syntax result = Len(x$)
Guidelines Non-printing characters and blanks are included.
Example x$ = “New York, New York”

Print Len(x$) ‘prints: 18

Danaher Motion Kollmorgen Instructions

MA950-LR 3-109

LOG()
(FUNCTION)

Purpose Log() returns the natural logarithm of a numeric expression.
Syntax result = Log(x)
Guidelines x must be greater than 0.
Related
Instructions Exp(), Log10()
Example Print Log(45.0 / 7.0) ‘prints: 1.860752

Print Log(1) ‘prints: 0

LOG10()
(FUNCTION)

Purpose Log10() returns the base 10 logarithm of a numeric
expression.

Syntax result = Log10(x)
Guidelines x must be greater than 0.
Related
Instructions Exp(), Log()
Example Print Log10(100) ‘prints: 2

Print Log10(1) ‘prints: 0

LTRIM$()
(FUNCTION)

Purpose Ltrim$() returns a copy of the original string with leading
blanks removed.

Syntax result$ = Ltrim$(x$)
Guidelines x$ is any string-expression
Related
Instructions Rtrim$(), Trim$()
Example x$ = “ Hello “

print “(“+ Ltrim$(x$) +“)” ‘prints (Hello)

Instructions Danaher Motion Kollmorgen

3-110 MA950-LR

MAIN
(STATEMENT)

Purpose Main is used to indicate the start of a program. Every
program begins with Main and ends with End Main. This
program structure is automatically created for you when you
use the New Program function on the File menu.

Syntax Main
...your main program...
End Main

Guidelines Only one Main and End Main is allowed in any program.
Related
Instructions Sub, Function, Interrupt
Example Main

 print “This is all there is to it.”
End Main

MB32WORDORDER
(PRE-DEFINED VARIABLE)

Purpose MB32WordOrder specifies the word order for 32 bit (double
register) ModBus register accesses. This affects 32 bit
integers. The word order for floating point variables is
specified by MBFloatWordOrder. The setting for
MB32WordOrder affects both master and slave operations.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax MB32WordOrder = x
Range 0 or 1

where:
0 - least significant word first, most significant word second
1 - most significant word first, least significant word second

Default 1

Danaher Motion Kollmorgen Instructions

MA950-LR 3-111

MBERR
(PRE-DEFINED VARIABLE, INTEGER)

Purpose MBErr indicates when and which error occurred when you
execute a ModBus master statement or function. MBErr is set
to zero only when the program starts executing. After that, it
has a “sticky” functionality in that anytime an error occurs,
MBErr is updated so you can do multiple ModBus master
transactions and verify that MBErr is zero to make sure all
were successful.
Value Description

0 no Error
-1 No Response from Slave (time-out)
-2 Invalid Slave Address Specified (must be 0-254)
-3 Invalid Bit Address Specified

(must be 1-9999 or 10001-19999)
-4 Invalid Register Address Specified

(must be 30001-39999 or 40001-49999)

This feature is only available in the Enhanced OC950
Firmware.

Syntax MBErr = 0
x = MBErr

Range 0 to - 4
Default 0
Guidelines Set MBErr to zero before each block of ModBus master

transactions you execute. Refer to Using an OC950 as a
ModBus Master.

Instructions Danaher Motion Kollmorgen

3-112 MA950-LR

Example This example sets MBErr to 0 and performs two ModBus
master transactions. First, it reads a new value for RunSpeed
and writes 1 to bit 1 on the ModBus slave. If either transaction
fails, it calls HandleModBusError to set Out19 and stop the
program.

RuntimeProtocol = 3 ‘ModBus Master
MBFloatWordOrder = 0 ‘LS word first
MBErr = 0 ‘initialize MBErr to zero
RunSpeed = MBReadFloat(5, 40001)
MBWriteBit(5, 1, 1)
If MBErr <> 0 Then

Call HandleModBusError
...
Sub HandleModBusError
 NV_MBErr = MBErr ‘save MBErr to NV variable
 Out19 = 0 ‘indicate fault
 Stop ‘stop the program

End
‘HandleModBusError

MBFLOATWORDORDER
(PRE-DEFINED VARIABLE)

Purpose MBFloatWordOrder specifies the word order for floating point
(double register) ModBus register accesses. This affects 32 bit
integers. The word order for long integer variables is specified
by MB32WordOrder. The setting for MBFloatWordOrder
affects both master and slave operations.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax MBFloatWordOrder = x
Range 0 or 1

where:
0 - least significant word first, most significant word second
1 - most significant word first, least significant word second

Default 1

Danaher Motion Kollmorgen Instructions

MA950-LR 3-113

MBINFO BLOCK...END
(STATEMENT)

Purpose The MBInfo block of a program is used to map pre-defined
variables and/or global user variables to specific ModBus
register addresses so the OC950 operates as a ModBus slave.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax MBInfo
 <statements>
End

Guidelines MBInfo is only used when you are configuring the OC950 as a
ModBus Slave. There can be only one MBInfo block in a
program. It should be put before the Main section of the
program. Refer to Using an OC950 as a ModBus Slave.

Related
Instructions $MBMapBit, $MBMap16, $MBMap32, $MBMapFloat
Example This example maps several pre-defined variables and one

global user variable (MyFloat) to ModBus registers.
MBInfo
 $MBMapBit(1, Dir)
 $MBMap16(40001, IndexDist)
 $MBMap32(40002, Position)
 $MBMap32(40004, MyFloat)
 $MBMapFloat(40006, RunSpeed)
End

Dim MyFloat As Float

Main
RuntimeProtocol = 2
...

Instructions Danaher Motion Kollmorgen

3-114 MA950-LR

MBREADBIT()
(PRE-DEFINED FUNCTION)

Purpose This function reads a bit value (0x or 1x reference) from the
specified ModBus slave and returns the value read. If any
error occurs, this function returns zero and sets MBErr to
indicate the source of the error.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax x = MBReadBit(SlaveAddress, RegisterAddress)
Guidelines This is a ModBus master function. Set RuntimeProtocol to 3

before using this function or a runtime error is received.
ModBus master statements and functions cannot be nested. If
you get an interrupt while waiting for a response to a ModBus
master statement or function, you cannot initiate another
ModBus master statement or function in the interrupt handler.
If you do, you get runtime error 36. Refer to Using an OC950
as a ModBus Master.

Related
Instructions MBReadBit, MBRead16, MBRead32 , MBReadFloat,

MBWriteBit, MBWrite16, MBWrite32, MBWriteFloat,
MB32WordOrder, MBFloatWordOrder, MBErr

Example This example reads a bit value from register 10005 on the
ModBus slave at address 5 and puts the value in IndexDist.

RuntimeProtocol = 3 ‘ModBus Master
RunSpeed = MBRead32(5, 10005)

Danaher Motion Kollmorgen Instructions

MA950-LR 3-115

MBREAD16()
(PRE-DEFINED FUNCTION)

Purpose This function reads an integer value from the specified
ModBus slave and returns the value read. If any error occurs,
this function returns zero and sets MBErr to indicate the
source of the error.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax x = MBRead16(SlaveAddress, RegisterAddress)
Guidelines This is a ModBus master function. Set RuntimeProtocol to 3

before using this function or a runtime error is received.
ModBus master statements and functions cannot be nested. If
you get an interrupt while waiting for a response to a ModBus
master statement or function, you cannot initiate another
ModBus master statement or function in the interrupt handler.
If you do, you get runtime error 36. Refer to Using an OC950
as a ModBus Master.

Related
Instructions MBReadBit, MBRead16, MBRead32 , MBReadFloat,

MBWriteBit, MBWrite16, MBWrite32, MBWriteFloat,
MB32WordOrder, MBFloatWordOrder ,MBErr

Example This example reads an integer value from register 40005 on
the ModBus slave at address 5 and puts the value in
IndexDist.

RuntimeProtocol = 3 ‘ModBus Master
RunSpeed = MBRead32(5, 40005)

Instructions Danaher Motion Kollmorgen

3-116 MA950-LR

MBREAD32()
(PRE-DEFINED FUNCTION)

Purpose This function reads a long integer (32 bits) value from the
specified ModBus slave and returns the value read. If any
error occurs, this function returns zero and sets MBErr to
indicate the source of the error. The register address passed to
this function is the first register address of the 32 bit integer
value.

This feature is only available in the Enhanced OC950
Firmware.

Syntax x = MBRead32(SlaveAddress, RegisterAddress)
Guidelines This is a ModBus master function. Set RuntimeProtocol to 3

before using this function or a runtime error is received.
ModBus master statements and functions cannot be nested. If
you get an interrupt while waiting for a response to a ModBus
master statement or function, you cannot initiate another
ModBus master statement or function in the interrupt handler.
If you do, you get runtime error 36.
There is not complete standardization on the format of long
integer (32 bit) numbers among all ModBus devices. You
may need to set MB32WordOrder to 0 (its default value is 1)
in order to properly receive long integer (32 bit) numbers from
a ModBus slave. Refer to Using an OC950 as a ModBus
Master.

Related
Instructions MBReadBit, MBRead16, MBRead32 , MBReadFloat,

MBWriteBit, MBWrite16, MBWrite32, MBWriteFloat,
MB32WordOrder, MBFloatWordOrder ,MBErr

Example This example reads a long integer value from registers 40003
(and 40004) on the ModBus slave at address 5 and puts the
value in IndexDist. In this example, the ModBus slave sends
long integer data low word first, so MB32WordOrder is set to
0 to properly receive this data.

RuntimeProtocol = 3 ‘ModBus Master
MB32WordOrder = 0 ‘LS word first
RunSpeed = MBRead32(5, 40003)

Danaher Motion Kollmorgen Instructions

MA950-LR 3-117

MBREADFLOAT()
(PRE-DEFINED FUNCTION)

Purpose This function reads a floating-point value from the specified
ModBus slave and returns the value read. If any error occurs,
this function returns zero and sets MBErr to indicate the
source of the error. The register address passed to this function
is the first register address of the 32 bit floating point value.

This feature is only available in the Enhanced OC950
Firmware.

Syntax x = MBReadFloat(SlaveAddress, RegisterAddress)
Guidelines This is a ModBus master function. Set RuntimeProtocol to 3

before using this function or a runtime error is received.
ModBus master statements and functions cannot be nested. If
you get an interrupt while waiting for a response to a ModBus
master statement or function, you cannot initiate another
ModBus master statement or function in the interrupt handler.
If you do, you get runtime error 36.
There is not complete standardization on the format of
floating-point numbers among all ModBus devices. You may
need to set MBFloatWordOrder to 0 (its default value is 1) in
order to properly receive floating point numbers from a
ModBus slave. Refer to Using an OC950 as a ModBus
Master.

Related
Instructions MBReadBit, MBRead16, MBRead32 , MBReadFloat,

MBWriteBit, MBWrite16, MBWrite32, MBWriteFloat,
MB32WordOrder, MBFloatWordOrder ,MBErr

Example This example reads a floating point value from registers 40001
and 40002 on the ModBus slave at address 5 and puts the
value in RunSpeed. In this example, the ModBus slave
sends floating point data low word first, so
MBFloatWordOrder is set to 0 to receive this data properly.

RuntimeProtocol = 3 ‘ModBus Master
MBFloatWordOrder = 0 ‘LS word first
RunSpeed = MBReadFloat(5, 40001)

Instructions Danaher Motion Kollmorgen

3-118 MA950-LR

MBWRITEBIT()
(STATEMENT)

Purpose This statement writes a bit value to a 1x reference register the
specified ModBus slave. If any error occurs, this function sets
MBErr to indicate the source of the error.

This feature is only available in the Enhanced OC950
Firmware.

Syntax MBWriteBit(SlaveAddress,RegisterAddress,IntegerValue)
Guidelines This is a ModBus master statement. Set RuntimeProtocol to 3

before using it or a runtime error is received.
ModBus master statements and functions cannot be nested. If
you get an interrupt while waiting for a response to a ModBus
master statement or function, you cannot initiate another
ModBus master statement or function in the interrupt handler.
If you do, you get runtime error 36. Refer to Using an OC950
as a ModBus Master.

Related
Instructions MBReadBit, MBRead16, MBRead32 , MBReadFloat,

MBWriteBit, MBWrite16, MBWrite32, MBWriteFloat,
MB32WordOrder, MBFloatWordOrder, MBErr

Example This example writes the integer value of Inp0 to registers 1 on
the ModBus slave at address 5.

RuntimeProtocol = 3 ‘ModBus Master
MBWriteBit(5, 1, Inp0)

Danaher Motion Kollmorgen Instructions

MA950-LR 3-119

MBWRITE16()
(STATEMENT)

Purpose MBWrite16() writes an integer (16 bits) value to the specified
ModBus slave. If an error occurs, this function sets MBErr to
indicate the source of the error.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax MBWrite16(SlaveAddress,RegisterAddress,IntegerValue)
Guidelines This is a ModBus master statement. Set RuntimeProtocol to 3

before using it or a runtime error is received.
ModBus master statements and functions cannot be nested. If
you get an interrupt while waiting for a response to a ModBus
master statement or function, you cannot initiate another
ModBus master statement or function in the interrupt handler.
If you do, you get runtime error 36. Refer to Using an OC950
as a ModBus Master.

Related
Instructions MBReadBit, MBRead16, MBRead32, MBReadFloat,

MBWriteBit, MBWrite16, MBWrite32, MBWriteFloat,
MB32WordOrder, MBFloatWordOrder, MBErr

Example This example writes the integer value of IndexDist to
registers 40001 on the ModBus slave at address 5.

RuntimeProtocol = 3 ‘ModBus Master
MBWrite16(5, 40001, IndexDist)

Instructions Danaher Motion Kollmorgen

3-120 MA950-LR

MBWRITE32()
(STATEMENT)

Purpose This statement writes a long integer (32 bits) value to the
specified ModBus slave. If any error occurs, this function sets
MBErr to indicate the source of the error. The register address
passed to this function is the first register address of the 32 bit
long integer value.

This feature is only available in the Enhanced OC950
Firmware.

Syntax MBWrite32(SlaveAddress, RegisterAddress,
LongIntegerValue)

Guidelines This is a ModBus master statement. Set RuntimeProtocol to 3
before using it or a runtime error is received.
ModBus master statements and functions cannot be nested. If
you get an interrupt while waiting for a response to a ModBus
master statement or function, you cannot initiate another
ModBus master statement or function in the interrupt handler.
If you do, you get runtime error 36.
There is not complete standardization on the format of long
integer numbers among all ModBus devices. Set
MB32WordOrder to 0 to properly write floating-point
numbers to a ModBus slave. Refer to Using an OC950 as a
ModBus Master.

Related
Instructions MBReadBit, MBRead16, MBRead32, MBReadFloat,

MBWriteBit, MBWrite16, MBWrite32, MBWriteFloat,
MB32WordOrder, MBFloatWordOrder, MBErr

Example This example writes the long integer value of TargetPos to
registers 40001 (and 40002) on the ModBus slave at address 5.
In this example, the ModBus slave accepts long integer data
low word first, so MB32WordOrder is set to 0 so the slave
receives this data properly.

RuntimeProtocol = 3 ‘ModBus Master
MB32WordOrder = 0 ‘LS word first
MBWrite32(5, 40001, TargetPos)

Danaher Motion Kollmorgen Instructions

MA950-LR 3-121

MBWRITEFLOAT()
(STATEMENT)

Purpose This statement writes a floating-point value to the specified
ModBus slave. If any error occurs, this function sets MBErr to
indicate the source of the error. The register address passed to
this function is the first register address of the 32 bit floating
point value.

This feature is only available in the Enhanced OC950
Firmware.

Syntax MBWriteFloat(SlaveAddress,RegisterAddress,FloatValue)
Guidelines This is a ModBus master statement. Set RuntimeProtocol to 3

before using it or a runtime error is received.
ModBus master statements and functions cannot be nested. If
you get an interrupt while waiting for a response to a ModBus
master statement or function, you cannot initiate another
ModBus master statement or function in the interrupt handler.
If you do, you get runtime error 36.
There is not complete standardization on the format of
floating-point numbers among all ModBus devices. Set
MBFloatWordOrder to 0 to properly write floating point
numbers to a ModBus slave. Refer to Using an OC950 as a
ModBus Master.

Related
Instructions MBReadBit, MBRead16, MBRead32, MBReadFloat,

MBWriteBit, MBWrite16, MBWrite32, MBWriteFloat,
MB32WordOrder, MBFloatWordOrder, MBErr

Example This example writes the floating point value 1.5 to registers
40001 (and 40002) on the ModBus slave at address 5. In this
example, the ModBus slave accepts floating point data low
word first, so MBFloatWordOrder is set to 0 so the slave
receives this data properly.

RuntimeProtocol = 3 ‘ModBus Master
MBFloatWordOrder = 0 ‘LS word first
MBWriteFloat(5, 40001, 1.5)

Instructions Danaher Motion Kollmorgen

3-122 MA950-LR

MID$()
(FUNCTION)

Purpose Mid$() returns a substring of the original string that begins at
the specified offset location and is of the specified (optional)
length.

Syntax result = Mid$(x$, start [,length])
Guidelines Start and length must both be numeric expressions. If length

is omitted, Mid$() returns a substring that begins at start and
goes to the end of x$.

Related
Instructions Instr(), Left$(), Len(), Right$()
Example x$ = “abcdefghi”

print Mid$(x$, 1, 5) ‘prints: abcde
print Mid$(x$, 6) ‘prints: fghi

MOD
(OPERATOR)

Purpose This is the modulus or remainder. It divides one number by
another and returns the remainder.

Syntax x = y MOD z
Guidelines This MOD operator is only used in numeric expressions.

There is a Position Modulo value (PosModulo) and an
encoder position modulo value (EncPosModulo). These are
separate pre-defined variables and are not related directly to
the MOD operator.

Example print 19 MOD 5 ‘prints: 4

MODEL
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-
ONLY)

Purpose Model indicates the drive model number (power level).
Syntax Model = x
Range 952, 953, 954, 955

Danaher Motion Kollmorgen Instructions

MA950-LR 3-123

MODELEXT
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-

ONLY)

Purpose ModelExt gives information about the OC950.
Syntax x = ModelExt
Range

Model # Explanation

501 32K
502 128K

503 32K with PACLAN

504 128K with PACLAN

601 32K with Enhanced Features

602 128K with Enhanced Features

603 32K with PACLAN and Enhanced Features

604 128K with PACLAN and Enhanced Features

Related
Instructions Model

MODIFYENCPOS()
STATEMENT

Purpose ModifyEncPos() translates EncPos (encoder position) from
old_value to new_value.

Syntax ModifyEncPos(old_value, new_value)
Guidelines Use ModifyEncPos() to zero out the encoder position

(EncPos) before starting a cam.
Related
Instructions EncPos, ActiveCam
Example The following program illustrates ModifyEncPos(). The

encoder position captured by BDIO5 (Reg2 is the zero
position).

When Reg2HiFlag, Continue
 ModifyEncPos(Reg2HiEncPos,0)
 PosCommand = 0
 ActiveCam = 1

Instructions Danaher Motion Kollmorgen

3-124 MA950-LR

MOTOR
(PRE-DEFINED VARIABLE)

Purpose Motor indicates the first 4 characters of the motor part number
used to determine the Signature Series current wave shape
used to eliminate torque constant ripple.

Syntax x = Motor
Range Up to any 4 ASCII characters.
Default Sine(1,162,768,483)

MOVING
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Moving indicates whether or not the commanded motion
profile is complete.

0 - commanded motion complete
1 - move in progress

Syntax x = Moving
Range 0 or 1
Default 0
Guidelines Moving only indicates whether or not the commanded motion

profile is complete. Even when the commanded motion
profile is completed (Moving = 0), there may still be motor
motion as the result of settling time and/or electronic gearing.

Related
Instructions InPosition, InPosLimit
Example IndexDist = 10000

GoIncr
While Moving : Wend
Pause(0.5)
IndexDist = -IndexDist
GoIncr

Danaher Motion Kollmorgen Instructions

MA950-LR 3-125

OCDATE
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-

ONLY)

Purpose OCDate gives the Option Card date code.
Syntax x = OCDate
Range 0 to 231
Default Set at factory

OCSNUM
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-

ONLY)

Purpose OCSNum gives the Option Card serial number.
Syntax x = OCSNum
Range 0 to 231
Default Set at factory

OCT$()
(FUNCTION)

Purpose Oct$() converts an integer number to its equivalent octal
ASCII string.

Syntax result$ = Oct$(x)
Guidelines Octal numbers are numbers to the base 8 (rather than base 10).

The argument to Oct$() is rounded to an integer before
Oct$(x) is evaluated.

Related
Instructions Hex$(), Str$()
Example dim x,y as integer

dim result1$, result2$ as string
x = 20
y = &H6A
result1$ = Oct$(x)
result2$ = Oct$(y)
print result1$, result2$ ‘Prints: 24 152

Instructions Danaher Motion Kollmorgen

3-126 MA950-LR

ON ERROR GOTO
(STATEMENT)

Purpose On Error GoTo allows you to define a run-time error handler
to prevent run-time errors from halting program execution.
Different error handlers are defined for different parts of the
program. An error handler is active from when the On Error
GoTo statement is executed until another one is executed.

Syntax On Error Goto Error-Handler-Name or
On Errror Goto 0

Guidelines An error handler has the same structure as a subroutine (must
end with a Restart), disables any user-defined run-time error
handler and reinstalls the default handler. Any subsequent
run-time error prints an error message and halts the program.
Errors occurring within the error handler are handled by the
default error handler. This means they halt program
execution.

Related
Instructions Restart
Example dim Count as integer

main
 dim y as integer
 if Count < 10 then
 on error goto MyHandler
 else
 on error goto 0
 end if
 y = 0
 pause(0.5)
 y = 1/y
 print “I’ll never get here”
end main

Sub MyHandler
 Count=Count+1
 print Count
 restart
End Sub

Danaher Motion Kollmorgen Instructions

MA950-LR 3-127

OR
(OPERATOR)

Purpose Or performs a logical OR operation on two expressions.
Syntax result = A or B
Guidelines The result evaluates to True if either of the expressions is

True. Otherwise, the result is False.
Related
Instructions Or, Xor, Band, Bor, Bxor
Example x = 17

y = 27
if (x > 20) or (y >20) then
 print “This will get printed”
end if

if (x < 20) or (y > 20) then
 print “...so will this.”
end if

OUT0-OUT20
(PRE-DEFINED VARIABLE, INTEGER)

Purpose Outn (Out0 - Out20) sets the state of the individual discrete
outputs.

Syntax Outn = x
Units none
Range 0 or 1
Default 1
Guidelines 0 turns the output transistor on, output is pulled down.

1 turns the output transistor off, output is pulled up.
Related
Instructions Outputs, BDOutn, BDOutputs
Example while 1

Out1 = 1
pause(0.5)
Out1 = 0
pause(0.5)
wend

Instructions Danaher Motion Kollmorgen

3-128 MA950-LR

OUTPUTS
(PRE-DEFINED VARIABLE, INTEGER)

Purpose Outputs allows setting outputs in parallel.
Syntax Outputs = x
Units none
Range 0 to 2,097,151
Default 2,097,151 (all outputs are 1)
Guidelines For each bit in Outputs:

0 turns the output transistor on, output is pulled down.
1 turns the output transistor off, output is pulled up.

Related
Instructions BDOutn, BDOutputs, Outn
Example while 1

 Outputs = &h155555 ‘alternate outputs
 pause(0.5)
 Outputs = &h0AAAAA ‘alternate again
 pause(0.5)
wend

PARAMS...END PARAMS
(STATEMENT)

Purpose Params...End Params specifies the values for the non-volatile
parameters. This section is automatically created for you
when you use the New Program selection on the File menu.

Syntax Params
 parameter1 = parameter-value
 parameter2 = parameter-value
 ...
End Params

Guidelines The values assigned to the parameters are automatically
written to these parameters the next time that you power up
the drive - before the program is executed.
Even if Autostart is not set and the program does not run
automatically, these values get initialized to the specified
values. All other pre-defined variables get initialized to
default values.

Related
Instructions ARF0, ARF1, CommOff, PoleCount, Kip, ILmtMinus, ILmtPlus,

ItThresh, Kpp, Kvi, Kvp

Danaher Motion Kollmorgen Instructions

MA950-LR 3-129

PAUSE()
(STATEMENT)

Purpose Pause() pauses program execution for a specified amount of
time. The motion of the motor is unaffected.

Syntax Pause(x)
Guidelines Interrupts are active during a Pause() statement.
Related
Instructions Time
Example for x = 0.1 to 2.0 step 0.1

 Out0 = 1
 Pause(x)
 Out0 = 0
 Pause(x)
next

POLECOUNT
(PRE-DEFINED VARIABLE, INTEGER, NV PARAMETER)

Purpose PoleCount matches the drive for the appropriate motor pole
count or encoder quadrature counts per motor cycle.

Syntax PoleCount = x
Units motor poles
Range 2 to 65534 (even numbers only)

1 to 65535 Encoder Counts per electrical cycle.
Default Parameter value specified in the Params...End Params

section of your program. The 950 IDE New Program function
calculates this value based upon the specified motor and drive.

Guidelines For CommSrc = 0, PoleCount sets the number of motor poles
For CommSrc = 1, PoleCount sets the number of encoder

quadrature counts per motor electrical cycle.

When the PoleCount set does not match the actual
pole count, the motor’s operation is erratic.

Set CommSrc before writng to PoleCount.

Instructions Danaher Motion Kollmorgen

3-130 MA950-LR

POSCOMMAND
(PRE-DEFINED VARIABLE, INTEGER)

Purpose PosCommand (Position Command) contains the current
position command. The value of PosCommand is affected by
PosModulo and PosPolarity.

Syntax PosCommand = x
Units resolver counts
Range -134,217,728 to +134,217,727
Guidelines PosCommand can be used to determine the position being

commanded. You can write to PosCommand at any time;
this establishes a new electrical home position (where
PosCommand = 0). Writing to PosCommand does not
affect motor motion.

Related
Instructions Position, PosModulo, PosPolarity
Example The following program lines set electrical home position when

Inp0 goes to a 0.
Dir = 0 : RunSpeed = 100 : GoVel
When Inp0 = 0, Continue
AbortMotion
While Moving : Wend
PosCommand = 0

POSERROR
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-
ONLY)

Purpose PosError (Actual Position Error) is equal to the difference
between the position command (PosCommand) and the
actual position (Position).

Syntax x = PosError
Units Counts (same units as position feedback)
Range -134,217,728 to +134,217,727
Guidelines This variable only makes sense for position control blocks,

BlkType = 2.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-131

POSERRORMAX
(PRE-DEFINED VARIABLE, INTEGER)

Purpose PosErrorMax sets the maximum value in position feed back
counts for the position loop following error fault.

Syntax PosErrorMax = x
Units Counts (same units as position feedback).
Range 0 to 294,912,000 (4500 revs)
Default 40960
Guidelines The following error fault compares PosError with the

PosError predicted from EncFreq and Kvff. If the magnitude
of the difference is larger than PosErrorMax continuously for
longer than 1 second or statistically larger over half the time,
the drive generates a following error fault, F 1.

POSITION
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Position indicates the motor’s actual position. This is a read-
only variable and cannot be set directly by the software. The
value of Position is affected by PosModulo and PosPolarity.

Syntax x = Position
Units resolver counts
Range -134,217,728 to +134,217,727
Default Set equal to ResPos on power up
Guidelines If you write a new value to PosCommand, Position is

automatically changed such that PosError (the difference
between them) is unchanged.

Related
Instructions PosCommand, PosModulo, PosPolarity
Example print Position, PosCommand

PosCommand = 0
print Position, PosCommand

Instructions Danaher Motion Kollmorgen

3-132 MA950-LR

POSMODULO
(PRE-DEFINED VARIABLE, INTEGER)

Purpose PosModulo specifies the position modulo value. The
position modulo value is the value of Position where Position
is automatically reset to zero. If PosModulo is zero (the
default value), position modulo is not used.

Syntax PosModulo = x
Units resolver counts
Range 0 to 134,217,727
Default 0 (turned off)
Guidelines PosModulo is useful for rotary motion applications.
Related
Instructions EncPosModulo

POSPOLARITY
(PRE-DEFINED VARIABLE, INTEGER)

Purpose PosPolarity specifies the connection between motor shaft
rotation direction (clockwise or counter-clockwise) and
position variables’ direction as:

0: clockwise is positive, counter-clockwise is negative
1: clockwise is negative, counter-clockwise is positive

After you change PosPolarity, all commanded motion is
reversed from what it was.

Syntax PosPolarity = x
Range 0 or 1
Default 0
Guidelines The drive must be disabled to change PosPolarity. When the

drive is enabled, PosPolarity is read-only. PosPolarity is
used for reversing direction for an entire program.

Related
Instructions PosModulo
Example Enable = 0

PosPolarity = 1
Enable = 1
IndexDist = 4096 ‘goes counter-clockwise
GoIncr
while Moving : wend
pause(1)
Dir = 0 : GoVel ‘goes counter-clockwise

Danaher Motion Kollmorgen Instructions

MA950-LR 3-133

PRINT
(STATEMENT)

Purpose Print displays formatted output through the serial port while
the program is running.

Syntax Print expression1 [[,;] expression2] [;]
Guidelines 950BASIC defines zones of 13 characters used to produce

output in columns. If a list of expressions is separated by
commas (,), each subsequent expression is printed in the next
zone. If a list of expressions is separated by semi-colons (;),
the zones are ignored and consecutive expressions are printed
in the next available character space. If a Print statement ends
in a comma or semi-colon, the carriage-return/line-feed at the
end of serial output is suppressed.

Example Print “Hello” , “Goodbye”
Print “Hello” ; “Goodbye”
Print “Hello” , “Goodbye”;
Print “...The End.”

PULSESIN
(PRE-DEFINED VARIABLE, INTEGER)

Purpose PulsesIn specifies the number of encoder counts used when
specifying an exact electronic gearing ratio. PulsesIn is the
number of encoder counts required to increase PosCommand
by PulsesOut resolver counts when using exact gearing.

Syntax PulsesIn = x
Units encoder counts
Range 1 to 32767
Default 1
Guidelines PulsesIn or PulsesOut must be set more recently than Ratio

in order to use exact electronic gearing.
Related
Instructions Gearing, PulsesOut, Ratio

Instructions Danaher Motion Kollmorgen

3-134 MA950-LR

PULSESOUT
(PRE-DEFINED VARIABLE, INTEGER)

Purpose PulsesOut specifies the number of resolver counts used in an
exact electronic gearing ratio. PulsesOut is the number of
resolver counts the motor moves for each PulsesIn number of
encoder counts.

Syntax PulsesOut = x
Units resolver counts
Range -CountsPerRev/2 to CountsPerRev / 2
Default 1
Guidelines PulsesIn or PulsesOut must be set more recently than Ratio

in order to use exact electronic gearing.
Related
Instructions Gearing, PulsesIn, Ratio

Danaher Motion Kollmorgen Instructions

MA950-LR 3-135

RANDOM
(PRE-DEFINED VARIABLE, FLOAT, READ-ONLY)

Purpose Random returns a pseudo random number from a uniform
distribution between 0.0 and 1.0 (inclusive).

Syntax x = Random
Range 0.0 to 1.0
Guidelines Seed the random number generator with Randomize.
Related
Instructions Randomize
Example This program prints two identical random number sequences,

followed by a different random number sequence (uses default
value of Randomize to seed the random number generator
with the current time).

main
dim i as integer
randomize(1)

For i = 1 to 5
 print random;
Next i

print
randomize(1)

For i = 1 to 5
 print random;
Next i

print
randomize

For i = 1 to 5
 print random;
Next i

end

Instructions Danaher Motion Kollmorgen

3-136 MA950-LR

RANDOMIZE
(STATEMENT)

Purpose Randomize[(x)] initializes the random number generator. It
has an optional floating-point argument, to specify the initial
seed. If the optional argument is not present, the system uses
the current time as the seed. Given the same initial seed, any
two sequences of random numbers are identical.

Syntax Randomize[(x)]
Guidelines Use Random to get a random number.
Related
Instructions Random
Example This example prints two identical random number sequences

followed by a different random number sequence (uses the
default value of Randomize to seed the random number
generator with the current time).

main
dim i as integer
randomize(1)

For i = 1 to 5
 print random;
Next i

print
randomize(1)

For i = 1 to 5
 print random;
Next i

print
randomize

For i = 1 to 5
 print random;
Next i

end

Danaher Motion Kollmorgen Instructions

MA950-LR 3-137

RATIO
(PRE-DEFINED VARIABLE, FLOATING POINT)

Purpose Ratio sets the electronic gearing ratio (rev to rev) between the
encoder shaft (master) and the motor shaft (slave).

Syntax Ratio = x
Units Motor revolutions / Encoder Revolution
Range -2,000 to 2,000
Default 1.0
Guidelines Ratio must be set more recently than PulsesIn or PulsesOut

in order to use Ratio to control electronic gearing.
Related
Instructions EncIn

Instructions Danaher Motion Kollmorgen

3-138 MA950-LR

READPLC5BINARY()
(PRE-DEFINED FUNCTION)

Purpose ReadPLC5Binary() reads the specified (16 bit) element from
the specified binary file on the specified PLC5.
When this function is encountered in the OC950 program, the
OC950 sends the appropriate message to the PLC5 connected
to the OC950’s serial port and waits for the response. If there
is a valid response, the OC950 puts the data in the appropriate
variable (variable on the left-hand-side of the equal sign). If
there is no valid response, the OC950 sets ABErr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax x = ReadPLC5Binary(node address, file number, element
number)

Guidelines Set RuntimeProtocol to 5 (Allen-Bradley DF1 Protocol)
before using this function. Other communication parameters
(baudrate and ABCrc) on the SC950 must match the
corresponding parameters on the PLC.

Related
Instructions ReadSLC5Integer(), ReadPLC5Float(),

WritePLC5Integer(), WritePLC5Binary(),
WritePLC5Float()

Example The following program reads an integer from a PLC5 binary
file and sets RunSpeed to twice the integer read from the
PLC5.

All communication settings on both devices (SC950 and
PLC5) must match.

main
dim PLC5Speed as integer
runtimeprotocol = 5 ‘Allen-Bradley DF1 Protocol
baudrate = 19200
‘baudrate MUST match PLC setting
abcrc = 1
‘Set check to CRC - MUST match PLC setting
PLC5Speed = ReadPLC5Binary(5,3,19)

‘PLC5 File 3 = Binary File
RunSpeed = PLC5Speed * 2
end

Danaher Motion Kollmorgen Instructions

MA950-LR 3-139

READPLC5FLOAT()
(PRE-DEFINED FUNCTION)

Purpose ReadPLC5Float() reads the specified (32 bit) element from
the specified float file on the specified PLC5.

 When this function is encountered in the OC950 program, the
OC950 sends the appropriate message to the PLC5 connected
to the OC950’s serial port and waits for the response. If there
is a valid response, the OC950 puts the data in the appropriate
variable (variable on the left-hand-side of the equals sign). If
there is no valid response, the OC950 sets ABErr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax x = ReadPLC5Float(node address, file number, element
number)

Guidelines You must first set RuntimeProtocol to 5 (Allen-Bradley DF1
Protocol) before using this function. Other communication
parameters (baudrate and ABCrc) on the SC950 must match
the corresponding parameters on the PLC.

Related
Instructions ReadSLC5Integer(), ReadPLC5Binary(), WritePLC5Integer(),

WritePLC5Binary(), WritePLC5Float()
Example The following program reads a float from a PLC5 binary file.

It then sets RunSpeed to 3.45 times the value read from the
PLC5.

All communication settings on both devices (SC950 and
PLC5) must match.

main
dim PLC5Speed as float

runtimeprotocol = 5 ‘Allen-Bradley DF1 Protocol
baudrate = 19200 ‘baudrate MUST match PLC setting
abcrc = 1
‘Set check to CRC — MUST match PLC setting
PLC5Speed = ReadPLC5Float(5, 8, 1)

‘PLC5 File 8 = Float File
RunSpeed = PLC5Speed * 3.45
end

Instructions Danaher Motion Kollmorgen

3-140 MA950-LR

READPLC5INTEGER()
(PRE-DEFINED FUNCTION)

Purpose ReadPLC5Integer() reads the specified (16 bit) element
from the specified integer file on the specified PLC5.

 When this function is encountered in the OC950 program, the
OC950 sends the appropriate message to the PLC5 connected
to the OC950’s serial port and waits for the response. If there
is a valid response, the OC950 puts the data in the appropriate
variable (variable on the left-hand-side of the equals sign). If
there is no valid response, the OC950 sets ABErr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax x = ReadPLC5Integer(node address, file number, element
number)

Guidelines You must first set RuntimeProtocol to 5 (Allen-Bradley DF1
Protocol) before using this function. Other communication
parameters (baudrate and ABCrc) on the SC950 must match
the corresponding parameters on the PLC.

Related
Instructions ReadPLC5Binary(), ReadPLC5Float(),WritePLC5Integer(),

WritePLC5Binary(), WritePLC5Float()
Example The following program reads an integer from a PLC5. It then

sets RunSpeed to twice the integer read from the PLC5.

All communication settings on both devices (SC950 and
PLC5) must match.

main
dim PLC5Speed as integer

runtimeprotocol = 5 ‘Allen-Bradley DF1 Protocol
baudrate = 19200
‘baudrate MUST match PLC setting
abcrc = 1
‘Set check to CRC — MUST match PLC setting
PLC5Speed = ReadPLC5Integer(5, 7, 19)

‘PLC5 File 7 = Integer File
RunSpeed = PLC5Speed * 2
end

Danaher Motion Kollmorgen Instructions

MA950-LR 3-141

READSLC5BINARY()
(PRE-DEFINED FUNCTION)

Purpose ReadSLC5Binary() reads the specified element (16 bits)
from the specified binary file on the specified SLC500.
When this function is encountered in the OC950 program, the
OC950 sends the appropriate message to the SLC500
connected to the OC950’s serial port and waits for the
response. If there is a valid response, the OC950 puts the data
in the appropriate variable (variable on the left-hand-side of
the equals sign). If there is no valid response, the OC950 sets
ABErr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax x = ReadSLC5Binary(SLC500 address, file number,
element number)

Guidelines Set RuntimeProtocol to 5 (Allen-Bradley DF1 Protocol)
before using this function. Other communication parameters
(baudrate and ABCrc) on the SC950 must match the
corresponding parameters on the PLC.

Related
Instructions ReadSLC5Integer(), ReadSLC5Float(),

WriteSLC5Integer(), WriteSLC5Integer(),
WriteSLC5Float()

Example The following program reads an integer from a SLC500 PLC
binary file and sets IndexDist to twice the value read from the
SLC500.

All communication settings on both devices (SC950 and
SLC500) must match.

main
dim SLC5Dist as integer

runtimeprotocol = 5 ‘Allen-Bradley DF1 Protocol
baudrate = 19200
‘baudrate MUST match PLC setting
abcrc = 1
‘Set check to CRC — MUST match PLC setting
SLC5Speed = ReadSLC5Binary(5, 3, 19)

‘SLC500 File 3 = Binary File
IndexDist = SLC5Dist * 2
end

Instructions Danaher Motion Kollmorgen

3-142 MA950-LR

READSLC5FLOAT()
(PRE-DEFINED FUNCTION)

Purpose ReadSLC5Float() reads the specified element (32 bits) from
the specified Floating file on the specified SLC500.
When this function is encountered in the OC950 program, the
OC950 sends the appropriate message to the SLC500
connected to the OC950’s serial port and waits for the
response. If there is a valid response, the OC950 puts the data
in the appropriate variable (variable on the left-hand-side of
the equals sign). If there is no valid response, the OC950 sets
ABErr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax x = ReadSLC5Float(SLC500 address, file number, element
number)

Guidelines Set RuntimeProtocol to 5 (Allen-Bradley DF1 Protocol)
before using this function. Other communication parameters
(baudrate and ABCrc) on the SC950 must match the
corresponding parameters on the PLC.

Related
Instructions ReadSLC5Integer(), ReadSLC5Binary(),

WriteSLC5Integer(), WriteSLC5Integer(),
WriteSLC5Binary()

Example The following program reads a float from a SLC500 PLC and
sets RunSpeed to 2.55 * value read from the SLC500.

All communication settings on both devices (SC950 and
SLC500) must match.

main
dim SLC5Speed as float
runtimeprotocol = 5 ‘Allen-Bradley DF1 Protocol
baudrate = 19200
‘baudrate MUST match PLC setting
abcrc = 1
‘Set check to CRC — MUST match PLC setting
SLC5Speed = ReadSLC5Float(5, 8, 19)

‘SLC500 File 8 = Float File
RunSpeed = SLC5Speed * 2.55
end

Danaher Motion Kollmorgen Instructions

MA950-LR 3-143

READSLC5INTEGER()
(PRE-DEFINED FUNCTION)

Purpose ReadSLC5Integer() reads the specified (16 bit) element
from the specified integer file on the specified SLC500.
When this function is encountered in the OC950 program, the
OC950 sends the appropriate message to the SLC500
connected to the OC950’s serial port and waits for the
response. If there is a valid response, the OC950 puts the data
in the appropriate variable (variable on the left-hand-side of
the equals sign). If there is no valid response, the OC950 sets
ABErr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax x = ReadSLC5Integer(SLC500 address, file number, element
number)

Guidelines Set RuntimeProtocol to 5 (Allen-Bradley DF1 Protocol)
before using this function. Other communication parameters
(baudrate and ABCrc) on the SC950 must match the
corresponding parameters on the PLC.

Related
Instructions ReadSLC5Binary(), ReadSLC5Float(),

WriteSLC5Binary(), WriteSLC5Integer(),
WriteSLC5Float()

Example The following program reads an integer from a SLC500 PLC
and sets RunSpeed to twice the integer read from the SLC500.

All communication settings on both devices (SC950 and
SLC500) must match.

main
dim SLC5Speed as integer
runtimeprotocol = 5 ‘Allen-Bradley DF1 Protocol
baudrate = 19200
‘baudrate MUST match PLC setting
abcrc = 1
‘Set check to CRC — MUST match PLC setting
SLC5Speed = ReadSLC5Integer(5, 7, 19)

‘SLC500 File 7 = Integer File
RunSpeed = SLC5Speed * 2
end

Instructions Danaher Motion Kollmorgen

3-144 MA950-LR

REG1HIENCPOS
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Reg1HiEncpos contains the latched value of the encoder
counter (EncPos) when the Reg1 input (J4-10) captured its
last low-to-high registration event.

Set RegControl 60 0 to latch Reg1HiEncpos.

Syntax x = Reg1HiEncpos
Units encoder counts
Guidelines Set Reg1HiFlag to 0 to arm the registration latch.
Related
Instructions RegControl, Reg1HiFlag, Reg1LoEncpos

REG1HIFLAG
(PRE-DEFINED VARIABLE, INTEGER)

Purpose Reg1HiFlag arms and monitors the Reg1Hi registration data
latches.
Set Reg1HiFlag to zero to arm the latches (prepare them to
capture data at a registration transition). This flag is
automatically set to one when the hardware detects a low-to-
high transition on Reg1 (J4-10).

Syntax Reg1HiFlag = x
Range 0 or 1
Default 0
Guidelines RegControl determines what data gets latched on a Reg1

transition.
Related
Instructions RegControl

Danaher Motion Kollmorgen Instructions

MA950-LR 3-145

REG1HIPOSITION
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Reg1HiPosition contains the latched value of the motor
position (Position) when the Reg1 input (J4-10) captured its
last low-to-high registration event.

Syntax x = Reg1HiPosition
Units resolver counts
Guidelines Set Reg1HiFlag to 0 to arm the registration latch.
Related
Instructions RegControl

REG1LOENCPOS
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Reg1LoEncpos contains the latched value of the encoder
counter (EncPos) when the Reg1 input (J4-10) captured its
last high-to-low registration event.

To latch Reg1LoEncpos, RegControl must be
set to 0.

Syntax x = Reg1LoEncpos
Units encoder counts
Guidelines Set Reg1HiFlag to 0 to arm the registration latch.
Related
Instructions RegControl

Instructions Danaher Motion Kollmorgen

3-146 MA950-LR

REG1LOFLAG
(PRE-DEFINED VARIABLE, INTEGER)

Purpose Reg1LoFlag arms and monitors the Reg1Lo registration data
latches.
Set Reg1LoFlag to zero to arm the latches (prepare to capture
data at a registration transition). This flag automatically sets
to one when the hardware detects a high-to-low transition on
Reg1 (J4-10).

Syntax Reg1LoFlag = x
Range 0 or 1
Default 0
Guidelines RegControl determines what data gets latched on a Reg1

transition.
Related
Instructions RegControl

REG1LOPOSITION
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Reg1LoPosition contains the latched value of the motor
position when the Reg1 input (J4-10) captured its last high-to-
low registration event.

Syntax x = Reg1LoPosition
Units resolver counts
Guidelines Set Reg1LoFlag to 0 to arm the registration latch.
Related
Instructions RegControl

Danaher Motion Kollmorgen Instructions

MA950-LR 3-147

REG2HIENCPOS
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Reg2HiEncpos contains the latched value of the encoder
counter (EncPos) when the Reg2 input (J4-11) captured its
last low-to-high registration event.

To latch Reg2HiEncpos, RegControl must be
set to 1.

Syntax x = Reg2HiEncpos
Units encoder counts
Guidelines Set Reg2HiFlag to 0 to arm the registration latch.
Related
Instructions RegControl

REG2HIFLAG
(PRE-DEFINED VARIABLE, INTEGER)

Purpose Reg2HiFlag arms and monitors the Reg2Hi registration data
latches.
Set Reg2HiFlag to zero to arm the latches (prepare to capture
data at a registration transition). This flag automatically sets
to one when the hardware detects a low-to-high transition on
Reg2 (J4-11).

Syntax Reg2HiFlag = x
Units none
Range 0 or 1
Default 0
Guidelines RegControl determines what data gets latched on a Reg2

transition.
Related
Instructions RegControl

Instructions Danaher Motion Kollmorgen

3-148 MA950-LR

REG2HIPOSITION
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Reg2HiPosition contains the latched value of the motor
position (Position) when the Reg2 input (J4-11) captured its
last low-to-high registration event.

To latch Reg2HiPosition, RegControl must be set to 2.

Syntax x = Reg2HiPosition
Units resolver counts
Guidelines Set Reg2HiFlag to 0 to arm the registration latch.
Related
Instructions RegControl

REG2LOENCPOS
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Reg2LoEncpos contains the latched value of the encoder
counter (EncPos) when the Reg2 input (J4-11) captured its
last high-to-low registration event.

To latch Reg2LoEncpos, RegControl must be set to 1.

Syntax x = Reg2LoEncpos
Units encoder counts
Guidelines Set Reg2LoFlag to 0 to arm the registration latch.
Related
Instructions RegControl

Danaher Motion Kollmorgen Instructions

MA950-LR 3-149

REG2LOFLAG
(PRE-DEFINED VARIABLE, INTEGER)

Purpose Reg2LoFlag arms and monitors the Reg2Lo registration data
latches.
Set Reg2LoFlag to zero to arm the latches (prepare to capture
data at a registration transition). This flag automatically sets
to one when the hardware detects a high-to-low transition on
Reg1 (J4-11).

Syntax Reg2LoFlag = x
Range 0 or 1
Default 0
Guidelines RegControl determines what data gets latched on a Reg2

transition.
Related
Instructions RegControl

REG2LOPOSITION
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose Reg2LoPosition contains the latched value of the motor
position (Position) when the Reg2 input (J4-11) captured its
last high-to-low registration event.

To latch Reg2LoPosition, RegControl must be set to
2.

Syntax x = Reg2LoPosition
Units resolver counts
Guidelines Set Reg2LoFlag to 0 to arm the registration latch.
Related
Instructions RegControl

Instructions Danaher Motion Kollmorgen

3-150 MA950-LR

REGCONTROL
(PRE-DEFINED VARIABLE, INTEGER)

Purpose RegControl controls what data (EncPos or Position) gets
latched into the registration latches. Functionality is:

Value of
RegControl

Functionality

0 Reg1 transitions capture Position and EncPos
Reg2 transitions are ignored

1 Reg1 transitions capture Position
Reg2 transitions capture EncPos

2 Reg1 transitions capture Position
Reg2 transitions capture Position

Syntax RegControl = x
Range 0, 1, 2
Default 0
Guidelines Set RegControl to the desired value before capturing any

registration data.
BDIOMap4 must be set to 0 (off) if Reg1 is being used.
BDIOMap5 must be set to 0 (off) if Reg2 is being used.

Related
Instructions Reg1HiFlag, Reg1LoFlag, Reg2HiFlag, Reg2LoFlag

Danaher Motion Kollmorgen Instructions

MA950-LR 3-151

REMOTEFB
(PRE-DEFINED VARIABLE, INTEGER)

Purpose RemoteFB selects the source of the feedback signal for the
loops.

Syntax RemoteFB = x
Units When RemoteFB is not equal to 0, the units on the following

variables change as shown:

Variable Name Units (RemoteFB = 1 or 2) Units (RemoteFB = 0)

PosCommand encoder counts resolver counts
RunSpeed encoder counts/sec rpm

AccelRate encoder counts/sec2 rpm/sec

DecelRate encoder counts/sec2 rpm/sec

Range 0, 1, or 2
Default 0 (all loops closed around resolver)
Guidelines 0 Resolver velocity and resolver position feedback

1 Resolver velocity and encoder position feedback
2 Encoder velocity and encoder position feedback
When RemoteFB is not equal to 0, EncIn must be set to the
proper value so the scaling of KPP, KVP, and VelFB is in
default units.
When RemoteFB is equal to 1 or 2, Encpos becomes Read-
Only and Position becomes Read-Write. Use PosCommand
to change the value of Encpos in this configuration.
RemoteFB is Read-Only when the drive is enabled. If you
attempt to change the value of RemoteFB with the drive
enabled, it is ignored.

Instructions Danaher Motion Kollmorgen

3-152 MA950-LR

RESPOS
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-
ONLY)

Purpose ResPos (Resolver Position) is the absolute mechanical
orientation of the resolver relative to the motor housing.

Syntax x = ResPos
Units Resolver Counts (1 Resolver count = 1/65536 rev)
Range 0 to 65535
Guidelines Respos varies from zero to maximum range and then back to

zero as the motor rotates positive through one complete
revolution.

Related
Instructions PosPolarity

RESTART
(STATEMENT)

Purpose Restart causes program execution to begin again from the
beginning of the program. Restart is the only way to exit
from an Error Handler routine. Any interrupts, When
statements or loops in progress are aborted.

Restart does not clear the user program variables
orchange any program variables, any pre-defined
variables or has any effect on motor motion.

Syntax Restart
Guidelines If Restart is used to exit from a user error handle, an infinite

loop occurs if the error condition is not cleared.
Related
Instructions AbortMotion, On Error Goto

Danaher Motion Kollmorgen Instructions

MA950-LR 3-153

RIGHT$()
(FUNCTION)

Purpose Right$() returns a string of the n rightmost characters in a
string expression.

Syntax result$ = Right$(x$, n)
Guidelines If n is greater than Len(x$), the entire string is returned.
Related
Instructions Len(), Mid$(), Left$()
Example a$ = “Mississippi”

print Right$(a$, 5) ‘prints: sippi

RTRIM$()
(FUNCTION)

Purpose Returns a copy of the original string without trailing blanks.
Syntax result$ = Rtrim$(x$)
Guidelines x$ is any string-expression
Related
Instructions Ltrim$(), Trim$()
Example x$ = “ Hello “

print “(“ + Rtrim$(x$) + “)” ‘prints: (Hello)

RUNSPEED
(PRE-DEFINED VARIABLE, FLOATING POINT)

Purpose RunSpeed sets the maximum speed allowed during an
incremental (GoIncr) or absolute (GoAbs) move, and sets the
commanded speed during a velocity move (GoVel).

Syntax RunSpeed = x
Units rpm
Range 0 to 20,000 (actual maximum is set by motor and drive)
Default 1000
Guidelines Specify RunSpeed before initiating any move commands.
Related
Instructions GoAbs, GoHome, GoIncr, GoVel, UpdMove

Instructions Danaher Motion Kollmorgen

3-154 MA950-LR

RUNTIMEPARITY
(PRE-DEFINED VARIABLE)

Purpose Specifies the Runtime Parity. Valid values are:

Value Explanation

0 none (no parity)

1 odd parity

2 even parity

Syntax RuntimeParity = x
Range 0, 1, 2
Default 0

RUNTIMEPROTOCOL
(PRE-DEFINED VARIABLE)

Purpose Specifies runtime protocol. RuntimeProtocol valid values
are:

Value Explanation

0 none
1 user-defined binary
2 ModBus Slave
3 ModBus Master
4 OC950 Protocol (allows communication with IDE)
5 Allen-Bradley DF1 Communications Protocol

ModBus functionality (RuntimeProtocol = 2 or 3) and
Allen-Bradley DF1 functionality (RuntimeProtocol =
5) are only available in the enhanced OC950 firmware.

When you set RuntimeProtocol to any value other
than zero, Inp20 is automatically used to stop the
program. When Inp20 is brought low (0), the program
stops because when a run-time protocol is in use, it is
impossible to stop the program over the serial port.
This means that if you use RuntimeProtocol, neither
Inp20 nor Out20 are used only to stop the program.

Syntax RuntimeProtocol = x
Range 0, 1, 2, 3, 4
Default 0

Danaher Motion Kollmorgen Instructions

MA950-LR 3-155

SCURVETIME
(PRE-DEFINED VARIABLE, FLOATING POINT)

Purpose ScurveTime sets the amount of S-curve smoothing applied to
all velocity profiles. The greater the value of ScurveTime,
the smoother (lower jerk) the profile.

Syntax ScurveTime = x
Units seconds
Range 0.000 to 0.256 seconds

(0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256)
Default 0 (trapezoidal profile)
Guidelines Specifying a non-zero value for ScurveTime increases move

time by ScurveTime. For example, a trapezoidal move
(ScurveTime = 0) that takes 0.500 seconds to complete, takes
0.756 seconds to complete if ScurveTime is set to 0.256.
Change ScurveTime only when the motor is not moving
(Moving = 0). If you attempt to change ScurveTime while
the motor is moving, the command is ignored.

Related
Instructions AccelRate, DecelRate
Example main

Enable = 1
AccelRate = 10000
Decel Rate = 10000
RunSpeed = 1000
IndexDist = 40960

‘time the move without S-curve
ScurveTime = 0
Time = 0
GoIncr
While Moving : Wend
Print Time

‘now time the move with S-curve
ScurveTime = 0.256
Time = 0
GoIncr
While Moving : Wend
Print Time
end main

Instructions Danaher Motion Kollmorgen

3-156 MA950-LR

SELECT CASE
(STATEMENT)

Purpose Select Case executes one of several statement blocks
depending upon the value of an expression.

Syntax Select Case test-expression
 Case expression-list1
 ...statement block1...
 Case expression-list2
 ...statement block1...
 Case expression-list3
 ...statement block1...
 Case Else
 ...else block...
End Select

Guidelines The test-expression must evaluate to a numeric or floating-
point value.
There can be unlimited Cases in the Select Case statement, but
only one Case Else and it must be the last case in the
sequence. The Case Else statement block is executed if all
other tests fail.

 Select Case statements where the expression-lists are integer
constants are executed more quickly at run-time.

Related
Instructions If...Then...Else
Example This example prints out some interesting information about

the numbers between 1 and 20.
main
dim x as integer
for x = 1 to 20
 print x;" is “;
 select case x
 case 1, 3, 5, 7, 9
 print ”Odd"
 case 4, 8
 print “4 or 8"
 case 12 to 18
 print ”between 12 and 18"
 case else
 print “other”
 end select
next
end main

Danaher Motion Kollmorgen Instructions

MA950-LR 3-157

SENDLANINTERRUPT()[]
(PRE-DEFINED FUNCTION)

Purpose SendLANInterrupt(x)[n] invokes PACLAN interrupt on axis n.
The value of x is passed to the destination of the PACLAN
interrupt and is automatically placed in the axis’ LANIntrArg
pre-defined variable.

Syntax result = SendLANInterrupt(arg)[axis]

where n identifies the address of the destination of the
interrupt. The possible value returned in result is:

0 destination received and accepted the interrupt (success!)
1 PACLAN transmit failure
2 transmit OK but no response
3 destination’s LANInterrupt queue is full
4 destination doesn’t have a PACLAN interrupt defined
5 destination is not running a program
6 destination is busy downloading a program

Guidelines Before issuing this statement, ensure that the destination axis
is connected to the PACLAN and running a program or a
runtime error is generated on the source axis.
The SendLANInterrupt()[] function differs from
LANInterrupt[] in two ways: it always returns a value
indicating whether or not the signal was received by the
destination axis, and the LANInterrupt statement faults the
drive if the destination cannot accept the signal.
SendLANInterrupt()[] sends a specific argument along with
the interrupt signal. For LANInterrupt[], the argument value
is always 0.

Related
Instructions LANIntrArg, LANIntrSource, Interrupt, Status

Instructions Danaher Motion Kollmorgen

3-158 MA950-LR

Example The following example shows two main programs — one for
axis 128, and one for axis 255. The program on axis 255
repeatedly sends a LAN interrupt signal to axis 128 with a
sequence count as the argument. The program on axis 128
prints the count, the argument received and the address of the
sending axis and the increments its count.
‘—————— axis 255 ———————-
main
dim count as integer
while 1
 print SendLANInterrupt(count)[128]
 count=count+1
 pause(0.5)
wend
end main
‘—————— axis 128 ———————-
main
IntrPACLAN = 1
while 1 : wend
end main

Interrupt PACLAN
 static count as integer
 print “Count:”,count
 print “Arg:”, LANIntrArg
 print “Source:”,LANIntrSource
 print “^^^^^^^^^^^^^^^^^^^^^^^^^”
end interrupt

Danaher Motion Kollmorgen Instructions

MA950-LR 3-159

SETMOTOR()
FUNCTION

Purpose SetMotor() specifies the motor back EMF waveshaping to be
used by the OC950.

Syntax SetMotor(string-expression)
Guidelines When you specify a motor name with SetMotor(), the OC950

looks up that name to see if it has a custom waveshape for that
motor. If it does, it uses this back EMF waveshape for
signature-series waveshaping. If it does not find the motor
name, it uses a sine-wave for back EMF waveshaping.

Related
Instructions GetMotor$
Example SetMotor(“R32G”)

Print GetMotor$

SGN()
(FUNCTION)

Purpose Sgn() returns the sign of a numeric expression.
Syntax result = Sgn(x)

if:
x < 0 returns -1
x = 0 returns 0
x > 0 returns 1

Guidelines x is any numeric expression.
Example print sgn(-33) ‘prints -1

print sgn(0) ‘prints 0
print sgn(45.77) ‘prints 1

SHL
(LEFT SHIFT OPERATOR)

Purpose Left Shift Operator
Syntax result = operand1 SHL operand2
Guidelines This operator performs a left shift by operand2 places of

operand1. This is equivalent to multiplying operand1 by 2
operand2 number of times.

Instructions Danaher Motion Kollmorgen

3-160 MA950-LR

SHRA
(ARITHMETIC RIGHT SHIFT OPERATOR)

Purpose Arithmetic Right Shift Operator
Syntax result = operand1 SHRA operand2
Guidelines This operator performs an arithmetic right shift of operand1

by operand2 number of places. This is equivalent to dividing
operand1 by 2 operand2 number of times.

SHRL
(LOGICAL RIGHT SHIFT OPERATOR)

Purpose Logical Right Shift Shift Operator
Syntax result = operand1 SHRL operand2
Guidelines This operator performs a logical right shift of operand1 by

operand2 number of places. In a logical right shift zeros are
shifted in from the left.

SIN()
(FUNCTION)

Purpose Sin(x) returns the sine of x, where x is in radians.
Syntax y = Sin(x)
Guidelines x must be in radians. To convert from degrees to radians,

multiply by 0.017453.

SPACE$()
(FUNCTION)

Purpose Space$() returns a string of n spaces.
Syntax result$ = Space$(n)

n is 0 to 255
Guidelines n is rounded to an integer before Space$() is evaluated.
Related
Instructions String$()
Example x$ = “(“ + Space$(2) + “hello” + Space$(6) + “)”

print x$
prints: (hello)

Danaher Motion Kollmorgen Instructions

MA950-LR 3-161

SQR()
(FUNCTION)

Purpose Sqr() returns the square root of a numeric expression.
Syntax result = Sqr(x)
Guidelines x must be greater than or equal to zero.
Example x = 10

print Sqr(x) ‘prints: 3.162278

STATIC
(STATEMENT)

Purpose Used for declaring variables before use. All variables (except
pre-defined variables) must be declared before they are used.
Static is used in a function, sub or interrupt to specify that the
specified variable’s value be remembered even when the
function or sub is finished. The next time that the function,
sub or interrupt is executed, the value is available.

Syntax Static var1 [, var2 [...]] as type
where type is:

INTEGER 32 bit integer
FLOAT IEEE single precision float
STRING default length is 32 characters

Guidelines The default length for strings is 32 characters and is
overridden by following the STRING type designator with a *.

Related
Instructions Dim, Sub, Function, Interrupt
Example The difference between Dim and Static in a Sub procedure is

shown below. x is reset to zero, while y is incremented.
main
 while 1
 call MySub
 pause(1)
 wend
end main

sub MySub
 dim x as integer ‘value is forgotten
 static y as integer ‘value is remembered
 x = x + 1
 y = y + 1
 print x,y
end sub

Instructions Danaher Motion Kollmorgen

3-162 MA950-LR

STATUS[]
(PRE-DEFINED VARIABLE)

Purpose Status[axis] is used over PACLAN to determine if a
particular axis is connected to the PACLAN and whether or
not that axis is presently running a program.

Syntax x = Status[n]
where n is the address of the axis that you are interested in.

Status returns the following values:
0 axis is not connected to PACLAN
1 axis is connected but not running a program
3 axis is connected and is running a program

Example This example checks all 255 possible axis addresses and prints
out a message for every axis that is connected to the
PACLAN.

main
dim x as integer
for x = 1 to 255
 if Status[x] = 1 then
 print “Axis”;x;" is connected."
 elseif Status[x] = 3 then
 print “Axis”;x;" is running a program."
 endif
next
end main

STOP
(STATEMENT)

Purpose Stops execution of the user program.
Syntax Stop
Guidelines The program stops the OC950, goes back to message mode,

and waits for a command over the communications link.
Related
Instructions AbortMotion

Danaher Motion Kollmorgen Instructions

MA950-LR 3-163

STR$()
(FUNCTION)

Purpose Str$() returns a string representing the value of a numeric
expression.

Syntax result$ = Str$(x)
Related
Instructions Hex$(), Oct$()
Example x = 45.2 / 7

print str$(x) ‘ prints 6.457

STRING$()
(FUNCTION)

Purpose String$() returns a string containing the specified number of
occurrences of the specified character.

Syntax x$ = String$(n, a$) [1] or
 x$ = String$(n, m) [2]
Guidelines n is the number of occurrences of the desired character (the

length of the returned string).
In [1], the returned string consists of the first character in a$.
In [2], the returned string consists of the ASCII value of m.

Related
Instructions Space$()
Example Print String$(5, 45) ‘prints: ——-

Print String$(5, “A”) ‘prints: AAAAA

Instructions Danaher Motion Kollmorgen

3-164 MA950-LR

SUB...END SUB
(STATEMENT)

Purpose Sub declares a sub procedure and defines the format.
Syntax Sub [argument-list]

...body of the sub-procedure...
End Sub

Guidelines A sub procedure is invoked with Call. A sub-procedure
accepts arguments like a function, but does not return a value.
If the sub-procedure does not take arguments, it is illegal to
provide an empty argument-list (“”).

Related
Instructions Call, Function, Exit, End
Example This example defines a sub-procedure that takes an integer

argument.
main
 dim x as integer
 for x = 1 to 10
 call MySub(x)
 pause(1)
 next
end main

sub MySub(a as integer)
 print a;"—-> “;
 if a < = 5 then
 print a * 0.5
 else
 print a * 2.0
 end if
end sub

SWAP
(STATEMENT)

Purpose Swap exchanges the value of two variables.
Syntax Swap x, y
Guidelines The two variables must both be either numeric (floating point

of integer) or strings.
Example dim A$, B$ as string

A$ = “Hello”
B$ = “Good-bye”

print A$, B$
Swap A$, B$

print A$, B$

Danaher Motion Kollmorgen Instructions

MA950-LR 3-165

SYSLANWINDOW1-8
(PRE-DEFINED VARIABLE)

Purpose This variable provides advanced troubleshooting information
about the ARCNET network.

SysLanWindowX Description

SysLanWindow1 Number of Messages initiated by this node.
SysLanWindow2 Number of messages processed by this node.
SysLanWindow3 Number of broadcast messages initiated by this node.
SysLanWindow4 Number of broadcast messages processed by this node.
SysLanWindow5 Number of times a response could not be sent to a

message.
SysLanWindow6 Number of unexpected response we have received.
SysLanWindow7 Number of messages lost due to receiver overflow.
SysLanWindow8 Number of network reconfigurations.

TAN()
(FUNCTION)

Purpose Tan(x) returns the tangent of x, where x is in radians.
Syntax y = Tan(x)
Guidelines x must be in radians. To convert from degrees to radians,

multiply by 0.017453.

TARGETPOS
(PRE-DEFINED VARIABLE, INTEGER)

Purpose TargetPos specifies the target position for an absolute
(GoAbs) move. TargetPos is an absolute position referenced
to the electrical home position (the position where
PosCommand = 0).

Syntax TargetPos = x
Units resolver counts
Default 0
Guidelines Set TargetPos before initiating a GoAbs.
Related
Instructions GoAbs

Instructions Danaher Motion Kollmorgen

3-166 MA950-LR

TIME
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-
ONLY)

Purpose Time contains the value of the free-running 32 bit timer that is
maintained by the internal firmware on the OC950. The
resolution on this timer is 1 ms.

Syntax Time = x
Units seconds
Range 0 to -2,147,483 (~24.8 days)
Guidelines Time is set to zero when the SC950 is powered on.
Related
Instructions WhenTime

TRIM$()
(FUNCTION)

Purpose Trim$() returns a copy of the original string with leading and
trailing blanks removed.

Syntax result$ = Trim$(x$)
Guidelines x$ is any string-expression
Related
Instructions Ltrim$(), Rtrim$()
Example x$ = “ Hello “

print “(“+ Trim$(x$) +“)” ‘prints: (Hello)

UCASE$()
(FUNCTION)

Purpose Ucase$() converts a string expression to uppercase
characters.

Syntax result$ = Ucase$(string-expression)
Guidelines Ucase$() affects only letters in the string expression. Other

characters (numbers) are unchanged.
Related
Instructions Lcase$()
Example dim x$ as string

x$ = “u.s.a”
print Ucase$(x$) ‘prints: U.S.A

Danaher Motion Kollmorgen Instructions

MA950-LR 3-167

UPDMOVE
(STATEMENT)

Purpose UpdMove (Update Move parameters) updates a move in
progress with new move parameters. This allows you to
change motion on-the-fly. UpdMove updates AccelRate,
DecelRate, Dir, and RunSpeed.

Syntax UpdMove
Guidelines Program execution continues with the line immediately

following the UpdMove statement as soon as the move is
initiated. Program execution does not wait until the move is
complete.
The drive must be enabled in order for any motion to take
place. UpdMove does not initiate motion if there is no move
in progress, the UpdMove statement is ignored.

Related
Instructions AbortMotion, GoAbs, GoHome, GoIncr

VAL()
(FUNCTION)

Purpose Val() returns the numerical value of a string.
Syntax result = Val(a$)
Guidelines If the first character of a$ is not numeric, Val() returns 0.
Related
Instructions Str$()

VBUS
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-

ONLY)

Purpose VBus is the voltage of the high voltage DC supply, rectified
from the AC line, used to power the motor.

Syntax x = VBus
Units Volts
Range 0 to 1,000
Guidelines Monitor this variable to detect the presence of the AC line

power for the motor DC supply.
For 115 VAC line power the Bus is nominally 160 VDC.
For 240 VAC line power the Bus is nominally 330 VDC.
For 480 VAC line power the Bus is nominally 670 VDC.

Instructions Danaher Motion Kollmorgen

3-168 MA950-LR

VBUSTHRESH
(PRE-DEFINED VARIABLE, FLOAT)

Purpose VBusThresh is an adjustable parameter that allows the drive
to fault if the AC line power for the motor DC supply is low.

Syntax VBusThresh = x
Units Volts
Range -1 to +1000
Default -1 (fault is disabled).
Guidelines When VBus < VBusThresh, the drive faults and displays a

blinking E1. This functionality allows the drive to have an
interlock so it does not move the motor unless there is
sufficient motor bus voltage.
VBusThresh = 255 is a good value to detect a 230 VAC line
more than 15% low.

A value of -1 disables the Bus Under Voltage Fault (E 1).

VELCMD
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-
ONLY)

Purpose VelCMd is the net desired velocity loop command input.
Syntax x = VelCmd
Units rpm
Range VelLmtLo to VelLmtHi (-21,000 to +21,000)
Related
Instructions VelLmtHi, VelLmtLo

VELERR
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-
ONLY)

Purpose VelErr is commanded velocity - measured velocity (VelCmd -
VelFB).

Syntax x = VelErr
Units rpm
Range -48,000 to +48,000

Danaher Motion Kollmorgen Instructions

MA950-LR 3-169

VELFB
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-

ONLY)

Purpose VelFB is the instantaneous value of the velocity feedback.
Syntax x = VelFB
Units rpm
Range -48,000 to +48,000 for resolver

-30,000 to +30,000 for encoder
Guidelines For normal operation, RemoteFB = 0 or 1, VelFB is the

resolver velocity. For RemoteFB = 2, VelFB is based on
delta EncPos at a position loop update rate.

VELLMTHI
(PRE-DEFINED VARIABLE, FLOAT)

Purpose VelLmtHi sets the highest VelCmd value allowed and a
VelFB overspeed fault threshold.

Syntax VelLmtHi = x
Units rpm
Range -21,039 to +21,039
Default 10,000
Guidelines For BlkTypes that have a velocity loop (BlkType = 1, 2),

VelCmd and VelCmd2 are clamped to be less than
VelLmtHi. In torque control, BlkType (0), VelLmtHi has no
clamping function. If VelLmtHi is reduced to below the
current value of VelCmd2 or VelCmd, then VelCmd2 and/or
VelCmd are reduced to VelLmtLo.
For all BlkTypes, a fault with FaultCode = 1 occurs if

|VelFb|>1.5*max of (|VelLmtLo|, |VelLmtHi|)
Related
Instructions VelLmtLo

Instructions Danaher Motion Kollmorgen

3-170 MA950-LR

VELLMTLO
(PRE-DEFINED VARIABLE, FLOAT)

Purpose VelLmtLo sets the smallest VelCmd value allowed and a
VelFB overspeed fault threshold.

Syntax VelLmtLo = x
Units rpm
Range -21,039 to +21,039
Default -10,000
Guidelines For BlkTypes with a velocity loop (BlkType = 1, 2), VelCmd

and VelCmd2 are clamped to be greater than VelLmtLo. In
torque control, BlkType (0), VelLmtLo has no clamping
function. If VelLmtLo is increased to above the current value
of VelCmd2 or VelCmd, VelCmd2 and/or VelCmd are
increased to VelLmtLo. For all BlkTypes, a fault with
FaultCode = 1 occur if

|VelFb|>1.5*max of (|VelLmtLo|, |VelLmtHi|)
Related
Instructions VelLmtHi

VELOCITY
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-
ONLY)

Purpose Velocity is VelFB passed through a 3.5 Hz low pass filter.
Syntax x = Velocity
Units rpm
Range -30,000 to +30,000
Guidelines When the measured velocity exceeds Velocity’s range,

Velocity’s value is incorrect. See VelFB for and
instantaneous indication of measured velocity accurate to
higher speeds.

Danaher Motion Kollmorgen Instructions

MA950-LR 3-171

VMDIR
(PRE-DEFINED VARIABLE, INTEGER)

Purpose vmDir specifies the direction the virutal encoder gos when
vmGoVel is executed. It also sets the direction of the virtual
encoder when vmUpdMove is executed if the virtual encoder
is performing a velocity move.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax vmDir = x
Range 0, 1
Default 0
Guidelines 0 is positive

1 is negative
Related
Instructions vmRunFreq, vmGoVel
Example ‘This runs the virtual encoder forward at 20,000 counts/sec

vmRunFreq = 20000
vmDir = 0
vmGovel
pause(5)

'This runs the virtual encoder backwards at 40,000 counts/sec
vmRunFreq = 40000
vmDir = 1
vmGoVel

Instructions Danaher Motion Kollmorgen

3-172 MA950-LR

VMENCPOS
(PRE-DEFINED VARIABLE, INTEGER)

Purpose vmEncpos contains the current value of the virtual encoder
counter. Control the virtual encoder using vmGoVel and
vmGoIncr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax vmEncpos = x
Units counts
Range 0 to (EncposModulo-1)
Guidelines EncPosModulo is used as the modulo value for vmEncpos.
Related
Instructions vmGoIncr, vmGoVel, vmMoving
Example This example shows how vmEncpos is updated during a

vmGoIncr move.
vmRunFreq = 10000
vmIndexDist = 100000
Time = 0
EncposModulo = 200000
vmEncpos = 0
vmGoIncr
while Time < 12
 Print “Time = ”;Time,"vmEncpos = “;vmEncpos,”vmMoving = “;vmMoving
 Pause(1)
wend

Danaher Motion Kollmorgen Instructions

MA950-LR 3-173

VMGOINCR
(STATEMENT)

Purpose vmGoIncr (Go Incremental) causes the virtual master to move
a distance specified by vmIndexDist.
The virtual master runs at the frequency specified by
vmRunFreq. Use vmUpdMove to modify this frequency
during the move.

This feature is only available in the Enhanced
OC950 Firmware.

Syntax vmGoIncr
Guidelines Program execution continues with the line immediately

following the vmGoIncr statement as soon as the move is
initiated. Program execution does not wait until the move is
complete. The drive does not need to be enabled in order for to
use the virtual master.

Related
Instructions vmGoVel, vmStopMotion, vmUpdMove
Example This example moves the virtual encoder 100,000 counts at a

frequency of 20,000 counts/second. This move will take abount
5 seconds.

‘set up vmEncpos and virtual move parameters
vmEncpos = 0
vmRunFreq = 20000
vmIndexDist = 100000 ‘initiate the move

time = 0 ‘set time to zero just for measurement

vmGoIncr

‘wait for the move to be complete
while vmMoving = 1 : wend

‘print the results
print “vmEncpos = ”;vmEncpos
print “time = ”;time

Instructions Danaher Motion Kollmorgen

3-174 MA950-LR

VMGOVEL
(STATEMENT)

Purpose vmGoVel (Go at Velocity) causes the virtual master to move
continuously at the frequency specified by vmRunFreq in the
direction (positive or negative) specified by vmDir. The
frequency is modified during the move using vmUpdMove.

This feature is only available in the Enhanced OC950
Firmware.

Syntax vmGoVel
Guidelines Program execution continues with the line immediately

following vmGoVel as soon as the move is initiated. Program
execution does not wait until the move is complete. Stop a
velocity move on the virtual encoder using vmStopMotion.
Executing vmGoIncr after vmGoVel and before
vmStopMotion causes the virtual encoder to switch to an
incremental move that terminates when vmIndexDist encoder
counts have been put out. The drive does not need to be
enabled to use the virtual master.

Related
Instructions vmGoIncr , vmStopMotion, vmUpdMove
Example This runs the virtual encoder forward at 20,000 counts/sec

vmRunFreq = 20000
vmDir = 0
vmGovel

Danaher Motion Kollmorgen Instructions

MA950-LR 3-175

VMMOVING
(PRE-DEFINED VARIABLE, INTEGER, READ-ONLY)

Purpose vmMoving indicates if the virtual encoder is moving.
0 - virtual encoder is not moving
1 - virtual encoder is moving

This feature is only available in the Enhanced OC950
Firmware.

Syntax x = vmMoving
Range 0, 1
Related
Instructions vmGoVel, vmGoIncr
Example ‘Start an incremental move on the virtual encoder

vmRunFreq = 10000
vmIndexDist = 123456
vmGoIncr

time = 0
while vmMoving : wend
print time

VMRUNFREQ
(PRE-DEFINED VARIABLE, FLOATING POINT)

Purpose vmRunFreq sets the maximum frequency allowed during an
incremental (vmGoIncr) move, and sets the commanded speed
during a velocity move (vmGoVel).

This feature is only available in the Enhanced OC950
Firmware.

Syntax vmRunFreq = x
Units encoder counts/second
Range 0 - 1,000,000
Default 10,000
Guidelines The resolution of vmRunFreq is 1,000 counts/second
Related
Instructions vmGoVel, vmDir, vmGoIncr, vmIndexDist
Example ‘This runs the virtual encoder forward at 20,000 counts/sec

vmRunFreq = 20000
vmDir = 0
vmGovel

Instructions Danaher Motion Kollmorgen

3-176 MA950-LR

VMSTOPMOTION
(STATEMENT)

Purpose vmStopMotion stops the virtual encoder. vmEncpos stays at its
present value.

This feature is only available in the Enhanced OC950
Firmware.

Syntax vmStopMotion
Guidelines Program execution continues with the line immediately

following vmStopMotion as soon as the move is initiated.
Program execution does not wait until the move is complete.

Related
Instructions vmGoIncr, vmGoVel, vmUpdMove
Example This runs the virtual encoder forward at 20,000 counts/sec for

5 seconds and then stops it.
vmRunFreq = 20000
vmDir = 0
vmGovel
pause(5)
vmStopMotion

Danaher Motion Kollmorgen Instructions

MA950-LR 3-177

VMUPDMOVE
(STATEMENT)

Purpose vmUpdMove (Update Virtual Encoder Move paramaters)
updates a move in progress with new move parameters. This
allows you to change motion on-the-fly without having to stop
motion and initiate a new move. vmUpdMove updates vmDir
and vmRunFreq.

This feature is only available in the Enhanced OC950
Firmware.

Syntax vmUpdMove
Guidelines Program execution continues with the line immediately

following vmUpdMove as soon as the move is initiated.
Program execution does not wait until the move is complete.
vmUpdMove does not initiate motion if there is no move in
progress. The vmUpdMove statement is ignored.

Related
Instructions vmGoIncr, vmGoVel
Example This example initiates an incremental move of 100,000 counts

at 50,000 counts/sec. After 1 second, it changes the move
speed to 10,000 counts/sec and updates the move parameters.

‘ set up the initial parameters and initiate the move
vmRunFreq = 50000
vmIndexDist = 100000

time = 0
vmGoIncr

‘pause 1 second and then update the frequency
pause(1)
vmRunFreq = 10000
vmUpdMove

‘wait for the move to be complete and print out the elapsed
time
while vmMoving : wend
print time

Instructions Danaher Motion Kollmorgen

3-178 MA950-LR

WHEN
(STATEMENT)

Purpose The WHEN statement is used for very fast response to certain
input conditions. Upon encountering and executing the
WHEN statement, program execution waits until the specified
condition is satisfied. When the condition is satisfied, the
when-action is executed immediately and the program
continues at the next line after the WHEN statement.
Interrupts are active and are serviced during the execution of
WHEN statements. The execution of an interrupt service
routine does not affect how quickly the when-action is
executed after the when-condition is satisfied.

Syntax When when-condition , when-action
when-conditions:
l INP0 - INP20 = 0,1
l BDINP1 - BDINP6 = 0,1
l Position < value
l Position > value
l EncPos < value
l EncPos > value
l PosCommand < value
l PosCommand > value
l Time > value
l Reg1HiFlag
l Reg1LoFlag
l Reg2HiFlag
l Reg2LoFlag

when-actions:
l AbortMotion
l Continue
l GoAbs
l GoHome
l GoIncr
l GoVel
l Out0 - Out20 = 0,1
l Ratio = value
l UpdMove

Danaher Motion Kollmorgen Instructions

MA950-LR 3-179

Guidelines The when-condition is checked every 1 millisecond. At the
instant (within 1 msec) that the when-condition is satisfied, the
values of the following variables are strobed into special when
variables:

l Encpos—WhenEncPos
l PosCommand—WhenPosCommand
l Position—WhenPosition
l ResPos—WhenResPos
l Time—WhenTime

Related
Instructions WhenEncPos, WhenPosCommand, WhenPosition,

WhenResPos, WhenTime
Example When Inp0 = 1, continue

 ...
When EncPos > 10000, Out3=1
 ...
When Time > 5.6, Ratio = -2.2

WHENENCPOS
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-

ONLY)

Purpose WhenEncPos records the value of EncPos when the when-
condition is satisfied.

Syntax x = WhenEncPos
Units encoder counts
Range -2,147,483,648 to 2,147,483,647
Related
Instructions When, EncPos

Instructions Danaher Motion Kollmorgen

3-180 MA950-LR

WHENPOSCOMMAND
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-
ONLY)

Purpose Records the value of PosCommand when the when-
condition is satisfied.

Syntax x = WhenPosCommand
Units resolver counts
Range -134,217,728 to 134,217,727
Guidelines The when-condition is checked once per millisecond.
Related
Instructions When, PosCommand

WHENPOSITION
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-
ONLY)

Purpose Records the value of Position when the when-condition is
satisfied.

Syntax x = WhenPosition
Units resolver counts
Range -134,217,728 to 134,217,727
Guidelines The when-condition is checked once per millisecond.
Related
Instructions When, Position

WHENRESPOS
(PRE-DEFINED VARIABLE, INTEGER, STATUS VARIABLE, READ-
ONLY)

Purpose Records the value of Respos when the when-condition is
satisfied.

Syntax x = WhenRespos
Units resolver counts
Range 0 - CountsPerRev
Guidelines The when-condition is checked once per millisecond.
Related
Instructions When, Respos

Danaher Motion Kollmorgen Instructions

MA950-LR 3-181

WHENTIME
(PRE-DEFINED VARIABLE, FLOAT, STATUS VARIABLE, READ-

ONLY)

Purpose Records the value of Time when the when-condition is
satisfied.

Syntax x = WhenTime
Units seconds
Range 0 - 2,147,483 (~24.8 days)
Guidelines The when-condition is checked once per millisecond.
Related
Instructions When, Time

WHILE...WEND
(STATEMENT)

Purpose Executes a series of statements for as long as the condition
after the WHILE is True.

Syntax While condition
...statement block...
Wend

Guidelines While...Wend statements may be nested. Each Wend is
matched to the most recent While. Unmatched While or
Wend statements cause compile time errors.

Related
Instructions Exit, For...Next
Example Time = 0

While Time < 5
 Dir = Inp0 : GoVel
Wend
AbortMotion

Instructions Danaher Motion Kollmorgen

3-182 MA950-LR

WRITEPLC5BINARY()
(STATEMENT)

Purpose WritePLC5Binary() writes the specified (16 bit) element to
the specified binary file on the specified PLC5.

 When this function is encountered, the OC950 sends the
appropriate message to the SLC500 connected to the OC950’s
serial port and waits for an acknowledgement (ACK). If there
is no valid response, the OC950 sets ABErr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax WritePLC5Binary(node address, file number, element
number, value)

Guidelines Set RuntimeProtocol to 5 (Allen-Bradley DF1 Protocol)
before using this function. Other communication parameters
(baudrate and ABCrc) on the SC950 must match the
corresponding parameters on the PLC.

Related
Instructions ReadPLC5Integer(), ReadPLC5Binary(),

ReadPLC5Float(), WritePLC5Integer(),
WriteSLC5Float()

Example This example writes an integer to the PLC5 binary file.

All communication settings on both devices (SC950 and
PLC5) must match.

main
dim PLC5Speed as integer

runtimeprotocol = 5 ‘Allen-Bradley DF1 protocol
baudrate = 19200 ‘baudrate MUST match PLC setting
abcrc = 1
‘Set check to CRC — MUST match PLC setting
PLC5Speed = 1234
WritePLC5Binary(5, 3, 19, PLC5Speed)

‘PLC5 File 3 = Binary File
end

Danaher Motion Kollmorgen Instructions

MA950-LR 3-183

WRITEPLC5FLOAT()
(STATEMENT)

Purpose WritePLC5Float() writes the specified (32 bit) element to the
specified float file on the specified PLC5.
When this function is encountered, the OC950 sends the
appropriate message to the PLC5 connected to the OC950’s
serial port and waits for an acknowledgement (ACK). If there
is no valid response, the OC950 sets ABErr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax WritePLC5Float(node address, file number, element
number, value)

Guidelines Set RuntimeProtocol to 5 (Allen-Bradley DF1 Protocol)
before using this function. Other communication parameters
(baudrate and ABCrc) on the SC950 must match the
corresponding parameters on the PLC.

Related
Instructions ReadPLC5Integer(), ReadPLC5Binary(),

ReadPLC5Float(), WritePLC5Integer(),
WritePLC5Binary()

Example This program writes a float to the PLC5 binary file.

All communication settings on both devices (SC950 and
PLC5) must match.

main
dim PLC5Speed as float

runtimeprotocol = 5 ‘Allen-Bradley DF1 protocol
baudrate = 19200 ‘baudrate MUST match PLC setting
abcrc = 1
‘Set check to CRC — MUST match PLC setting
PLC5Speed = 345.678
WritePLC5Float(5, 8, 19, PLC5Speed)

‘PLC5 File 8 = Float File
end

Instructions Danaher Motion Kollmorgen

3-184 MA950-LR

WRITEPLC5INTEGER()
(STATEMENT)

Purpose WritePLC5Integer() writes the specified (16 bit) element to
the specified integer file on the specified PLC5.
When this function is encountered, the OC950 sends the
appropriate message to the PLC5 connected to the OC950’s
serial port and waits for an acknowledgement (ACK). If there
is no valid response, the OC950 sets ABErr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax WritePLC5Integer(node address, file number, element
number, value)

Guidelines Set RuntimeProtocol to 5 (Allen-Bradley DF1Protocol)
before using this function. Other communication parameters
(baudrate and ABCrc) on the SC950 must match the
corresponding parameters on the PLC.

Related
Instructions ReadPLC5Integer(), ReadPLC5Binary(),

ReadPLC5Float(), WritePLC5Binary(),
WriteSLC5Float()

Example The following program writes an integer to the PLC5.

All communication settings on both devices (SC950 and
PLC5) must match.

main
dim PLC5Speed as integer

runtimeprotocol = 5 ‘Allen-Bradley DF1 protocol
baudrate = 19200 ‘baudrate MUST match PLC setting
abcrc = 1
‘Set check to CRC — MUST match PLC setting
PLC5Speed = 1234
WritePLC5Integer(5, 7, 19, PLC5Speed)

‘PLC5 File 7 = Integer File
end

Danaher Motion Kollmorgen Instructions

MA950-LR 3-185

WRITESLC5BINARY()
(STATEMENT)

Purpose WriteSLC5Binary() writes the specified (16 bit) element to
the specified binary file on the specified SLC500.
When this function is encountered, the OC950 sends the
appropriate message to the SLC500 connected to the OC950’s
serial port and waits for an acknowledgement (ACK). If there
is no valid response, the OC950 sets ABErr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax WriteSLC5Binary(node address, file number, element
number, value)

Guidelines Set RuntimeProtocol to 5 (Allen-Bradley DF1Protocol)
before using this function. Other communication parameters
(baudrate and ABCrc) on the SC950 must match the
corresponding parameters on the PLC.

Related
Instructions ReadSLC5Binary(), ReadSLC5Float(),

WriteSLC5Integer(), ReadSLC5Integer(),
WriteSLC5Float()

Example This example writes an integer to the SLC500 PLC binary file.

All communication settings on both devices (SC950 and
SLC500) must match.

main
dim SLC5Speed as integer

runtimeprotocol = 5 ‘Allen-Bradley DF1 protocol
baudrate = 19200 ‘baudrate MUST match PLC setting
abcrc = 1
‘Set check to CRC — MUST match PLC setting
SLC5Speed = 1234
WriteSLC5Binary(5, 3, 19, SLC5Speed)

‘SLC500 File 3 = Binary File
end

Instructions Danaher Motion Kollmorgen

3-186 MA950-LR

WRITESLC5FLOAT()
(STATEMENT)

Purpose WriteSLC5Float() writes the specified (32 bit) element to the
specified float file on the specified SLC500.
When this function is encountered, the OC950 sends the
appropriate message to the SLC500 connected to the OC950’s
serial port and waits for an acknowledgement (ACK). If there
is no valid response, the OC950 sets ABErr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax WriteSLC5Float(node address, file number, element
number, value)

Guidelines Set RuntimeProtocol to 5 (Allen-Bradley DF1 Protocol)
before using this function. Other communication parameters
(baudrate and ABCrc) on the SC950 must match the
corresponding parameters on the PLC.

Related
Instructions ReadSLC5Binary(), ReadSLC5Float(),

WriteSLC5Integer(), ReadSLC5Integer(),
WriteSLC5Binary()

Example This program writes a float to the SLC500 PLC float file.

All communication settings on both devices
(SC950 and SLC500) must match.

main
dim SLC5Speed as float

runtimeprotocol = 5 ‘Allen-Bradley DF1 protocol
baudrate = 19200 ‘baudrate MUST match PLC setting
abcrc = 1
‘Set check to CRC — MUST match PLC setting
SLC5Speed = 456.789
WriteSLC5Float(5, 8, 19, SLC5Speed)

‘SLC500 File 8 = Float File
end

Danaher Motion Kollmorgen Instructions

MA950-LR 3-187

WRITESLC5INTEGER()
(STATEMENT)

Purpose WriteSLC5Integer() writes the specified (16 bit) element to
the specified integer file on the specified SLC500.
When this function is encountered, the OC950 sends the
appropriate message to the SLC500 connected to the OC950’s
serial port and waits for an acknowledgement (ACK). If there
is no valid response, the OC950 sets ABErr.

This feature is only available in the Enhanced OC950
Firmware.

Syntax WriteSLC5Integer(node address, file number, element
number, value)

Guidelines Set RuntimeProtocol to 5 (Allen-Bradley DF1Protocol)
before using this function. Other communication parameters
(baudrate and ABCrc) on the SC950 must match the
corresponding parameters on the PLC.

Related
Instructions ReadSLC5Binary(), ReadSLC5Float(),

WriteSLC5Binary(), ReadSLC5Integer(),
WriteSLC5Float()

Example This example writes an integer to the SLC500 PLC.

All communication settings on both devices (SC950 and
SLC500) must match.

main
dim SLC5Speed as integer

runtimeprotocol = 5 ‘Allen-Bradley DF1 protocol
baudrate = 19200 ‘baudrate MUST match PLC setting
abcrc = 1
‘Set check to CRC — MUST match PLC setting
SLC5Speed = 1234
WriteSLC5Integer(5, 7, 19, SLC5Speed)

‘SLC500 File 7 = Integer File
end

Instructions Danaher Motion Kollmorgen

3-188 MA950-LR

XOR
(OPERATOR)

Purpose Xor performs a logical XOR operation on two expressions.
Syntax result = A xor B
Guidelines The result evaluates to True if, and only if, one of the boolean

expressions is True and the other boolean expression is False.
Otherwise, the result is False.

Related
Instructions Or, Xor, Band, Bor, Bxor
Example x = 17

y = 27
If (x > 20) Xor (y > 20) Then
 print “This will get printed.”
End If

If (x < 20) And (y > 20) Then
 print “This won’t get printed.”
End If

Danaher Motion Kollmorgen Appendix A

MA950-LR A-1

APPENDIX A

Operating at 9600 Baud
To set up your OC950 to operate at 9600 Baud:

1. Verify the Firmware version (must be 1.2 or greater). Select
Variables in the Compile menu.

2. Type FWV in the Variables/expression box and press <Enter>. The
current value should be 1200 or greater.

3. Establish communications with the OC950 at 19200 baud. Type
BaudRate in the Variables/Expresion box and press <Enter>.
The current value should be 19200.

4. <Tab> to the New Value box, type 9600 and press <Enter>. A
warning message appears indicating that the Target (the OC950) is not
responding.

5. Click <OK> to clear this error window.

6. Close the Variables Window.

7. Select Communications in the Options Menu.

8. In the Communications Options window, select 9600 baud and
click <OK>.

9. Return to the Variables window by selecting Variables in the
Compile Menu, and verify that BaudRate is set to 9600.

The OC950 and the 950IDE now both communicate at the new baud rate.

Appendix A Danaher Motion Kollmorgen

A-2 MA950-LR

Contact Information
Danaher Motion Customer Support
Kollmorgen, Pacific Superior, IDC, Inland Motor, Micron, and NDC products
Phone: (815) 226-2222
Email: customer.service@DanaherMotion.com
Web: www.DanaherMotion.com

Danaher Motion Kollmorgen Index

MA950-LR 3-3

INDEX

$

$ABMapFloat() 2-1, 3-2
$ABMapInteger() 2-1, 3-3
$DeclareCam() 1-42, 2-1
$DeclareCam()3-4
$Include......................................3-5
$Include() 1-17, 1-27, 2-1
$MBMap16()...................... 2-1, 3-7
$MBMap32()...................... 2-1, 3-8
$MBMapBit() 2-1, 3-6
$MBMapFloat().................. 2-1, 3-9
$PACLANAddr2-1
$PACLANAddr()3-9

A

ABCrc.......................................3-10
ABErr..3-10
ABInfo.......................................3-11
AbortMotion3-12
ABS ..1-22
Abs()..3-12
AccelGear.................................3-13
AccelRate.................................3-14
ACK..1-40
ActiveCam................................3-15
ActiveCam ().............................1-42
Addpoint()......................... 1-42, 3-17
AddPoint()1-43
ADF0 ..3-18
ADOffset...................................3-18
Alias ...3-19
AnalogIn3-19
AnalogOut13-20
AnalogOut23-20
And...3-20
ARF0 ..3-21
ARF1 ..3-21

Arrays and Function Parameter
Lists 1-28

ARZ0.. 3-22
ARZ1.. 3-22
ASC() 1-23
Asc() .. 3-23
ATAN 1-22
Atan() 3-23
Autostart................................... 3-23
AxisAddr................................... 3-24

B

Band .. 3-24
BaudRate................................. 3-25
BDInp1..................................... 3-25
BDInp2..................................... 3-26
BDInp3..................................... 3-26
BDInp4..................................... 3-26
BDInp5..................................... 3-27
BDInp6..................................... 3-27
BDInputs 3-27
BDIOMap1 3-28
BDIOMap2 3-29
BDIOMap3 3-30
BDIOMap4 3-31
BDIOMap5 3-32
BDIOMap6 3-33
BDLgcThr................................. 3-34
BDOut1 3-34
BDOut2 3-35
BDOut3 3-35
BDOut4 3-35
BDOut5 3-36
BDOut6 3-36
BDOutputs 3-37
Beep .. 3-37
BlkType.................................... 3-38
Bnot ... 3-38

Index Danaher Motion Kollmorgen

3-2 MA950-LR

Bor ... 3-39
Brake 3-39
Bxor ... 3-40

C

Call .. 3-40
Cam Profiling 1-42
Cam Wizard.................... 1-42, 1-43
CamCorrectDir1-42, 3-41
CamMaster1-42, 1-45, 3-42
CamMasterPos........................ 3-42
CamSlaveOffset....................... 3-43
CCDate.................................... 3-43
CCSNum 3-43
CcwInh..................................... 3-44
Ccwot....................................... 3-44
Chr$() 3-44
CHR$() 1-23
CINT .. 1-22
Cint()....................................... 3-45
Cls ... 3-45
CmdGain 3-45
CommEnbl............................... 3-46
CommOff 3-46
CommSrc................................. 3-47
Communications...................... 1-38

Allen-Bradley DF1.............. 1-38
ConfigPLS() 3-48
Const 3-49
COS... 1-22
Cos()....................................... 3-49
CountsPerRev 3-49
CreateCam().................. 1-42, 3-50
CwInh 3-51
Cwot .. 3-51

D

DecelGear 3-52
DecelRate................................ 3-53
Diagnostics 1-40
DIM.. 3-54

Dir...3-54
DM1F03-55
DM1Gain3-56
DM1Map...................................3-57
DM1Out....................................3-58
DM2F03-58
DM2Gain3-59
DM2Map...................................3-60
DM2Out....................................3-61

E

Enable......................................3-61
Enabled3-62
EnablePLS03-62
EnablePLS13-63
EnablePLS23-63
EnablePLS33-64
EnablePLS43-64
EnablePLS53-65
EnablePLS63-65
EnablePLS73-66
EncFreq....................................3-66
EncIn..3-67
EncInF0....................................3-68
EncMode3-69
EncOut3-69
Encpos1-45
EncPos.....................................3-70
EncPosModulo3-70
End...3-71
Err ..3-71
Exit ...3-74
EXP ..1-22
Exp()..3-74
Expressions..............................1-24

Arithmetic1-24
Logical Operators1-25
Numeric Operators...............1-24
String Operators...................1-27

ExtFault3-75

Danaher Motion Kollmorgen Index

MA950-LR 3-3

F

Fault ...3-76
FaultCode.................................3-77
FaultReset3-78
FIX..1-22
Fix() ...3-78
For...Next..................................3-79
function.....................................1-22

invocation............................ 1-27
Function....................................3-80
FVelErr3-81
FwV ..3-81

G

GearError3-82
Gearing.....................................3-83
GearLock..................................3-84
GetMotor$()3-85
GoAbs3-85
GoAbsDir..................................3-86
GoHome...................................3-87
GoIncr.......................................3-87
GoTo ..3-88
GoVel3-88

H

Hex$()......................................3-89
HEX$().....................................1-23
HSTemp3-89
HwV..3-90

I

I_R..3-102
I_S..3-102
I_T ..3-103
ICmd...3-90
If...Then...Else3-91
IFB..3-90
ILmtMinus.................................3-91
ILmtPlus3-92
IndexDist3-92

Inkey$ 3-93
INKEY$()................................. 1-23
Inp0-Inp20................................ 3-93
InPosition 3-94
InPosLimit 3-94
Input................................1-18, 3-95
Inputs 3-95
Instr() 3-96
INSTR()................................... 1-23
INT ... 1-22
Int() ... 3-96
Interrupt.................................... 3-97
Interrupt … End Interrupt 1-18
Intr{source}............................... 3-98
IPEAK .. 3-100
ItF0... 3-100
ItFilt .. 3-101
ItThresh.................................. 3-101
ItThreshA 3-102

K

Kii3-103
Kip.. 3-103
Kpp .. 3-104
Kvff... 3-104
Kvi .. 3-105
Kvp... 3-105

L

LANFlt()........................1-33, 3-106
LANInt()........................1-33, 3-106
Laninterrupt[]........................... 1-18
LANInterrupt[]........................ 3-107
LANIntrArg 3-107
LANIntrSource 3-107
Lcase$()1-23, 3-108
LEFT$()................................... 1-23
Left$() 3-108
LEN() 1-23
Len() 3-108
LOG ... 1-22

Index Danaher Motion Kollmorgen

3-4 MA950-LR

Log() 3-109
LOG10 1-22
Log10() 3-109
Ltrim$() 3-109
LTRIM$() 1-23

M

main....................................... 3-110
Map Wizard 1-40
MB32WordOrder.................... 3-110
MBErr 3-111
MBFloatWordOrder................ 3-112
MBInfo 3-6, 3-113
MBRead16............................. 3-115
MBRead32............................. 3-116
MBReadBit 3-114
MBReadFloat......................... 3-117
MBWrite16............................. 3-119
MBWrite32............................. 3-120
MBWriteBit............................. 3-118
MBWriteFloat......................... 3-121
Mid$() 3-122
MID$()..................................... 1-23
MOD 3-122
ModBus 1-33

data types............................. 1-34
master1-33, 1-36, 1-37, 3-7, 3-8,

3-9
reference.............................. 1-38
register................................. 1-34
slave1-33, 1-35, 3-7, 3-8, 3-9

Model..................................... 3-122
ModelExt................................ 3-123
ModifyEncPos() 3-123
Motor 3-124
Moving 3-124

N

NAK ... 1-40

O

OCDate3-125
OCSNum................................3-125
Oct$()3-125
OCT$()1-23
On Error GoTo1-18, 3-126
Or 3-127
Out0 - Out203-127
Outputs...................................3-128

P

PACLAN...................................1-31
Accessing Variables.............1-32
Configuration.......................1-31
Reading Variables................1-32
Writing Variables.................1-32

PACLAN Interrupts...................1-33
Params...End Params3-128
Pause().........................1-18, 3-129
PoleCount3-129
PosCommand3-130
PosError3-130
PosErrorMax3-131
Position3-131
PosModulo3-132
PosPolarity3-132
Print...............................1-19, 3-133
PulsesIn3-133
PulsesOut...............................3-134

R

Random..................................3-135
Randomize3-136
Ratio.......................................3-137
ReadPLC5Binary()3-138
ReadPLC5Float()3-139
ReadPLC5Integer()3-140
ReadSLC5Binary()3-141
ReadSLC5Float()3-142
ReadSLC5Integer()3-143
Reg1HiEncpos3-144

Danaher Motion Kollmorgen Index

MA950-LR 3-5

Reg1HiFlag3-144
Reg1HiPosition.......................3-145
Reg1LoEncpos.......................3-145
Reg1LoFlag............................3-146
Reg1LoPosition3-146
Reg2HiEncpos3-147
Reg2HiFlag3-147
Reg2HiPosition.......................3-148
Reg2LoEncpos.......................3-148
Reg2LoFlag............................3-149
Reg2LoPosition3-149
RegControl3-150
RemoteFB3-151
ResPos...................................3-152
Restart.......................... 1-19, 3-152
Right$()..................................3-153
RIGHT$().................................1-23
RTRIM$().................................1-23
Rtrim$()3-153
RunSpeed3-153
RuntimeParity.........................3-154
RuntimeProtocol.....................3-154

S

ScurveTime3-155
Select Case 1-20, 3-156
SendLANInterrupt()[]3-157
SetMotor()3-159
SGN ...1-22
Sgn()......................................3-159
SHL ..3-159
SHRA3-160
SHRL......................................3-160
SIN ...1-22
Sin().......................................3-160
Space$()................................3-160
SPACE$()................................1-23
SQR ...1-22
Sqr()3-161
Static 1-20, 3-161
Status[]3-162

Stop1-20, 3-162
Str$() 3-163
STR$() 1-23
String function 1-23
STRING$() 1-23
String$() 3-163
Sub...End Sub........................ 3-164
Sub…End Sub 1-20
Swap.............................1-21, 3-164
SysLanWindow1-8 3-165

T

TAN.. 1-22
Tan() 3-165
TargetPos 3-165
Time....................................... 3-166
Trim$() 3-166
TRIM$()................................... 1-23

U

Ucase$()1-23, 3-166
UpdMove.......................1-21, 3-167

V

Val() 3-167
VAL()....................................... 1-23
VBus 3-167
VBusThresh 3-168
VelCMd 3-168
VelErr..................................... 3-168
VelFB 3-169
VelLmtHi 3-169
VelLmtLo................................ 3-170
Velocity 3-170
virtual encoder 1-45
virtual master 1-45
vmDir 3-171
vmEncpos 3-172
vmGoIncr 3-173
vmGoVel 3-174
vmMoving............................... 3-175

Index Danaher Motion Kollmorgen

3-6 MA950-LR

vmRunFreq............................ 3-175
vmStopMotion........................ 3-176
vmUpdMove 3-177

W

When 1-21, 3-178
WhenEncPos......................... 3-179
While...Wend 3-181
While…Wend........................... 1-21

WritePLC5Binary()3-182
WritePLC5Float()...................3-183
WritePLC5Integer()3-184
WriteSLC5Binary()3-185
WriteSLC5Float()...................3-186
WriteSLC5Integer()3-187

X

Xor..3-188

