Addendum to 400030-139 (Latest Revision)
For Use With The o
SS2000-PCi-2 Programmable Step Motor Controller

The following pages have been revised for use with the SS2000PCi-2.
1. Replace Section 1 (Pages 1 — 4) with the new Section 1.
Revised/added references to SS2000PCi-2.
2. Replace Section 3 (Pages 9 — 30) with the new Section 3.
Revised Mechanical Outline diagram
Revised Hardware Connection Descriptions
Revised XWC description and diagram
3. Replace Sections 4.1, 4.2 and 4.2.1 (Page 32) with the new page provided.
Revised Mechanical and Electrical Specifications
4, Replace Sections 5.1 — 5.1.4.1) (Page 38) with the new page provided.
Added references to SS2000PCi-2
5. Add new pages 156-159 to Section 7
Added two new sections,
7.4 Two Independent Axis Control Programming Example (Using AUX Port)
7.5 Two Independent Axis Control Programming Example (Using I/0O Port)
6. Add new Section 10 Host — Slave Control and Peer-to-Peer Control of Axis 1 & 2.
This section describes in detail how to wire and communicate between the 2

independent axis’ of the SS2000PCi-2 in two configurations, Host — Slave and Peer-to-
Peer.

su P er ior 383 Middle Street « Bristol, CT 06010

(860)585-4500 « Fax:(860)589-2136
Electr[c web site:www.superiorelectric.com

Al-0423 ‘ Printed in U.S.A.

Section 1

Introduction

Introduction

1.1- HOW TO USE THIS MANUAL

Congratulations on the purchase of your new Superior
Electric SLO-SYN® WARPDRIVE™ family motion
control product! The SS2000PCi-2 programmable motion
controller is a full-featured and flexible product, yet it is
fairly simple to apply it to your machine control applica-
tion. This manual is designed to guide and assist you
through the installation, programming, and operation of
the controller/drive. If you’re reading this, you understand
the importance of familiarizing yourself with how this
product should be installed and operated. We strongly
recommend that you read through this manual until you
are comfortable with electrical connections and operating
concepts of the unit. Also, for your safety, we strongly
recommend that you read “Section 2 - Important Safety
Information” first, then read the “Quick Start Installation
Guide” section. This will provide you with the basics on
how to properly wire and connect the unit into your sys-
tem. From there you can move on to the “Motion Con-
troller Programming Interface” and “Software Reference
Guide” sections to learn how to program your control-

-~ ler/drive to suit your application. “The “Glossary” section

- describes the terms most commonly used in this manual.
Detailed technical information is provided in the “Hard-
ware Specifications” section.

1.2 - FEATURES AND FUNCTIONS

The SS2000PCi-2 two-axis step motor controller features
two fully programmable digital indexers (controllers)
capable of independently operating two step motors,
pulse-and-direction drives non-simultaneously. This sin-
gle package occupies less panel space for applications that
require 2 independent or 2 coordinated (non-
simultaneous) axes of motion. Each indexer is a powerful
controller which allows motion programming using the
Motion Controller Programming Intérface (MCPI). The
MCPI is a Windows® based Graphical User Interface
(GUI) which runs on a PC and facilitates system pro-
gramming in an easy to use BASIC like language.

1) Microcontroller Based Digital Controller Card.

Each of the two controller/indexer circuit cards is based
on a sophisticated digital microcontroller chip. The mi-
crocontroller performs all necessary tasks for executing
complex user programs including control of digital inputs
and outputs (I/O), stepper motor current profiles, two se-
rial communications ports, drive section interface, digital
encoder inputs for closed loop stepper, etc.

Some of the key features of the controller are:

e High-performance motion controller uses-16-bit; 16-
MHz microprocessor

e Surface-mount construction utilizing custom inte-
grated circuits

¢ Easy setup and programming with Windows interface
and BASIC-like language

e Simpler program construction — user specifies own
motion units, e.g. inches, the programming environ-
ment automatically converts to motor “steps”

e Feature-rich command set, with over 85 functions in
the following groups: Motion, Trajectory Parameters,
Drive Parameters, I/O Control, Timer, Program Flow
Control, Interrupts, Boolean/Relational Operators,
String Handling, Variables, and Arithmetic

¢ Two independent serial ports: Host port RS232 or
RS485; Auxiliary port is RS485; selectable commu-
nication rates up to 38.4 kbaud

¢ Programmable Inputs: 8 optically isolated 5-24 VDC;
8 more logic inputs (or used for BCD switches)

¢ Programmable Outputs: 4 optically isolated 5-24 VDC,
250 mA; 4 more “sinking” open collector (or used for
BCD switches)

¢ Built-in 12 VDC power supply for opto-coupled I/0
Analog input: 0-10 Volts, 10-bit resolution with mul-
tiple programmable functions

e 1/O on shielded 25-pin “D” connector; optional ter-
minal-strip adapter available

¢ Encoder input of up to 2 million counts per second on
9-pin “D” connector

¢ Closed-loop modes for stall detection, position verifi-
cation, and correction

¢ 3 LED indicators for Power, Fault, and Motion Busy

2) SS2000PCi-2 Power Supply

Wide range AC input 95 — 265 VAC, 50/60 Hz
Fused AC Input

Built-in Line Filter

Current Foldback on DC Power Ouputs

Introduction

1.3 - WHAT YOU NEED TO KNOW FIRST

This instruction manual is written in a simple and
easy-to-follow format that should be suitable for both new
and experienced motion control users. In order to get the
most out of your SS2000PCi-2 Programmable Motion
Controller, we assume the user will be knowledgeable in
the following areas:

1. Basic electrical and electronic skills, including pre-
paring and following an equipment wiring diagram or
schematic.

2. The basics of motion control system applications, such
as torque, speed, move distances, how to structure a
motion task into move segments and input/output
control.

3. Some familiarity with elementary computer program-
ming, including defining the problem to be solved and
coding it in a computer language.

1.4 - CONVENTIONS USED IN THIS
MANUAL

1. Motor rotation direction (CW and CCW) is properly
oriented when viewing the motor from the end oppo-
site the mounting flange end of motor.

2. Please refer to Section 9 “Glossary” for detailed de-

scriptions of terms such as "sink and source I/Q", vari-
ous motion terms, etc.

Introduction

1.5- HOW TO CONTACT US

Although this manual represents a detailed compilation of
information regarding your SLO-SYN WARPDRIVE
control product, sometimes questions may arise which
will require that you contact us. You now have a few op-
tions available to you when you need information re-
garding your product or its application:

I. On the Internet at www.superiorelectric.com. Our
multimedia enabled web site offers you information such
as:

- Free Software

- Software Updates

- TechFax fax on demand documents (1-800-234-3369)
- HTML Product Selector

- HTML Brand Selector

- Product News

- Links

- Sales and Distribution Information

- Product information and specifications
- Literature Requests

- Technical Support E-mail

- Many more features

2. By Phone. You may reach us by phoning our Motion
Control Applications Engineering Department at
telephone (800) 787-3532. We may be reached be-
tween the hours of 8:00 am and 5:00 PM (Eastern
Time), Monday through Friday. Technical personnel
are available to assist you in getting your application
up and running as efficiently as possible.

(This page intentionally left blank)

4 Introduction

Section 3

Quick Start
Installation Guide

Quick Start Installation Guide

3.1 - Step-by-Step Start-Up Procedure

The SS2000PCi-2 step motor controller is a sophisticated
and versatile product. Setting up the system, however, can
be simple and straight-forward if the proper steps are fol-
lowed. Please use the step-by-step set up guide below.

1) Bench Set Up.

Before connecting your SS2000PCi-2 and drive to your
motor and mechanical system or machine, we recommend
that you “bench test” the system. This will allow you to
become familiar with the wiring, programming and op-
eration of the system before installing it into your ma-
chine. This may also prevent inadvertent damage to your
mechanical system if you make programming errors
which cause unexpected motion. The bench set up can be
used to perform simple motions with an unloaded motor.
To perform a bench test, do the following;

a) Wire it up. Read Section 3.5 Wiring Diagrams, and
connect the AC power, I/0 and other required signals
per the wiring diagrams and instructions. BE SAFE!!
Do not apply AC power to the unit until you are sure
of all connections. Initially, there is no need to con-
nect all of the wiring of your system together. Wire
the AC line input, motor drive and HOST communi-
cation ports. This will be all you need to establish
communications to the unit and perform simple mo-
tion.

b) Load Software. You will need to use a PC to pro-
gram the unit according to your requirements. First
you must load the MCPI software onto the PC from
the floppy disks provided with your unit. Simply insert
disk #1 and run the file SETUP.EXE. Once the soft-
ware is loaded, run it by double clicking on the MCPI
icon. See Section 5 for more details on the MCPI in-
stallation process.

¢) Create your Project. You can now create your new
Project. Your Project will contain Configuration in-
formation for your particular system, and also your
program Task which holds the user program written in
BASIC-like language. Read section 5 of this manual,
and then step through the Configuration folders and
enter the appropriate data for your system, saving the
configuration when you are done. Note that for this
exercise, the original default settings should work fine.
Don’t forget to set up the serial port for your PC to the
correct port number and baud rate,

HINT: Motion is commanded in User Units. The
System folder in the Configuration allows you to enter
User Units per motor revolution. Initially, it is easiest
to set this to 1. This will mean that move distances are
in motor revolutions (e.g. movei=1 moves one revolu-
tion), speeds will be in revs/sec, and accelerations will
be in revs/sec/sec. Later this can be changed (e.g. to
allow programming in inches on a lead screw) to allow
ease of programming once the motor is installed into

10

d)

€)

g)

the mechanical system. See the System Folder section
of this manual for other examples. All move distances,
speeds, and accelerations (or decelerations), and en-
coder information are provided in User Units, so be
sure you understand this before continuing.

Compile and Download the project into the unit us-
ing the command buttons of the MCPL. Note that ini-
tially, you can leave the Task blank and command
motion using the Host Commands. Host commands
are entered in Terminal Mode from the MCPI. Enter
the terminal mode using the appropriate command
button on you screen.

Make it move! Now that you have compiled and
downloaded your project into the unit, you are ready to
make the motor move. First you must enter the speed
at which you wish the motor to turn, such as 1 rev/sec.
Do this by typing speed=1 <CR> (the <CR> means
the Return or Enter key). Now enter the acceleration,
for example 50 revs/sec/sec by typing accel=50<CR>.
Set the deceleration to match by typing de-
cel=50<CR>. After each entry, the controller should
respond with a “>” prompt indicating that it has ac-
cepted your command. With the motor secured to the
bench, you can now command a move. To command
an incremental move of 10 revolutions type
movei=10<CR>. The motor should now move 10
revolutions. If it does not, check your wiring and ver-
ify your configuration settings. In addition, check the
motor direction to insure it meets your requirements.
The motor direction can be reversed in the System
folder if necessary.

Write a BASIC Program. Now that you have made a
simple move, you are ready to write your Task in the
MCPI BASIC-like language. Refer to section 6 for a
complete description of all of the Program Com-
mands. You can start by opening your Task and en-
tering the commands. First, let’s enter the exact same
commands that you used in the Terminal HOST mode.
Enter the speed, accel, decel, and movei commands as
you did in step €) above. You must enter two more
commands to tell the unit that the program is done af-
ter it performs the move. Type waitdone<CR> and
End<CR> as the last lines of the program. Since your
program has changed, you must compile and down-
load it into the unit again for the changes to take ef-
fect. If you receive compilation errors, check your
spelling and syntax with the information in section 6.

Execute the Program. . From the Terminal screen,
click on the RUN button to make the motor move 10
revolutions.. If desired you can now add lines to the
program to perform more sophisticated motion. For
example, try typing REAL x <CR> as the first line of
your program. This will declare x as a REAL vari-
able. See sections 5 and 6 for discussions regarding
variables. On the next line, type x=10 <CR>, This as-
signs the REAL variable x a value of 10. Change the
movei=10 line to movei=x. Now the motor will move
whatever distance has been assigned to x. Recompile

Quick Start Installation Guide

and download your program, then run it. It should op-
erate the same as before, but now the program is now
using x as the move distance in place of 10 as before.
Change the value of x to different distance values to
verify that it works correctly.

h) Expand the Program and Debug it. Now that you
have written a simple program, you can add more
complexity by adding more commands. You can do
complex looping, access I/O, and motion functjons as
required. It will be helpful now to use the DEBUG
feature of the MCPL Again, refer to section 5 for a
detailed description of the debug mode. If you compile
your program in Debug Mode, you can enter the debug
screen as your program runs and step through your
code to verify proper operation. Once the code is
functioning correctly, you should re-compile in Re-
lease Mode as this will speed up program execution.

2) Installation into Mechanical System

Once you have tested everything out in a controlled envi-
ronment, you may complete the installation into your
system. This will require making all the necessary wiring
connections for limit switches, additional I/O, analog in-
puts, encoder, etc. Start simple!! Just as you started
with a simple move on the bench, you should start simple
here as well, slowly adding complexity as you debug your
code and gain more confidence in programming. You
may use the Debug Mode to help in this process. Once
you have the program running the way you want, you can
disconnect the HOST computer and use the RUN switch
input or Program Autostart feature in the Configuration to
run your program without a computer attached.

3.1.1 - Switch Settings

Before mounting and wiring your Slo-Syn
Controller, the switches that govern vari-
ous operating features should be checked
or set to their proper positions for your
application.

NEVER change the switch settings with
/ 5 the unit powered ON. Risk of physical

injury or damage to the unit may result.
—

Warning

3.1.2 - Baud Rate and Unit ID Switch

The Baud Rate switch is accessible through the top of the
unit and has two positions, 9600 or User Baud. According
to the switch position, upon unit power up or RESET, the
baud rate is set to either 9600 or the User Baud rate. If
the switch is in the User position, the unit baud rate is set
to the baud rate parameter defined in the downloaded
project. If the switch is in the 9600 position, the baud rate

Caution

Quick Start Installation Guide

will be forced to 9600 regardless of the project con-
figuration.

It is possible to communicate to multiple units_over the
same RS-485 transmission lines. To accomplish this, the
SS2000PCi-2 supports daisy chain wiring of from 2 to 32
units. All units MUST have their HOST communica-
tions port set to RS-485 mode for daisy chaining to
function properly. Insure that the power is off when
changing the switch position. To change the Host port
communications mode, slide the RS-232/RS-485 selector
switch to the appropriate location. The switch is accessi-
ble through the top of the unit near the BCD 1/0 port. All
units must also be set to the same baud rate.

Further wiring details are included in Section 3.5 Wiring
Diagrams. Note that RS-232 daisy chaining is NOT
supported, and RS-232 signals should NOT be connected
to the Host port when it is in RS-485 mode.

The Host command <nn allows different modes for daisy
chain communications. Refer to the Host Command sec-
tion for a detailed description of the daisy chain com-
mands including their syntax and usage.

Each unit on the daisy chain must have a unique identifi-
cation number (ID) to eliminate transmitter conflicts on
the RS485 port. Five dip switches are provided for se-
lecting the unit ID (1 — 32). They are accessible through
the top rear of the unit. One and only one unit MUST
have ID 1. The switch positions are only decoded at
power-up. Do not change the switches with the power on.

The unit ID ‘s are decoded as follows:

ID Num. | SW-1 | SW-2 | SW-3 | SW-4:] SW-5
1 ON ON ON ON ON
2 ON ON ON ON OFF
3 ON ON ON OFF ON
4 ON ON ON OFF OFF
5 ON ON OFF ON ON
6 ON ON OFF ON OFF
7 ON ON OFF OFF ON
8 ON ON OFF OFF OFF
9 ON OFF ON ON ON
0 ON OFF ON ON OFF
1 ON OFF ON OFF ON
2 ON OFF ON OFF OFF
3 ON OFF OFF ON ON
14 ON OFF OFF ON OFF
15 ON OFF OFF OFF ON
6 ON OFF OFF OFF OFF
7 OFF ON ON ON ON
8 OFF ON ON ON OFF
9 OFF ON ON OFF ON
20 OFF ON ON OFF -| OFF
21 OFF ON OFF ON ON
22 OFF ON OFF ON OFF
23 OFF ON OFF OFF ON
24 OFF ON OFF OFF OFF .
25 OFF OFF ON ON ON
26 OFF OFF ON ON OFF
27 OFF OFF ON OFF ON
28 OFF OFF ON OFF OFF
29 OFF OFF OFF ON ON
30 OFF OFF OFF ON OFF
31 OFF OFF OFF OFF ON
32 OFF OFF OFF OFF OFF

11

12

SIDE VIEW

FRONT VIEW R
il
Y

1]
AV

22 S|}

o

22

10.781

=
)

10.252

0000O0GOO00NN0S
QOONOBOHANKO
000N000000ON D,
CO0LVOVONOONY

&
N

| . S R U
\ooroooon

oa

9.563

ao

BREERas

TFeloBollcllotol
£k gk Sb Sk <P 42 &

oo

==
[- 3.680

l 4.890
S.117

Figure 3.1
Mechanical Outline Drawing

Quick Start Installation Guide

3.2 - Mechanical Mounting of the Unit

Figure 3.1, Mechanical Outline Drawing, provides overall
and mounting dimensions for the SS2000PCi-2. The unit
should be solidly mounted within a control enclosure ap-
proved for the particular application. It is important to
select a mounting location which will meet the environ-
mental specifications listed in Section 4.1 Mechanical and
Environmental Specifications. Avoid locations that ex-
pose the unit to extremes of temperature, humidity,
dirt/dust, or vibration.

At least 2 inches of space must be left on the sides, top,
and bottom of the unit to allow proper air flow for cooling
of the unit.

Care must also be taken to allow proper and safe access to
all wiring. It is best to avoid areas with high electrical
noise. As discussed in Section 3.3 General Wiring Guide-
lines, this will help prevent incorrect operation due to
electromagnetic interference.

3.3 - General Wiring Guidelines

Dangerous voltages, currents, tempera-

; tures, and energy levels exist within this
) / unit, on certain accessible terminals, and
at the motor. NEVER operate the unit

with its protective cover removed!

Caution should be exercised when in-
stalling and applying this product. Only

Warning
qualified personnel should attempt to

Quick Start Installation Guide

install and/or operate this product. It is essential that
proper electrical practices, applicable electrical codes and
the contents of this manual be followed strictly.-——

Superior Electric SLO-SYN controls and drives use mod-
ern solid-state digital electronics to provide the features
needed for advanced motion control applications. Al-
though care has been taken to ensure proper operation
under a wide range of conditions, some user equipment
may produce considerable electromagnetic interference
(EMI) which can cause inappropriate operation of the
digital logic used in the control, drive, or other computer-
type equipment in the user’s system.

In general, any equipment that causes arcs or sparks or
that switches voltage or current at high frequencies can
cause interference. In addition, ac utility lines are often
“polluted” with electrical noise from sources outside a
user’s control (such as equipment in the factory next
door). Some of the more common causes of electrical
interference are:

power from the utility ac line
relays, contactors and solenoids
light dimmers

arc welders

motors and motor starters
induction heaters

radio controls or transmitters
switch-mode power supplies
computer-based equipment

high frequency lighting equipment
dc servo and stepper motors and drives

13

The following wiring practices should be used to reduce
noise interference.

Solid grounding of the system is essential. Be sure that
there is a solid connection to the ac system protective
earth ground (PE). Insure that there is a good electrical
connection through the controller case to the control sys-
tem enclosure . A separate grounding strap may be re-
quired to properly ground the unit to the control system
enclosure. This strap should ideally be constructed using
copper braid at least 0.5" in width. Use a single-point
grounding system for all related components of the sys-
tem (a “hub and spokes” arrangement). Keep the ground
connection short and direct. Grounding through both a
mechanical connection to the control enclosure and
through a grounding strap is optimal.

Keep power and signal wiring separated. Power wiring
includes ac wiring, motor wires, etc. Signal wiring in-
cludes inputs and outputs (I/O), encoder wiring, serial
communications (RS232 lines), etc. If possible, use sepa-
rate conduit or ducts for each. If the wires must cross,
they should do so at right angles to minimize coupling.

Use separately bundled, shielded, twisted-pair cables for

the drive to motor, encoder, serial communications, ana-
log input, and digital I/O wiring. For other connections it

14

is recommended that the shields be terminated at the Slo-
Syn unit as well. Shield connections are provided on the
unit terminal connectors for this purpose. All cable
shielding should be terminated at ONE END ONLY.
Grounding the serial communications connections at the
opposite end from the controller may be necessary in
some systems. If the cable shield must be connected at the
opposite end from the Slo-Syn unit, the shield should
NOT also be connected at the unit as this may cause a
“ground loop” and introduce electrical noise problems.

Suppress all relays as close to the coil as possible to pre-
vent noise generation. Typical suppressors are diodes,
capacitors or MOV’s. (See manufacturer’s literature for
complete information). Whenever possible, use solid-state
relays instead of mechanical contact types to minimize
noise generation.

In some extreme cases of interference, it may be neces-
sary to add external filtering to the ac line(s) feeding af-
fected equipment, or to use isolation transformers to sup-
ply their ac power.

NOTE: Superior Electric makes a wide range of ac power

line conditioners that can help solve electrical interference
problems. Contact 1-860-787-3532 for further assistance.

Quick Start Installation Guide

3.4 - Hardware Connection Descriptions

The following figures indicate the front and top views of
the SS2000PCi-2 controller. The numbers in the boxes
show the position of the various hardware connections to
the unit Connections on the left are for Axis 1. Axis 2
connections are on the right. Use the index number in the
boxes to find the description of each connection following

the diagrams. The descriptions given here should provide
a reasonable understanding of the nature of each-signal
and the way it should be wired into your system. More
detailed technical information is available in Section 4.0
Hardware Specifications.

FRONT VIEW

!
Axis 1 m“;—U—— Axis 2
!

15 < 15
o] «

1 1
2 2
3 3
4-10 4-10
16 16

|

i

> [ERE

Quick Start Installation Guide

15

16

All callouts are
applicable to
both axes

-
B

TOP VIEW

USER ¢

BAUD Y
i

HiH
= N

RS4HG ~aull—@me R9232

8CD A

A

B,
nEcssssn\ 1

SW1
HOST PORT
SELECT

Quick Start Installation Guide

The following are brief descriptions of each connection to
each of the 2 indexers in the SS2000PCi-2 unit. More
detailed wiring diagrams are provided in Section 3.5

1 | Serial Port 2

Auxiliary Serial Communications: Port 2

TX2+: Transmit+ for Serial Port 2 (RS485)
TX2-: Transmit- for Serial Port 2 (RS485)
RX2-: Receive- for Serial Port 2 (RS485)
RX2+: Receive+ for Serial Port2 (RS485)

2 | Serial Port1

Host Serial Communications: Port 1

TX1-: Transmit- for Serial Port 1 (RS485)

TX1+: Transmit+ for Serial Port 1 (RS485 / RS232)
RX1+: Receive+ for Serial Port 1 (RS485/RS232)
RX1-: Receive- for Serial Port 1 (RS485)

Serial GND: Signal ground for Serial Port 1

+5V: DO NOT USE AT THIS TIME.

3 Encoder

Encoder inputs for a closed loop stepper can be
single-ended or differential phase quadrature.

Bi+: Encoder Channel B+ input

B1-: Encoder Channel B- input.

Al+: Encoder Channel A+ input.

Al-: Encoder Channel A- input.

Z1+: Encoder INDEX Channel Z+ input.
71-: Encoder INDEX Channel Z- input.
+5V: +5V supply for encoder.

GND: Ground for encoder.

4 | Inputs 1-8 (Isolated)

EVENT 1/IN1; EVENT 2/IN 2

These inputs can be used as mark registration and/or
home inputs. If the inputs are not used for mark registra-
tion or home then the inputs can be used as programmable
inputs. These inputs can be configured in the Project
Configuration & Setup.

+LIMIT / IN3; -LIMIT / IN4

The +LIMIT or the -LIMIT may be used as inputs for
limit switches or sensors. If limit switches are not

Quick Start Installation Guide

needed, the inputs can be configured in the Project Con-
figuration and Setup as programmable inputs.

RUN/INS

The run input will start execution of the program. If auto-
start is selected the program will start upon power up or
RESET. RUN will also re-start a program if a CLEAR
has been activated, or resume a program if a FEED-
HOLD has been activated. If the RUN input is not
needed the input can be used for a programmable input.
This is done in the Project Configuration & Setup.

CLEAR/ING6

If the CLEAR input is open, the program or motion will
stop. This input must be closed to run the program or
start motion. Ifthe CLEAR input is not needed the input
can be used for a programmable input. This input can be
configured in the Project Configuration & Setup.

FEEDHOLD /IN7

Activation of this input will cause motion to come to a
controlled stop. After release of the FEEDHOLD input,
activation of the RUN input will continue the program
from the point the FEEDHOLD was activated. If the
FEEDHOLD input is not needed it can be used as a pro-
grammable input. This input can be configured in the
Project Configuration & Setup.

INS

This input can be used as a programmable input.

5 Outputs 1-4 (Isolated)

OUT 1, OUT 2,0UT3,0UT 4

These outputs can be used as programmable outputs.

6 | Analog Input

The analog input connection allows a voltage from
0 VDC to +10VDC to be read into the unit.

ANALOG IN: analog input.
GND: Ground for analog input.

17

7| OPTO

+VOPTO; -VOPTO

A power supply for the optical isolators is REQUIRED
Jor proper I/0 operation. This supply must be connected
to the +VOPTO and -VOPTO pins. The +12VDC and
+12V COM power supply is available. This supply
MUST be connected to +Vopto and -Vopto unless the
user is to supply power for the I/O from a different
source.

8 | 12 VDC Power Supply

12 VDC s available to power I/O . It is recommended
that this power be connected to the +Vopto and -Vopto
inputs on the controller as the discrete 1/O supply.

+12V: +12VDC output.
12VCOM: Common for the 12VDC supply.’

The +12VDC supply current is limited to 100 mA. See
Section 3.5.2 for connection of sink or source 1/0.

9 | IN COMMON

This input determines the current source of Inputs 1-8. If
it is connected to +Vopto the inputs are set to the sinking
mode. If it is connected to -Vopto the inputs are set to the
sourcing mode.

10 | GND

Signal Common for the Analog In signals. This GND is
not connected to 12VCOM or IN COMMON.

11 | Device ID Number Switch

The DIP switches will allow up to 32 devices to be daisy
chained together. Each unit must have a unique ID num-
ber per the table of ID settings in Section 3.2, Baud rate
and Unit ID Switches.

12 | Baud Rate Switch

This switch is read only at power-up or after a reset com-
mand. In the off position the baud rate is forced to 9600.
In the on position the baud rate for the loaded project is
used. The User Baud rate is selected in the project Con-
figuration and Setup. If no user program is loaded the

18

default, 9600, baud rate is used. If the baud rate in the
configuration and setup is not known, use 9600 at power-

up.

13 { BCD Port

BCD Port/1/0

This port can be used as either a BCD port, consisting of
7 numbers and a sign (Superior Electric Part # 221157-
002, includes BCD switch and 18" ribbon cable), or
used for additional outputs and inputs”.

BCDO/IN9 : BCD switch data 0 or program input 9.
BCD1/IN10: BCD switch data 1 or program input 10.
BCD2/IN11: BCD switch data 2 or program input 11.
BCD3/IN12: BCD switch data 3 or program input 12.
BCD4/IN13: BCD switch data 4 or program input 13.
BCD5/IN14: BCD switch data 5 or program input 14.
BCD6/IN15: BCD switch data 6 or program input 15.
BCD7/IN16: BCD switch data 7 or program input 16.
BCD STR0/OUTS: BCD switch Strobe 0 or output 5
BCD STR1/0UT6: BCD switch Strobe 1 or output 6
BCD STR2/0UT7: BCD switch Strobe 2 or output 7
BCD STR3/0UTS: BCD switch Strobe 3 or output 8
GND: Signal Common for Inputs and outputs
“Note: When the BCD port is used for additional I/O,

all inputs are non-isolated, and all outputs are open-
collector (7406) active low.

14 | Serial Port 1 (RS232 / RS485)
Switch

This switch allows Serial Port 1 to be configured for
RS232 or RS485 4-wire communications.

Use care when accessing this recessed
switch; do not damage adjacent compo-
' nents when changing its position.

|
Caution

Quick Start Installation Guide

15 | LED’s

These LED’s show conditions that may be occurring in
the controller.

POWER: The power LED indicates that there
is AC power applied to the drive
and that the logic supply is active.

BUSY: Signifies that motion is occurring
on the motor.

FAULT: Indicates that an error has occurred

in the controller.

16 | Drive Connections

¢ OPTO — +5VDC output power for connection to
drive opto coupler supply.

e PULSE — Open collector output that supplies pulses
to the drive. Drive should count ON-OFF transitions
(low to high)

e DIR — Open collector output that signals drive
which direction to turn the motor.

e AWO - Open collector output that turns off drive
when on (low).

¢ REDUCE — Open collector output that signals drive
to reduce motor current when active (low).

Quick Start Installation Guide

¢ BOOST — Open collector output that signals drive
to boost motor current when active (low).

o READY — Logic input signal indicating that the
drive is ready to go. This signal is active when at
+5V DC (OPTO power).

17 | AC Power

AC CONNECTIONS

These inputs are for connection of single phase AC
power. The input power range is from 95VAC to
265VAC, 0.4 Amps, 50/60 HZ.

18 | Chassis Ground

Grounding locations for the motor and AC connections. It
is critical that a solid connection from Protective Earth
Ground be connected to the chassis ground. The Ground
wire must be at least as large as the AC supply power
wiring.

19

3.5 - Wiring Diagrams

This section provides wiring diagrams for each connection. Remember to follow the General
' / ﬁ Wiring Guide outlined previously.
] 3 NEVER wire the unit with the power on! Serious injury as well as damage to the unit may re-

Caution Warning sult.

3.5.1 - Encoder Connections

The encoder connections are only required for a closed loop stepper drive and the connection scheme is depicted below.
Note: It is IMPORTANT that the encoder and motor cables be shielded and that the shields be connected to their appropri-
ate connector terminals. Single ended TTL or open collector encoder signals must be connected to the “+” terminal of each
channel.

‘:{] Encoder Connector

Ground Motor
Case To Machine

To Motor Drive

20 Quick Start Installation Guide

3.5.2 - Input / Output Connections

The I/O connections consist of; 8 general purpose inputs,
4 general purpose outputs, and 1 analog input. The 8 gen-
eral purpose input signals can be sinking or sourcing
opto-isolated inputs. The input mode (sink or source) ap-
plies to all 8 inputs. They may not be individually se-
lected as sink or source. The 4 general purpose output

Internal Power Supply
Inputs Sinking — Outputs Sinking

+10V ré\
o]
1K< Analog In 3 Y OUT 4
GND 8_
(:)UUTTSI _g 8- * USER
- [+§zv & 9 ji;’:m LOADS
LOADS :v — 2| -VvOPTO _‘T
[cosip® & Cws |
-3 o) INg
R T
v [g s

signals are sinking only opto-isolated outputs. The analog
input has a voltage range from 0 to +10 volts. ~"

I/O Connection examples using the +12 Vdc internal
power supply are depicted below. The general purpose
input connections are shown for both sinking and
sourcing inputs.

Internal Power Supply
Inputs Sourcing — Outputs Sinking

+10V rb\
u(é: Analog In A) oUT4
GND 3% oUT2
oUT3 e S
OUT1 5 g_
toro [] Covoemal 5 E1
+VOPTO A 8-
| w—
3 % INS
7 — 0" 0——r
N L8 IN6
NS 3 O——o—o——
3 O % IN4
M BT e

Depicted below are the I/O connections when using an External Power supply. Use these connections if you are not using the
+12 Vdc internal power supply. The general purpose input connections are shown for both sinking and sourcing inputs.

External Power Supply
Inputs Sinking — Outputs Sinking

+10V ré\
" 38
OUT 4 OUT4
GND B OUT 2 OUT2
ouT3 6 8 {
USER
USER —g e LOADS
LOADS B 8_| -vorro | 1
8 | -voero
-5 IN COMMON
o T
IN7 o——
——0\0*“8 23 ING6
IN5 O—F——o—o—
' IN3 -0 ol om/‘
O
I LN I

Quick Start Installation Guide

External Power Supply
Inputs Sourcing — Outputs Sinking

»
o
OUT 4
A
| & 8 USER
& 18 _ | Loaps
“T%%_l_.
J—é 6_ IN COMMON
|, | B
s [Bt
IN3 —1(3 Bl o
g B
21

An optional external wiring card is available which pro-
vides individual terminals for each I/O point on the "D"
style connectors utilized on the unit. The External Wiring
Card mounts over the D connectors on the face of the
unit. All connections are brought out to individual clamp
down type terminal connections. The pinout descriptions
for the terminal blocks are identical to those for the D
connectors described

Host Serial
Port Axis 1

Host Serial
Port Axis 2

ST BRI TRy 2

Axis 2 (Low)

Axis 1 (High)

22

SL0-SYH®
ENC-2 -
Exterml Wiriog Card gup..

THPE A A IH2D

ey

2 FACE T YT M O Ot
T KTT GRS W M1 AR RD
CEXRTIN LMY 4 ST
TP AC N §35 RICMCY

in this section. The inner most terminal blocks (higher
profile) are used for Axis 1 connections. The outer (lower
profile) terminal blocks are used for Axis 2. If you would
like to utilize the optional external wiring card, contact

customer service or your distributor and request Part:

Number XWC-2. The optional external wiring card is
shown below. Note: The USER ENABLE signal is not
used when the XWC-2 is used with the SS2000PCi-2.

Axis 1 (High)

Axis 2 (Low)

> XWC-2

Quick Start Installation Guide

The connections for the BCD I/O connector when used as
general purpose signals are depicted below.

Note: These inputs and outputs are not isolated.

IN 10 IN 11
—
IN9 o~] IN12
@
+__SIGNAL GND @ @ SIGNALGND _ |
IN 14 NN IN 13
¢——0— O ° 7 o 4
IN 16 o~ |] IN 15

O
OUT S5 @L@ OuUT 8
ouT6 pP—tT—10uUT7

Rout @ @ Rout

User User

Load Load

User +V
User Common

Recommended Output Loads

User +V Rout
5VDC 500 ohm
12-15VDC 1.5 Kohm
24 VDC 2.5 Kohm

Controller

BCD/TTL
1/0.

(ofeoxelele;
Ooo 000

The connections for the BCD / TTL I/O connector when used as a BCD port are depicted below.
Note: The Superior Electric BCD switch interface P/N 221157-002 is shown.

Quick Start Installaﬁon Guide

| | 221157-002
col DTS
OO0
+ 1 4
osl el 2zl e]e]
.0 .
Y EEEOEEEEE

24

RECOMMENDED CONNECTION FOR USING

BCD PORT AS NON-ISOLATED I/0O

(Polarity

BCD PORT

/ BCD Data 1 (IN 10)

BCD Data 0 (IN 9)
GND

BCD Data 5 (IN 14)
BCD Data 7 (IN 16)

8
6
BCD Strobe 0 (OUT 5) | 4
BCD Strobe 1 (OUT 6) | 2

14113

GND

= W]y | N]e

BCD Data 2 (IN 11)
BCD Data 3 (IN 12)

BCD Data 4 (IN 13)

BCD Data 6 (IN 15)
BCD Strobe 3 (OUT 8)
BCD Strobe 2 (QUT 7) /

Stripe
[HNE]

eIl

| [TeesTaT el

=

NEWARK ELECTRONICS
STOCKNO.: 52F8182
TYPENO.: NE1614-18G
AMP CABLE ASSY

PHOENIX CONTACT INC.
ORDER NO.: 2962557
TYPE NO.: UM 45-FLK 14
VARIOFACE MODULE

Quick Start Installation Guide

The connections for the BCD / TTL I/O connector when
used as a BCD port are depicted below.,

Note: An External BCD Configuration is shown below.

External

BCD Connections

BCD Strobe 3
BCD Strobe 2

BCD Sirobe 1
: BCD Str_obe 0

"p"

T .
|
Nailf
Dall§

l—o

N

C
8/'4;2 1

1114

| —o
-

L—-—-N——o\o—
N__
Ppl—1—
H—
P

I
K4

»_

pits

”._
— s

BCD

(BCD D1

<BCD

< BCD
<BCD

BCD

BCD

BCD

BCD Connector

BCD Data 1 (IN 10)
BCD Data 0 (IN 9)

GND

BCD Data 5 (IN 14)
BCD Data 7 (IN 16)

BCD Strobe 0 (OUT 5)

BCD Strobe 1 (OUT 6)

Front of Unit

3.5.3 RS232 /RS485 Host Serial Communications Connections

This serial port is used for communications and pro-
gramming of the controller from a personal computer
(PC). The port can be configured for RS232 or RS485
operation. A slide switch has been provided for making
this selection. The factory default is RS232. The connec-
tion diagram for both modes has been provided, See Sec-
tion 3.4 Top View. Note: When wired for RS485 opera-
tion, a cable with individual twisted pair wires must be
used. The termination resistors indicated with an * must

Host (RS232 Selected)
DNC %
O | GNp
HOSTRX+ () L (2) 7
RX+ 3 O Ne
HOST TX+ {4) 6 sy
pNe| O
O +5V
HOST GND GND|

5

Notes: DNC = Do Not Connect
NC = No Connection

Quick Start Installation Guide

BCD Data 2 (IN 11)
BCD Data 3 (IN 12)
GND

BCD Data 4 (IN 13)
BCD Data 6 (IN 15)
BCD Strobe 3 (OUT 8)

BCD Strobe 2 (OUT 7)

have a value of 120 ohms. The pull up/down resistors
have a value of 4.7kQ. If multiple units reside on the
RS485 bus only ONE set of three resistors should be used
at the end of the transmission line bus. The resistor con-
nected to the TX+ and TX- signals may be required if the
terminal device does not provide the termination resistor
internally. If the terminal device does provide the resistors
internally, the resistors connected to the TX+ and TX- are
not required.

Host (RS48S Selected)
47K
AANA
HOST RX- Q X
TEXCALS 8 e
OST RX+ 1 Xt 3
RX+| A é Ne
HOST TX+ — O s
>< * 4 O +5V
HOST TX- —1 =4O (9) v
HOST GND \TQ B S L;"/
77
25

3.5.3.1 - RS485 Host Daisy Chaining Connections

Connection in a daisy chain configuration requires that
the Host port of all units be wired as RS-485. Each unit
must also be switched to RS485 Host communications
mode by moving the recessed slide switch into the RS485
position. The switch is accessible through the removable
portion of the label on top of the unit near the BCD I/O
port. Be sure that the unit is off when changing the switch
position.

Superior PCi
Electric # RS485
PAS1024-00 ID=1
Adapter

Rx
PC
Ix RS232
GND Port

26

Important!! Connection to a PC that has an RS-232
port only can be accomplished by using an"RS-232 to
RS-485 four wire adapter such as Superior Electric
part number PAS1024-00 as shown. If your PC has an
RS-485 port, the adapter is not required.

PCi PCi PCi
RS485 RS485 RS485
ID=2 IDEn_n] ID=32
|
I
Tx- |

3
Tx+ | _Tés,

B
%*5‘”
o

+
OSSN N .

|
|
|
L

Quick Start Installation Guide

3.5.4 RS485 Auxiliary Communication Connections

The auxiliary serial port is used for serial communications
to and from other devices, such as PLC’s or operator in-
terface panels. This serial port is RS485 only and uses a
telephone jack for the connections. The wiring connection
diagram is shown below. Note: A cable with individual
twisted pair wires should be used. The termination re-
sistors indicated with an * must have a value of 120 ohms.

AUX RX2+

AUX RX2-

AUX TX2-

AUX TX2+
AUX GND

/77

3.5.5 - AC Power Connections to the Unit

If multiple units reside on the RS485 bus, ONE resistor
should be used at the end of the transmission1ifie bus.
The resistor across the TX+ and TX- signals may be re-
quired if the terminal device does not provide a termina-
tion resistor internally. If the terminal device does provide
the resistor internally, the resistor across TX+ and TX- is
not required.

Auxiliary Port
——]
TX2+
5]
TX2 14)
RX2-
l
* 3
RX2+
2)
[S—

Connect the two (2) AC IN terminals to the input AC line. The line voltage can be from 95 VAC to 265 VAC 50/60 Hz.

Do not exceed the voltage rating of the drive and motor. Damage may occur if the ratings are not observed.

L1 @ 1 Line or Hot 95-265
]— Volts
L2/N @ |- Line or Neutral AC Input
Ground Ground
Terminal @ @
1777
Quick Start Installation Guide 27

3.5.6 Drive Connections

A typical optically isolated connection to a stepper drive is shown below:

@
+5VDC OPTO OUT =k
PULSE o
DIR e
AWO %:4;‘
REDUCE AN
BOOST | Yk
READY +§I*
, n__\/\/v\r} o
PCi. L5V
33'&'5 ECTOR ° i&ﬁ"

+5V*_\/\N\,_5 ‘
@ “gi:

* Note that on some drives the connection from the top side of the opto couplers is made internally. Other drivers
may have two terminals per I/O point (uncommitted opto couplers). These drives would require external connec-
tion from the high side of the opto coupler to +5VDC opto out. A current limiting resistor may also be required.
Consult your drive manual and verify proper connections prior to energizing your system.

28

Quick Start Installation Guide

4.1 Mechanical and Environmental Specifications

Size: (Inches)
(mm)

Weight

Operating temperature:

Storage temperature:

Humidity:

Altitude:

4.2 Electrical Specifications

AC Input Range
AC Current
Fuse Rating**
Fuse Type**

2.34Wx 9.56H x 5.12D

59.44W x 242.82H x 130.05D R
2.881Ibs (1.31kg)

+32°F to +122°F (0° C to +50° C)

-40° F to +167° F (-40° C to +75° C)

95% maximum, non-condensing

6,560 feet (2000 meters) maximum

95 to 265 VAC, 50/60 Hz
4 amperes

250 volts, 2 amperes
Type 3AG

** If this fuse blows, the power supply will be prevented from energizing any of its outputs, hence, the unit will not
operate. Usually, this fuse will only blow if an internal failure occurs. In order to ensure safety the specified rating

and type of fuse MUST BE USED.

The following specifications are the same for each of the two indexers/axes.

4.2.1 Isolated Digital /O

12 VDC 1/0O Power:

Inputs (IN1 — IN8):
Sink mode: (IN COMMON tied to +Vopto)

On state voltage range (+Vopto =12V with -Vopto = 0V):
Input Current; (VIN = 0V), +Vopto=12V, -Vopto=0V:

Source mode: (IN COMMON tied to —Vopto = 12V common)

On state voltage range with -Vopto = 0V:
Input Current; (VIN=12V) with -Vopto=0V :

Response time (sink or source):
Opto turn on delay:
Opto turn off delay:

User OPTO coupler power supply range
(if not using the internal +12 V supply):

Programmable Outputs (QUT1 — OUT4):

Sink mode only:
Continuous Current rating:

Maximum collector voltage with -Vopto = 0V:

On state voltage @ 250mA:

32

11.5to 14 VDC @ 100 mA
0V to 6VDC
-6mA

4.5V to 24VDC
6mA

10uS typical
75uS typical

5-24 VDC

250 mA max
25V
1.5V max

Specifications

3.1 - PROGRAMMING

5.1.1 - General Description Of
Programming

Programming of any sort requires planning and fore-
thought. Programming your Controller is no exception.
This section provides aids to facilitate your planning pro-
cess.

S.1.1.1 - What is Programming?

A program is a list of discrete lines or command strings
that, taken together in sequence, provide the information
needed to get a machine to perform your predetermined
sequence of instructions. These instructions can, in the
case of Programmable Motion Controllers, cause the mo-
tor to move at certain speeds for given distances, read
various inputs or set outputs, all used to accomplish dif-
ferent machine-related tasks.

S.1.1.2 - What's in a Program?

A program consists of many individual lines organized in
a prescribed sequence. The SS2000PCi-2 system uses an
English language, BASIC-type computer programming
language (SEBASIC). This makes it easy and intuitive to
write and read machine control programs. SEBASIC sup-
ports many higher level language features, such as state-
ment labels, subroutines, for-next and do-while loops for
program flow control making it easy to write concise,
well organized, easily debugged programs. Also, there are
built in mathematics, Boolean functions and two dimen-
sional array capability. Finally, the motion, /O, and tim-
ing commands are easy to understand, remember and ap-

ply.

In addition to lines of program code , the controller uses
and saves a series of set-up parameters. These parameters
are set by the user in the Configuration & Setup section of
the project.

5.1.1.3 - How is the Controller
Programmed?

The programming environment called Motion Controller
Programming Interface is supplied on a diskette. This
software provides an easy to use environment for devel-
oping a user project. Detailed instructions on how to in-
stall this software on your PC are provided in this manual.
Since each axis operates independent of the other they
both have to be programmed if you want to utilize both.
Section 7 provides details how to program and wire the
two axes to “work together” one at a time.

38

5.1.2 -What are Host Commands?. —

Host commands go straight from your input device (PC or
terminal) to the controller. They allow parameters to be
set or interrogated, motion to be started or stopped, and
program execution to be started or stopped, etc.:

5.1.3 - Memory Types and Usage

The controller uses two kinds of memory, volatile and
non-volatile. RAM (Random Access Memory) is called
Volatile Memory because when power is removed from
the controller, all of the information in that memory is
lost. The Controller stores the program variables in
RAM.

The second kind of memory is Non-Volatile Memory, or
FLASH memory. The information stored in this type of
memory is not lost when power is removed. FLASH
memory is used by the controller for storing the Operating
System as well as the User Program.

A Controller program can have hundreds of lines of code.
Code is simply an organized listing of program com-
mands. Because of the wide variety of program com-
mands it is impossible to state how many lines can be
stored in the controller. The amount of free memory re-
maining can be obtained with the FREEMEM host com-
mand.

5.1.4 - How to organize your Project

A project consists of a Configuration & Setup section and
the user program. The Configuration & Setup section al-
lows access to project related parameters and conditions
via folders. The user program performs your predeter-
mined sequence of instructions.

A good program will consist of initialization, main pro-
gram, Interrupt routines, Subroutines and Error Handler
sections. The Interrupt routines, Subroutines and Error
Handler sections are optional. A typical Program Devel-
opment Block Diagram is provided in Figure 5.1.

5.1.4.1 - Initialization Section

Variable names and data types (Integer, Integer Array,
Real and Real Array) are defined in this section. Also the
condition’s which will trigger the individual Interrupts
(INTR1-INTR4) may be defined.

PC Programming Environment

7.4. Two Independent Axis Control Programming Example (Using AUX Port)

RJ11 Type -)
Standard &
Telephone Cable

L _ AUX Ports

jooooey Y
L
Q000

S

The following is an example of how to program the two independent axes of the SS2000PCi-2 to work together using the
Auxiliary ports to communicate using a standard telephone cable (user provided).

Program Code (Axis 1):

PRERRXRRERREEL R 344+ Sample program showing PCi-2 communicating using Auxiliary Ports, *###¥#xkkksxskk k44

" *
* The Auxiliary Port uses RS485 operation mode and is indicated as Port 2 in each command. *
* A standard RJ-11 cable can be used. It is STRONGLY recommended that both ground screws *
* be connected to the same ground point. A program must be written for each PCi motion control. *

3k 3k ok ke 3 3k & 3 3 3 ok o ok ok ok e ok ok ok ok ok Download thiS program mtO the unit designated as AXIS 1, ekokeok sk sk ok o ok ok ok ook ok ok ok sk e ok ok ok

"Program Description: Program auto start MUST be enabled in the I/O folder of the configuration. This program will
'move this axis clockwise 10 units, communicate to the second PCi that motion is complete, wait for the second PCi
'to transmit that motion is complete, evaluate whether to move forward or reverse based the STRING sent from

'the second PCi, and finally move clockwise or counter-clockwise 5 units.

Declaration: 'Declaring all variables is required. An INTEGER is a whole number, i.e. 1,2,3;
‘A REAL can be a decimal number i.e., 1.543; A STRING is a character or a word.

INTEGER a, b, ¢

REAL x,y, z

STRING AS, BS, C$

Motion_PCi_Master: :
MOVEI=10 'Commands a move of 10 units for this axis.

WAITDONE
PRINT#2, “k™; CHR$(13); 'Send a message using the Auxiliary Port to the other axis.

'Note: CHR$(13) MUST be sent.
Controller_Pause:
INPUT#2,A$ 'Holds the program cursor until a word is received from the Auxiliary Port
'followed by a carriage return.

Data_Evaluated: 'Evaluates the data received and proceeds to the next routine.
IF A$="Go_Left" THEN GOTO Forward
IF A$="Go_Right" THEN GOTO Reverse
IF A$ < "Go_Left" OR A$ < "Go_Right" THEN GOTO Controller_Pause

Forward: 'Rotates the motor clockwise.
MOVEI=5
WAITDONE

END

Reverse: 'Rotates the motor counter-clockwise.
MOVEI=-5
WAITDONE

END

156 . Programming Examples

Program Code (Axis 2):

PrEEERXEXEXXE* Sample program showing PCi-2 communicating using Auxiliary Ports, **## % # sk kot kk ko kdakd
'***
Pxd¥x% The Auxiliary Port uses RS485 operation mode and is indicated as Port 2 in each command. **#*¥*¥ %+ %4 xx
“xkkxk A standard RJ-11 cable can be used. It is STRONGLY recommended that both Ground screws *¥**# s xsx*
"*kxx¥ be connected to the same ground point. A program must be written for each PCi motion control axis. **#¥**

93k %k ok ok % %k Download thls program into the unit designated as AXIS 2. o 2k o ok ok ok ke ke ke o ke ok ke o 3k ke ke ke ke o ke o o ok ok ok sk sk 3 ok ok ok ok ok ok ok ok

‘Program Description: Program auto start MUST be enabled in the I/O folder of the configuration. This program will 'pause
until data is transmitted from the first PCi. Upon receiving data, this axis will move clockwise. When motion is
‘complete the statement "Go_Left" will be sent to the first PCi.

Declaration: 'Declaring all variables is required. An INTEGER is a whole number, i.e. 1,2,3;
‘A REAL can be a decimal number i.e., 1.543; A STRING is a character or a word.

INTEGER a, b, ¢

REALX,y, z

STRING AS, BS, C$

Controller_Pause:
INPUT#2,A$ 'Holds the program cursor until a word is received from the Auxiliary Port
‘followed by a carriage return from the first PCi.
Motion_PCi_Master:
MOVEI=2 ‘Commands a move of 2 units for this axis.
WAITDONE
PRINT#2,"Go_Left";CHR$(13); 'Send a message using the Auxiliary Port to the first axis.
Note: CHR$(13) MUST be used following the semicolon.
END

Programming Examples 157

7.5. Two Independent Axis Control Programming Example (Using 1/0 Port)

Axis 1 I/O Axis 21/0 SR —
O 2 O
6 5 O 15
3 O
$ % 3%
OuT1
gl o our1| 0@
v & 8l1zvcom vl 5 3 lizveom
T AT ey A EES
+VOPTO| 5 8 +v0p'r0_o S
+VOPTO 8 +vorTg 8 O
—— —
IN COM 2 "5‘%03
82 88
8 2 o7
B2 9 12 O
28

3

Program Code (Axis 1):

PRk Xk kX E R+ 44 % Sample program showing PCi-2 communicating using Inputs and Outputs **¥ ¥ kk#kkk sk kkskk
'**

"* Inputs and outputs can be used as indicators from the 1st PCi to the 2nd PCi. One isolated input and one isolated output*
'* on each PCi MUST be dedicated to communicate completion of execution, i.e., motion. It is STRONGLY recommended*
** that both ground screws be connected to the same ground point. A program must be written for each PCi motion control.*
'**
"#xxxx Download this program into the unit designated as AXIS 1. **¥*kkakkkksbb kb koo skokk ko kob ko bk

'Program Description: Program auto start MUST be enabled in the I/O folder of the configuration. This program will

'move this axis clockwise 10 units, communicate to the second PCi that motion is complete by activating output #1.

‘This PCi will pause until input #1 is activated by the 2nd axis. Once input #1 is on, this axis will move 5 units clockwise.
"The program will pause until input #1 is activated again, allowing motion of 5 units in the counter-clockwise direction.

Declaration: ‘Declaring all variables is required. An INTEGER is a whole number, i.e. 1,2,3;
'A REAL can be a decimal number i.e., 1.543; A STRING is a character or a word.
INTEGER a, b, ¢

REAL x,y,z
STRING AS, BS, C$
Motion_PCi_Master:
MOVEI=10 '‘Commands a move of 10 units for this axis.
WAITDONE
OouT(1)=1 'Activates output #1 connected to input #1 of the second PCi.
WAIT=2 'Time delay of 2 seconds.
OUT(1)=0 'Deactivates output #1.
Controlier_Pause:
DO : LOOP UNTIL IN(1)=1 'Holds the program cursor until input #1 is activated. Ata
'true condition, this program continues to the next line.
Forward: 'Rotates the motor clockwise. '
MOVEI=5
WAITDONE
DO : LOOP UNTIL IN(1)=1 'Holds the program cursor until input #1 is activated. Ata
'true condition, this program continues to the next line.
Reverse: 'Rotates the motor counter-clockwise.
MOVEI=-5
WAITDONE
END

158 Programming Examples

Program Code (Axis 2):

PRRERRRE xR E >+ Sample program showing PCi-2 communicating using Inputs and Outputs **% %k %% kk k%
¥k e 3k o ok o o ke ok ok ke 3 3k ok o 3 3 ok sk o ke 3 3k 3k ok e ok 3 sk o o ok 3 Sk o e ok ke ok ok ok ok sk e ok ke ok ok ok ok ok ok sk ok ke ke ok ok ok ek ok ok o ok ok ok sk 3k 3 o ke ke ke ke ok ke ok ok ok K ok ok ok ok ok
Pkxkx* Inputs and outputs can be used as indicators from the first PCi to the second PCi. One isolated input ****
"xkxxx and one isolated output on each PCi MUST be dedicated to communicate completion of execution, ***#**
kxEx* Le., motion. It is STRONGLY recommended that both ground screws be connected to the same ******
Pexkxk* ground point. A program must be written for each PCi motion control. *##kkskukskoksknokskdkkkok bk kk %

“ikkk% Download this program into the unit designated as AXIS 2.

‘Program Description: Program auto start MUST be enabled in the I/O folder of the configuration. This program will
'wait until input #1 has been activated by the first PCi control. A move of 10 units clockwise will be completed.
'Output #1 will be activated to indicate to the first PCi that motion has been completed. This axis will move 5 more
'units and then wait until input #1 is activated. If the condition becomes true, this axis will move 5 units counter-

‘clockwise and end.

Declaration: 'Declaring all variables is required. An INTEGER is a whole number, i.e. 1,2,3;

‘A REAL can be a decimal number i.e., 1.543.

INTEGER a, b, ¢
REALX,y, z

Controller_Pause:
DO : LOOP UNTIL IN(1)=1

Motion_PCi_Second:
MOVEI=10
WAITDONE
OUT(1)=1
WAIT=2
OUT(1)=0

Forward:
MOVEI=5
WAITDONE

DO : LOOP UNTIL IN(1)=1
Reverse:
MOVEI=-5

WAITDONE
END

Programming Examples

'Holds the program cursor until input #1 is activated. Ata
‘true condition, this program continues to the next line.

‘Commands a move of 10 units for this axis.

'Activates output #1 connected to input #1 of the second PCi.

'Time delay of 2 seconds.
'Deactivates output #1.

'Rotates the motor clockwise.

'Holds the program cursor until input #1 is activated. Ata
'true condition, this program continues to next line.

'Rotates the motor counter-clockwise.

159

Section 10

Host — Slave Control and

Peer-to-Peer Control
of Axis1 & 2

Host - Slave & Peer-to-Peer Control of Axis 1 & 2 167

10.1 Introduction to Host-Slave and
Peer-to-Peer Control

This section of the SS2000-PCi-2 manual describes the
use of Peer-to-Peer systems to coordinate the two
independent motion controllers. The SS2000-PCi-2
includes two controllers in one package, simplifying
implementation of such systems. This section also
provides a basic overview of larger Host-Slave systems
and Peer-to-Peer networks.

The systems engineer using this section must be familiar
with the basics of programming the $52000-PCi-2 and
all safety information in Section 2. In addition generally
accepted motion programming practices must be used.

In many applications several motors (i.e. “axes”) must be
coordinated to perform specific tasks. In some applications
this coordination must be very tight; all axes must start and
stop together, and the path defined by multiple axes must be
precisely controlled. In other systems coordination between
axes is less critical. The less tightly coordinated systems
require coordination of program execution and concurrent
motion, but not simultaneous start-stop and path control.

The Host-Slave and Peer-to-Peer systems described in
this section are suitable for systems in which path control
and precise and concurrent starting and stopping are not
required, but concurrent motion and program coordination
are desirable.

Host-Slave and Peer-to-Peer systems can be expanded to
include many units. In large systems up to 32 controllers
can be coordinated through a single serial communication
bus, and even more controllers can be integrated into a
systems using various control schemes. In the interest of
brevity, the details of programming Host-Slave systems
and systems involving more than two controls are not
detailed in this manual, but the techniques in this section
as well as the instructions on Host commands in section 6
form a basis for the design of larger systems.

10.1.1 Applications

Host-Slave and Peer-to-Peer systems consisting of
independently programmed controllers are capable of
starting each axis in the system within a few milliseconds.
Motion of each axis, once initiated, will continue without
coordination with the other axis in the system. The
stopping time of each axis will depend upon the speed,
acceleration, and distance set for each axis. These systems
differ from coordinated multi-axis systems in that start
times are not as tightly coordinated, each axis completes
motion at a different time, and the resultant path of the
coordinated axis is not controlled.

Host-Slave and Peer-to-Peer systems are suitable when
the motor axes do not need tight coordination. These
systems include pick and place applications with point-to-
point control, fixture positioning, and machine
configuration and setup. Another common family of

168

application is 1'%-axis systems in which each axis is
moved independently and sequentially under the control
of a single program.

Systems that require tight coordination between axes and
systems in which the path taken by the coordinated axes
must be controlled, must use multi-axis controllers such
as the Superior Electric MX2000. Systems that require
multi-axis controls include: glue application, sign making,
machine tool, flying shear, digital following, and other
tightly coordinated multi-axis systems. Point to point
systems may also benefit from the increased speed and
coordination achieved in a true multi-axis control system.

If after reviewing this manual you have a question about
the suitability of the S$2000-PCi-2 for your application,
please contact Superior Electric at 860-585-4500.

10.1.2 Overview of Multi-Controller
Systems

A simple three axis system is shown in Figure 1. In this
system the Primary Control executes a program and co-
ordinates that program with two additional controllers.

Coordinated systems require synchronization between the
Host or Primary Control and other controllers in the
system. In a Host-Slave system the Host initiates actions
in each slave. In a Peer-to-Peer system a controller is
usually designated as a lead or Primary Control, and the
Primary Control initiates action in each subordinate.

Once the commanded action or subroutine is finished the
Secondary Control may provide a synchronizing signal to
indicate the subroutine or motion is complete.

There are two common methods of communication
between controllers in a system:

a. 1/0 communication
b. Serial Bus (RS485) communication

I/0 communication:
Each PCi-2 controller has up to 16 inputs and 8 outputs.
These inputs and outputs can be used to synchronize the
program in a Primary Control with other controls in a
Peer-to-Peer system.

Serial Communication

Each PCi-2 controller has two serial ports, the Host Port
and the Auxiliary Port. The Host Port (Port #1) is used for
programming. The Host port can also initiate motion and
control commands directly — see Host commands in
Section 6.2 of this manual. In a Host-Slave system the
Host controller delivers commands to the slaves through
the slave’s Host Port.

The Auxiliary Port (Port #2) can be used to communicate
between controllers and auxiliary devices. Although the
Auxiliary Port cannot respond directly to Host commands
such as MOVE and SPEED, the Auxiliary Port can be
used to exchange synchronizing signals much as I/O is
used for signaling and coordination of controls.

Host - Slave & Peer-to-Peer Control of Axis 1 & 2

Figure 1 - Typical System

Command Signal to Control 3

Primary Control
¢ : - :
eDirects Program flow Motion / Subroutine Complete Signal
g P g
eIssues signals to slaves to
execute routines or
motions Command Control 2 Control 3
mman
eReceives confirmation that » Executes subroutines based * Executes subroutines based
motion or routine has upon receipt of signal from upon receipt of signal from
< Master Master
completed
Motion / e Signals to Master when ¢ Signals to Master when
*Controls and commands Subroutine motion or subroutine is motion or subroutine is
motor axis 1 Complete complete complete
Signal ¢ Controls and commands ¢ Controls and commands
: motor axis 2 motor axis 3

In both Host-Slave and Peer-to-Peer systems the Host or
Primary Control operates a motor axis in addition to
issuing commands to other controls in the system.

10.1.3 Relationship Between Host
and Slaves

In a Host-Slave system, all controllers are executing a
motion control program. The Slave controls wait until
commanded by the host to execute a subroutine that has
been previously programmed, or respond directly to a
Host command. Each Slave communicates only with the
system Host. If the Host is connected to multiple slaves
the Host must initiate all communication and query each
slave independently for information.

In a Peer-to-Peer system a controller is designated the
Primary Control. The Primary Control initiates action in
each of the other controls in the system.

10.1.4 Expansion to Multiple Slaves

Using serial communication between the Host and Slave,
a single PCi Host control can communicate with and
control up to 32 slave controllers.

10.2 Two Controller Systems Using
I-O for Synchronization

The balance of this section describes the coordination of
two controls in a system. In section 10.2.1 an overview is
provided for the development of a system using L/O for
synchronization and program coordination. Section 10.3
examines use of the Auxiliary Port and serial
communication for program coordination.

In a two-controller system utilizing 1/O, at least one input
and one output on each controller must be used to
synchronize the operation of the two independent
controls.

Host - Slave & Peer-to-Peer Control of Axis 1 & 2

10.2.1 Use of Additional I/0

In some cases additional /O will be utilized in a system.
As an example, in figure 2 the Primary Control (Axis 1 in
this example) uses Output #1 to initiate program
execution in the Secondary Control (Axis 2 in this
example.) Three additional outputs on Axis 1 are used to
select for execution one of eight subroutines in the Axis 2
program. See Figure 2. See Section 3.5.2, Input/Qutput
Connections, for I/O connection information.

Figure 2

Example of Mapping I/O points and Secondary Control
subroutine:

Output Status on Axis 1 Control Subroutine fo
(Output #1 Signal Initiates Start of | Execute in Axis 2
Program in Axis 2 Control) Control
Output #4 | Output #3 | Output#2

off Off On Subroutine #1
Off On Off Subroutine #2
Off On On Subroutine #3
On Off Ooff Subroutine #4
On off On Subroutine #5
On On Off Subroutine #6
On On On Subroutine #7
Off Off Off Subroutine #8

As systems increase in complexity it may be necessary to
change from I/O communication and synchronization to
serial bus coordination. Using the serial bus the number of
subroutines and combinations is limited only by the
program memory available in the control.

169

10.2.2 Programming Overview

To implement a two independent controller coordinated
system using inputs and outputs for control coordination
the following steps must be taken.

a) The setup parameters, which include default
speeds, programming units, default accelerations
and decelerations, maximum speeds, limit switch
operation, and other base parameters are
established for each control in the system.

b) One controller is selected as the “Primary”
Control. The Primary Control operates as the
“quarterback” for the system, initiating action in
the second control and executing the main system
program task.

c) The task required of the second controller is
carefully defined and organized.

d) One or more outputs on the Primary Control are
selected to signal the execution of required
statements or subroutines in the Secondary
Control. This output is wired to a selected input
on the Secondary Control.

€) Either MCPI or MotionWriter software is used to
program each control. The project parameters are
set in each controller, and the task program for
each control is written. The resulting programs
are compiled and downloaded to the controls.

f) Prior to installation the controls are bench tested.

g) The system is wired, all safety items are checked,
and the system is started and debugged.

For information about programming and setup of the
SS2000PCi-2, please refer to section 3 of this manual.
Section 3 includes a startup procedure, connection
information, I/0 information, and serial bus setup.

Section 5 includes information on the MCPI
programming interface, and section 6 includes detailed
information on the SEBasic programming language.

10.2.3 Programming Using Inputs
and Outputs — Introduction

The diagram and sample program in Figure 3 illustrate a
two-controller system that utilizes I/O for coordination. In
this example, Axis 1 is selected as the Primary. The
Primary Control is typically programmed to accept all
operator input and direct the execution of statements or
subroutines in the Secondary Control.

170

10.2.4 Program Flow

In the sample program and system illustrated in Figure 3
Axis 1 is selected as the Primary Control and Axis 2 is
selected as the Secondary.

The program begins with definition of variables. The
initial statements in programs are typically definitions.
Interrupts, if used, would be defined in this section.

Any words or elements following an apostrophe (©)
represent comments that are not executed as part of the
program.

A colon follows program labels (:). Program labels are
defined by the programmer, and serve as bookmarks in
the sample program — see Sec 5.4.1.1. Labels are also
used for subroutines and GOTO statements.

Axis 1 Program — Initial Motion
Following definitions, Axis 1 executes a 10-unit move. A
WAITDONE statement follows. Without WAITDONE, the
next statement OUT(1)=1 (turn Output #1 on) would be
executed as soon as motion began.

After motion is complete, Output #1 is activated. This
signals the Axis 2 control to begin executing statements
following label “Motion_Pci_Second:”

Axis 2 Program

The Axis 2 control program begins with variable
definitions. After the declaration/definition section of the
program, further processing of program commands is
halted until Input #1 is activated by Output #1 on Axis 1.

The DO:LOOP UNTIL IN(1)=1 statement halts further
program execution until Input #1 is active. The use of DO
LOOPS to halt processing of further statements until a
condition is met is elaborated on in Section 10.2.6.

Once input 1 goes active, Axis 2 executes a 10-unit move.
A WAITDONE command halts further statement
execution until the motion is complete. After motion
completes Output #1 on Axis 2 is activated for 2 seconds
to signal Axis 1 to proceed.

After Output #1 is activated, Axis 2 executes a Clockwise
move of 5 units, followed by a counter-clockwise move of
5 units. This motion occurs while Axis 1 also executes a
positive 5-unit move negative 5-unit move.

Axis 1 Program — Completion of Program
After setting Output #1 active for 2 seconds thereby
signaling Axis 2 to initiate motion, further statement
execution in axis 1 is halted until Input #1 receives a
signal from Axis 2. The halt in further statement
execution is accomplished with a DO LOOP.

After the signal is received, Axis 1 implements a 5 unit
move forward and a 5-unit move reverse. The motions in
Axis 1 and 2 occur concurrently but are not coordinated.

Host - Slave & Peer-to-Peer Control of Axis 1 & 2

Program Code (Axis 1):

Axis 1 (Primary Control)

Main Initialization Section

® Variable Decelerations

Main Program - Continued

Program Statements Prior to
Initiation of Subroutine in Axis 2
= Move 10 units,

= Wait until Motion Completes

Activate Output #1 For 2 Seconds
to Signal Axis 2 to Start

Wait for Signal that Axis 2 has
x completed Subroutine

Continue with Program Execution
= 5 turns forward

® 5 turns reverse

* End

" Axis 2 (Secondary Control)

Main Initialization Section

® Variable Initialization

*= Set Speeds, Accelerations,
Decelerations

Wait for Signal to Start
Subroutine from Axis 1.

® Subroutine Statements

= Output Signal to Axis 1 That
First move is Complete

* Additional Moves
= End

INTEGER a, b, c
REAL X, y,z
STRING AS$, B$, C$

Motion_PCi_Master:
SPEED=5
ACCEL=20
DECEL=20
MOVEI=10
WAITDONE
OUT(1)=1

WAIT=2
oUT(1)=0

Controller_Pause:
DO.: LOOP UNTIL IN(1)=1

" Forward:

MOVEI=5
WAITDONE

DO : LOOP UNTIL IN(1)=1

Reverse:
MOVEI=-5
WAITDONE

END

'Declaring all variables is required

‘INTEGER is a whole number, i.e. 1,2,3; -
'A REAL can be a decimal number i.c., 1.543;
‘STRING is a character or a word

‘Label in program to indicate start of Master (Primary)
‘Set Speed to 5 units/sec

'Set Acceleration to 20 units/sec?

‘Set deceleration to 20 units/sec?

‘Commands a move of 10 units for this axis.

‘Activates output #1 of Axis 1 controller
"Output 1 connects to Input 1 of Axis 2

‘Time delay of 2 seconds.
‘Deactivates output #1.

"Holds further program execution until input #1 is active.
‘true condition, this program continues to the next line.

‘Rotates the motor clockwise.

"Holds program cursor until input #1 is activated. At a
‘true condition, program continues to the next line.

'Rotates the motor counter-clockwise.

Program Code (Axis 2):

INTEGER a, b, ¢
REAL X, y,z

Controller_Pause:
DO : LOOP UNTIL IN(1)=1

Motion_PCi_Second:
SPEED=5
ACCEL=20
DECEL=20
MOVEI=10
WAITDONE
OUT(1)=1
WAIT=2
OUT(1)=0

Forward:
MOVEI=5
WAITDONE

DO : LOOP UNTIL IN(1)=1

Reverse:
MOVE!=-5
WAITDONE
END

Host - Slave & Peer-to-Peer Control of Axis 1 & 2

‘An INTEGER is a whole number, i.. 1,2,3;
'A REAL can be a decimal number i.e., 1.543;

"Holds program cursor until input #1 is activated. At a
‘true condition, this program continues to next line.

‘Set Speed to 5 units/sec

‘Set Acceleration to 20 units/sec?

‘Set deceleration to 20 units/sec?

‘Commands a move of 10 units for this axis.

"Activates output #1 connected to input #1 of the 2nd PCi.
"Time delay of 2 seconds.

'Deactivates output #1.

‘Rotates the motor clockwise.

‘Holds program cursor until input #1 is activated. Ata
‘true condition, this program continues to next fine.

'Rotates the motor counter-clockwise.

171

10.2.5 Inputs and Qutputs —
Connection Diagram

In the preceding example, Output #1 on Axis 1 is
connected to Input #1 on Axis 2. This connection is
shown in figure 4.

Figure 4

Internal Power Supply
Inputs Sinking ~ Outputs Sinking

Axis 1 I/O Port Axis 2 /0 Port
KN KN
38 o
2
3% 3%
g | ot our1} 9 ¥
5 .
aav| §® 12vcom 0 128 | nvcom
—O 19 | .voPTO —O 12 | .voPTO
| +VOPTO 7 2% +VOPTQ 2 g
+vorTo 8 O +VOPTg 8 O
—0_5_021 —
INCOM INCOM| & 2
10 8 10 O
O 23 O 23
11 O 1 O
O 24 O 24
12 O 12 O
O 25 O 25
13 O 13 O

S
=

It is STRONGLY recommended that both ground screws
on Axis ! and Axis 2 connect to the same point.

Please refer to Sec. 3.5.2 - Input/Output connections and
Sec. 4.3 - Hardware Equivalent Circuits for additional
information.

10.2.6 The Use of DO LOOPS to
Trap Execution

Execution of a program in SEBasic does not halt while
each statement is executed. This differs from controls
programmed with line-by-line interpreters such as the
SS52000I controllers.

As a result, the following two program lines initiates
motion and while the axis is moving Qutput #1 is turned
on (active).

MOVEI = 10
ouT(1) =1

In order to pause execution either a WAITDONE or
DO -LOOP statement block must be used. For example the
following three lines of code turn Output #1 on after
motion is completed

¢ Commanded move of 10 units
‘Turn Output #1 on

MOVEI=10 * Commanded move of 10 units
WAITDONE ‘Halt until axis is not BUSY
OuT(1) =1 ‘Turn Output #1 on

172

If the programmer wishes to halt execution until motion is
complete, a WAITDONE statement is best. If other
conditions need to be monitored, then a DO-LOOP can also
be used to halt further statement execution,

The format of a DO LOOP statement is
DO [condition]
Statements to Execute
LOOP [condition]

The condition can either be at the top (after the DO) or at
the bottom (After the LOOP) but not in both.

The Command

DO
LOOP UNTIL IN(1) =1

Loops continuously until input 1 goes active. Statements
could be added to the DO-LOOP body if certain actions
were desired during the loop. In this example, the only
requirement is for the program wait or “hang” at this loop
until an input is received.

In order to consolidate the command into one line a colon
(:), preceded and followed by a space, is used to separate
the two lines. Thus the statement

DO : LOOP UNTIL IN(1) =1

holds further program execution at that point until input 1
goes high and is identical to the previous command set.

Do-Loops are used in the sample program to halt program
execution until the alternate axis controller (either Axis 1
or Axis 2) signals program execution to continue.

For further information about these or other commands
refer to Section 6 in this manual.

10.2.7 Input and Qutput Commands

Both controls use inputs and outputs to provide
coordination signals to the alternate axis.

Inputs:

The command for reading an input is

IN (no.)

The number in parenthesis is the input number on the
control. Each PCi control has 8 inputs on I/O port on the
front of the unit. These inputs are designated as Input #1
through Input #8.

There are also 8 inputs available on the top of the
controller. These inputs are on the BCD port. If a BCD is
not used, these inputs are available to the program. The
BCD inputs are identified as Input #9 through Input #16.

Host - Slave & Peer-to-Peer Control of Axis 1 & 2

Input #9 through Input #16 are NOT isolated. Care
must be taken when using these inputs to insure that
no electrical noise enters the system and that the
current and voltage rating of these inputs are not
exceeded.

In the control setup some inputs can be dedicated to
specific purposes, such as limit switch inputs and event
triggers.

Inputs 5, 6, and 7 can be configured as RUN, CLEAR,;
and FEEDHOLD or other user programmable inputs.

Limit switch Input #3 and limit switch Input #4 can
ONLY be used as general purpose inputs if the limit
switch function is disabled in the program setup. Unless
these inputs are disabled as limit switch inputs, activating
the inputs will result in a program error.

Any input can be “read” and tested by a program.

When an input is “Active” the value returned by the IN(x)
command equals 1. When inactive, the value is equal to 0.
Thus the statement

IN(1)=1
is only “true” when Input #1 is active.

Qutputs:

The command for setting an output is
OUT(x) =1

The number in parenthesis is the output number. There
are four general-purpose outputs on the /O port on the
front of the PCi.

There are also four general-purpose outputs on the BCD
port. These outputs are available if the control is not
connected to a BCD.

Refer to Section 3.4 and 3.5.2 for additional information
on inputs and outputs. Also, refer to Section 5.2.7.6 and
Section 5.2.7.7 for additional information on the setup of
inputs for dedicated purposes such as limit switch setup
and the default setup for RUN/CLEAR/FEEDHOLD
inputs.

10.2.8 General Issues

The above example demonstrates some of the techniques
employed to synchronize two controllers. The
programmer should keep the following in mind.

* Both controls need to be programmed. Either
MCPI or MotionWriter must be used for program
development. Once a program is developed, it is
compiled and downloaded to the applicable
control.

* Each control can generate motion simultaneously,
but such motions are not coordinated.

Host - Slave & Peer-to-Peer Control of Axis 1 & 2

* Care must be taken as to the method used to start
program execution in each controller. If the
controls are set to the defaults — that is input # 5
starts program execution, then input #5 must be
activated on each axis for the system to function.

= If Auto-Start is used, then care must be taken to
insure that a motion or program does not
inadvertently or unexpectedly start upon
power-up.

10.3 Overview of Serial Bus
Synchronized Systems

Just as inputs and outputs are used to coordinate action
between two independent controls, the serial ports can
also be used to coordinate action. Prior to reading this
section, please review section 10.2 - Peer to Peer control
using I/0O. Many of the same concepts apply to serial
coordinated systems as I/O systems and this section does
not repeat common information.

10.3.1 The Serial Ports

Each of the controllers in a $$2000-PCi-2 have two serial
ports. The “Host” port is used for programming and for
Host-Slave operation. See section 6.2. The Auxiliary port
can be used for communication with other devices. Either
port can be interrogated by the control and used for serial
communication with any other serial bus equipped device.

The communication parameters including baud rate and
handshake control are configured in software using the
MCPI programming interface or MotionWriter. The host
port baud rate can be forced to 9600 baud by setting the
dip switch on the top of the unit, simplifying
communication troubleshooting.

In this section and the examples that follow, it is assumed
that the programmer has selected the Auxiliary port for
communication between two controllers in a Peer-to-Peer
system. This leaves the host port free for programming,
debugging operations, host control, and connection to a
MMI interface. In this section it is assumed that the
programmer has properly set the communication
parameters of both SS2000-PCi-2s to enable
communication between the two devices.

10.3.2 The Serial Buffer and
Input/Output

Each of the serial ports in the SS2000-PCi-2 collects
serial bus data and inserts the data received into a serial
port buffer. The data in the buffer is read and then
removed from the buffer using the INPUT, GETCHAR,
and INCHAR commands. To send information from a
serial port the PRINT command is used. A brief
description of each of these commands follows.

173

10.3.2.1 The Print Command

The PRINT command sends information from the
specified serial port. PRINT#1 prints to the host port, and
PRINT#2 prints to the auxiliary port. The syntax of the
command is as follows:

PRINT#[port no), Var1 [,Var2, Var3, ...Var3]
port no is either 1 (Host) or 2 (Auxiliary)

Varl represents a literal value (such as the string
“Call Sub 1”), a number, or a defined value.

More than one item can be printed. Use commas to
separate each variable, literal, value, or defined system
variable (such as SPEED). The following is an example of
a valid PRINT command.

PRINT#1, “Speed =", k

As soon as the PRINT command is executed in the
program, the ASCII characters in the print statement are
transmitted to the serial bus. In the above example, if
integer k = 20, the following ASCII characters are sent to
the host port serial bus: Speed = 20

For additional information see Section 6.1.4 -
Programming Commands.

10.3.2.2 INPUT# Command

The INPUT# command retrieves characters that have
been received into the serial bus buffer. The action of the
INPUT# command is dependent upon the presence of a
carriage return character (ASCII Character #13) in the
buffer when the INPUT# command is executed.

If no Carriage Return Exists in the Buffer

If there is no carriage return character in the buffer, then
program execution pauses until a carriage return character
reaches the buffer. When a carriage return character
reaches the buffer, all of the characters received up to the
first carriage return character are read by the INPUT#
command. Characters read by the INPUT# command are
also removed from the buffer. The inputted string does
not include the “carriage return” character. After a
carriage return is received into the buffer and the
characters are read program execution continues.

If One or More Carriage Returns Exist in the Buffer

If one or more carriage returns exist in the buffer at the
time of an input command, only those characters up to the
first carriage return are read and removed from the buffer.
The remaining characters remain in the buffer until
another INPUT# command is executed. After the
characters are read program execution continues.

In Figure 5, If the command INPUT#1, X$ were executed,
X$ would contain the string ABC. Input buffer #1 (host
buffer) would then appear as in figure 6 below.

If the command INPUT#1, Y$ followed, Y$ would contain
the string SP20.

174

These two commands could be combined with the single
input command

INPUT#, XS, Y$

In which case X§ and Y$ would contain the strings ABC
and SP20 respectively.

Given Figure 5, if the command

INPUT#2, Z$

was executed, then program execution would halt at the
INPUT command until a carriage return character was
received into the auxiliary port.

Figure 5

Host Port #1 Buffer

ABCéSPZOé]

First Last
Character Character
Received Received
(A) (Carriage
Return)

Host Port #2 Buffer

(Slefefefd] [=[2]0]]]

Figure 6
Host Port #1 Buffer after INPUT#I1, A$

SPZOé'

10.3.3 GETCHAR Command

GETCHAR can also be used to read characters in the
input buffer. GETCHAR returns the ASCII numerical
value of a single character (first character in) from the
serial port buffer.

The format of the GETCHAR command is
Var = GETCHAR(port no)

Var is any integer variable. (port no) is the number of the
input port (Host or Auxiliary)

Given Figure 5, if we executed the statement
Z=GETCHAR(1)

Z would equal 65, the decimal equivalent of the ASCII
binary code for the letter Capital A.

Host - Slave & Peer-to-Peer Control of Axis 1 & 2

If more than one character is in the buffer, only one
character is read. Once the character is read by the
GETCHAR command it is deleted from the buffer.

If there are no characters in the buffer, program execution
pauses at the GETCHAR command until a character is
received into the serial port buffer.

10.3.4 INCHAR Command

INCHAR is similar to GETCHAR in that INCHAR also
returns the ASCII value of characters in the input buffer.
INCHAR differs from GETCHAR in that INCHAR does
not pause program execution if the buffer is empty.
INCHAR returns 0 if there are no characters in the buffer.
As a result, INCHAR is often used to flush (remove any
characters) from an input buffer.

The syntax of INCHAR is

Var = INCHAR(port no)

Var is any integer variable, and port no is the number of
the input port (1- Host, 2 — Auxiliary).

To flush the Auxiliary Port buffer the following, statement
block could be used.

Do
Z=INCHAR(2)
LOOPUNTILZ=0

For additional information refer to the INCHAR
command in Section 6.1.4 — Programming Commands.

10.3.5 CHRS Command

The CHRS function returns the character equivalent of an
ASCII code. The CHR$ function has two primary uses,
decoding the values obtained through the use of the
GETCHAR or INCHAR command, and printing or
testing for special non-printing characters such
as “carriage return” (ASCII 13), “line feed” (ASCII 10),
or “bell” (ASCII 7).

In Peer-to-Peer synchronized systems if the INPUT
command is used by a control to read control strings
transmitted by another control on the system, then
a“carriage return” character must terminate the
transmitted string for the INPUT command to read it.

For example, to print the string “SUB1” terminated by
a“carriage return” character (ASCII code 13), a
CHRS$(13) must be added to the print statement.

PRINT#2, “SUB1”;CHR$(13);
Use of the Semicolon in Print Statements

In the previous print statement, a semicolon is used as a
separator, A comma would insert an additional five
“Space” characters between the string “SUB1” and the
CHRS$(13). A semicolon at the end of the statement
suppresses the “linefeed” and “carriage return” characters
that are otherwise added to a printed string. This is
needed because the additional linefeed would cause the
program to advance to the next line of code.

Host - Slave & Peer-to-Peer Control of Axis 1 & 2

10.3.6 Program Flow

It is recommended that you read Section 1022 -
Programming Overview and Section 10.2.4 - Program
Flow, prior to reading this section.

The Peer-to-Peer serial bus synchronized system program
is similar to the I/O synchronized system program in
section 10.2.4. The serial bus synchronized system
utilizes serial communication for the synchronization of
two independent controls.

In the sample program (figure 7) Axis 1 is the Primary
Control and Axis 2 is the Secondary Control. As the
Primary Control Axis 1 receives operator input, sends
synchronizing signals to Axis 2, and coordinates
operation of both controls.

Axis 1 Program — Initial Motio

Following definitions, Axis 1 executes a 10-unit move. A
WAITDONE statement follows. Without WAITDONE, the
next statement (PRINT) would execute as motion is
initiated.

After motion is complete, the PRINT#2, “k”;CHR$(13);
statement signals the Axis 2 control to begin executing
statements following the label “Motion_Pci_Second:”
The “k” character insures that the inputted string is not
null.

AXxi rogram

The Axis 2 program begins with variable definitioris.
After the declaration/definition section of the program,
further processing of program commands is halted by the
Input #2, A$ statement until a CHRS$(13) is received into
the Auxiliary Port buffer.

Once the CHR$(13) character is received in the input
buffer, Axis 2 executes a 2 unit move. A WAITDONE
command halts further statement execution until motion is
complete. After motion completes the string “Go_Left”
and CHR$(13) is printed to the Auxiliary Port signaling
Axis 1 that motion is complete enabling Axis 1 to proceed
with program execution.

Axis 1 Program — Completion of Program

After executing the Print command, further program
statement execution is halted by INPUT#2, A$ until a
CHRS$(13) is received in the Axis 1 Auxiliary Port buffer.
Once Axis 2 prints “Go_Left” & CHR$(13) to the serial
port, statement execution continues. The IF-THEN
statements test A$ and direct program execution to label
Forward:, a +5 unit move is executed, and the program
terminates.

175

Axis 1 (Primary Control)

ain Inijtialization Secti
® Variable Decelerations

Main Program - Continued

Program Statements Prior to
Initiation of Subroutine in Axis 2
* Move 10 units,

® Wait until Motion Completes

PRINT#2, CHR$(13)
Print to the Auxiliary Port

* Signal Axis 2 to begin

INPUT#2, A$

® Wait for Signal that Axis 2
has completed Subroutine

Evaluate AS and continue with
Program Execution
®= 5 turns forward

Axis 2 (Secondary Control)

Main Initialization Section
Variable Initialization

* Set Speeds, Accelerations,
Decelerations

Subroutine from Axis 1.

| _’} Wait for CHR$(13) to Start

MOVEI =2
WAITDONE

PRINT#2, “Go_Left";CHR$(13);

® Signal Axis I That First
move is Complete

u End

176

10.3.6 Sample Program
Program Code (Axis 1); N

' Declaring all variables is required

INTEGER a, b, ¢ ' INTEGER is a whole number, i.e. 1,2,3;
REAL x,y, z ‘A REAL can be a decimal number
STRING AS$, BS, C$ ' STRING is a character or a word
Motion_PCi_Master:

SPEED=5 ‘Set Speed to 5 units/sec

ACCEL=20 ‘Set Acceleration fo 20 units/sec?

DECEL=20 'Set deceleration to 20 units/sec?

MOVEI=10 ‘Commands a move of 10 units this
WAITDONE

PRINT#2,”k";CHR$(13); ‘Send a message to the Auxiliary Port to
'the other axis. Note: CHR$(13) MUST be used
Controller_Pause:
INPUT#2,A$ 'Holds the program cursor until a word is
) ' received from the Auxiliary Port
'followed by a carriage return.

Ijata_EvaIuated:

IF A$="Go_Left" THEN GOTO Forward
IF A$="Go_Right" THEN GOTO Reverse
IF A$ <> "Go_Left" OR A$ <> "Go_Right" THEN GOTO Controller_Pause

Forward: 'Rotates the motor clockwise.

MOVEI=5
WAITDONE
END
Reverse: ‘Rotates the motor counter-clockwise.

MOVEI=-5
WAITDONE
END

Program Code (Axis 2):

INTEGER a, b, ¢

REALX,y, z

STRING AS$, BS, C$

SPEED=5 ‘Set Speed to 5 units/sec

ACCEL=20 'Set Acceleration to 20 units/sec?

DECEL=20 ‘Set deceleration to 20 units/sec?
Controller_Pause:

INPUT#2,A$ ' Holds the program cursor until a word is

' received from the Auxiliary Port followed
' by a carriage return from the first PCi,
Motion_PCi_Master:
MOVEI=2 ' Commands a move of 2 units for this axis.
WAITDONE
PRINT#2,"Go_Left";CHR$(13); ' Send a message using the Auxiliary
' Port to the first axis. Note: CHR$(13)
' MUST be used following the semicolon.

END

Host - Slave & Peer-to-Peer Control of Axis 1 & 2

10.4 Host-Slave Systems

The above serial bus coordinated system utilizes the
Auxiliary Port for signaling purposes. It is also possible to
develop multiple axis systems using the host command
capability of the SS2000PCi-2.

In a host-slave system one controller or computer is
selected as the Host control. Each of the remaining
controls in the system are given a unique ID number from
1 to 32. This number is set using the Device ID switch
described in Section 3.2 of this manual.

The Host control can issue “Host Commands” to each of
the slaves in the system. Host Commands are listed in
Section 6.2.0.

1ost - Slave & Peer-to-Peer Control of Axis 1 & 2

Particular attention must be paid to the bus conflict issues
and bus scheduling. In most cases the Host control
addresses each controller individually to command a
particular move. The Host controller also queries each
unit individually to check for position or operation,

10.5 General Issues

A clear understanding of the limitations and capabilities
of independently coordinated systems is key to the
determination of the suitability of such systems.

The above examples are simple coordinated systems. The
approach and strategy employed in these sample systems
can readily be expanded to multiple axis systems.

177

(This page left intentionally blank)

178 Host - Slave & Peer-to-Peer Control of Axis 1 & 2

