Standalone MMC[®] Hardware Manual

Version 16.1Catalog No. M.1300.7620 Part No. M.3000.0836

IND. CONT. EQ. 89X2

Keep all product manuals as a product component during the life span of the product. Pass all product manuals to future users/owners of the product.

KOLLMORGEN

Record of Revisions

Edition	Valid for	Description
03/2007	PiCPro V16.1	Added MMC-S16 Sercos Plus Module
09/2008	PiCPro V17.0	Added MMC-DSAXX Control
01/2009	PiCPro V17.0	Rev 1 added CE/UL info to MMC-DSAXX
02/2010	PiCPro 18.0	Changed to Kollmorgen Manual Branding

Third party brands and trademarks are the property of their respective owners

Technical changes to improve the performance of the equipment may be made without notice! Printed in USA

All rights reserved. No part of this work may be reproduced in any form (by printing, photocopying, microfilm or any other method) or processed, copied or distributed by electronic means without the written permission of Kollmorgen.

NOTE

These products are being manufactured and sold by G & L Motion Control, Inc., a Kollmorgen company.

Progress is an on-going commitment at Kollmorgen. We continually strive to offer the most advanced products in the industry; therefore, information in this document is subject to change without notice. The text and illustrations are not binding in detail. Kollmorgen shall not be liable for any technical or editorial omissions occurring in this document, nor for any consequential or incidental damages resulting from the use of this document.

Kollmorgen makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Kollmorgen provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application.

DO NOT ATTEMPT to use any Kollmorgen product until the use of such product is completely understood. It is the responsibility of the user to make certain proper operation practices are understood. Kollmorgen products should be used only by qualified personnel and for the express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service Department, Kollmorgen, 672 South Military Road, P.O. Box 1960, Fond du Lac, WI 54936-1960. Kollmorgen can be reached by telephone at (920) 921-7100 or (800) 558-4808 in the United States or by e-mail at glmotion.support@kollmorgen.com.

Catalog No. (Order No.) M.1300.7620
Printed Version Part No. M.3000.0836
Electronic Version Part No. M.3000.0835
Release 04262010
©2010, Kollmorgen

Table of Contents

Table of Contents	3
1 Introduction to the Standalone MMC	7
1.1 Overview	
1.2 Contents of This Manual	
1.3 Software and Manuals	
1.3.1 Required Software and Manuals	
1.3.2 Suggested Manuals	
1.4 Kollmorgen Support Contact	
2 Safety Precautions	q
2.1 System Safety	
2.1.1 User Responsibility	
2.1.2 Safety Instructions	
2.2 Safety Signs	
2.3 Warning Labels	
2.4 Safety First	
2.5 Safety Inspection	
2.5.1 Before Starting System	
2.6 After Shutdown	
2.7 Operating Safely	
2.8 Electrical Service & Maintenance Safety	
2.9 Safe Cleaning Practices	
2.9 Jaie Oleaning Fractices	10
3 Installation, Operation, & Maintenance	15
3.1 Mounting the MMC Control	
3.2 Adding an Option Module to the MMC Control	
3.3 Dimensions and Mounting of MMC with Option Modules Attached	
3.4 System Power and Environment Requirements	
3.4.1 General Power and Environment Requirements	
3.4.2 Control Cabinet Specifications	
3.4.3 Power Distribution Diagram	
3.4.4 Grounding the System	
3.4.5 Controlling Heat Within the System	
3.4.6 Handling an MMC Control	
3.5 System Wiring Guidelines	
3.5.1 Recommended Signal Separation	
3.5.2 Differential Devices for Analog and Encoder Signals	25
3.6 Starting an Application	
3.7 Basic Setup and Maintenance Procedures	
3.7.1 Battery Replacement	
3.8 System Status Lights	
3.8.1 Power Status	
3.8.2 Battery Status	
3.8.3 Scan Status	
3.8.4 Power-up Diagnostics Status	
3.8.5 Run-time Diagnostic Status	
3.8.6 Diagnostic Error Codes	
5.6.6 Diagnostic Error Codes	50
4 Standalone MMC Control	33
4.1 Introduction	

4.2 Features	33
4.3 Overview	33
4.3.1 Machine Control Board	36
4.3.2 Motion Control Board	
4.3.2.1 Analog Servo board	
4.3.2.2 SERCOS board	
4.4 Power Supply Requirements	
4.5 Machine Control Connectors & Operation	
4.5.1 PiCPro Port	
4.5.2 Block I/O Port	
4.5.3 User Port	
4.5.4 General I/O Port	
4.5.4.1 DC Output Operation	
4.5.4.2 DC Input Operation	
4.5.5 Power Connection	
4.6 Analog Motion Control Connectors & Operation	
4.6.1 Axis I/O Ports	
4.6.1.1 Axis I/O Port DC Outputs	
4.6.1.2 Axis I/O Port DC Input	
4.6.1.3 Axis I/O Port Analog Output	
4.6.1.4 Axis I/O Port Encoder Input	
4.6.2 Aux I/O Port	
4.6.2.1 Isolated Breakout Box Details	
4.6.2.2 Aux I/O Port Fast Inputs	
4.6.2.3 Aux I/O Port DC Inputs	
4.6.2.4 Aux I/O Port Encoder Input	
4.6.2.5 Aux I/O Port Analog Input	
4.7 SERCOS Motion Control Connections & Operation	
4.7.1 SERCOS Receive and Transmit Ports	
4.7.2 Loader Port	
4.8 Specifications	89
5 Standalone Digital MMC Control	95
5.1 Introduction	
5.2 Features	
5.3 Overview	
5.4 Power Supply Requirements	
5.5 Connectors & Operation	
5.5.1 Block I/O Port	
5.5.2 User Port	
5.5.3 PiCPro Port.	
5.5.4 Ethernet Port	
5.5.5 Digital Link Ports	
5.5.6 User USB Port	
5.5.7 PiCPro USB Port	
5.5.8 Power Connection	
5.6 Specifications	117
6 MMC-DSAXX Control	119
6.1 Introduction	119
6.2 Features	119
6.3 Overview	119
6.3.1 Major Components	120
6.4 Power Supply Requirements	

6	6.5 Connectors & Operation	122
	6.5.1 PiCPro Port	123
	6.5.2 Ethernet Port	125
	6.5.3 Block I/O Port (C1)	127
	6.5.4 User Port	131
	6.5.5 Digital Link Port	137
	6.5.6 General I/O Port	139
	6.5.6.1 DC Output Operation	144
	6.5.6.2 DC Input Operation	146
	6.5.7 Power Connection	148
6	6.6 Specifications	149
	MC Ethernet TCP/IP Option Module	
	7.1 Introduction	
•	7.2 Connections	
	7.2.1 The Ethernet Port.	
_	7.2.2 The RS232 COMM Ports	
	7.3 LEDs	
	7.4 Firmware Update	
	7.5 Theory of operation	
	7.6 Specifications Table	
7	7.7 Useful Internet Links	163
2 M/N	MC DeviceNet TM Option Module	165
	8.1 Introduction	
	8.2 Connections	
•	8.2.1 The DeviceNet Port	
	8.2.2 The Configuration (RS232) Port	
9	8.3 LEDs	
	8.4 Theory of Operation	
	8.5 Specifications	
9 MN	MC Profibus Option Module	171
9	9.1 Introduction	171
ç	9.2 Connections	172
	9.2.1 The Profibus Port	173
	9.2.2 The Configuration (RS232) Port	173
9	9.3 LEDs	174
9	9.4 Theory of Operation	174
9	9.5 Specifications for Profibus Module	176
40.55	ANO Avia I/O Ontian Madula	4
	MMC Axis I/O Option Module	
	10.1 Specifications	179
11 M	MMC 32In/32Out Option Module	183
	11.1 Introduction	
	11.2 Connections & Operation	
	11.2.1 DC Output Operation	
	11.2.2 DC Input Operation	
	11.3 Specifications	
	11.0 Opcomoditorio	193
12 C	CE and EMC Guidelines	195
	12.1 Background on EMC (Electromagnetic Compatibility) Compliance	
	12.2 Background on Low Voltage Compliance	
	g	

Stnadalone MMC Hardware Manual - TABLE OF CONTENTS

12.3 RFI Emission and Immunity	195
12.4 Classes of EMC Operating Environments	
12.5 Conformance with the EMC Directive	
12.6 Conformance With the Low Voltage Directive	
12.7 Changes to the PiC Products	
12.7.1 Changes Affecting the User	197
12.8 Using CE/EMC and Non-CE/EMC Modules	200
12.9 Declarations of Conformity	
Appendix A - Operation Details	207
13.1 Introduction	207
13.2 DC Inputs	207
13.3 DC Outputs	208
13.3.1 Inductive Loads	
13.4 Encoder Inputs	209
Index	211
Sales and Service	216

1 Introduction to the Standalone MMC

1.1 Overview

The Standalone Machine and Motion Control (MMC) product line consists of four distinct products:

- The Standalone MMC Control, which is available in two configurations to control:
 - Analog Interfaced drives (such as the Analog Interfaced MMC-SD) via a ±10V analog output.
 - SERCOS Interfaced drives.
- The Standalone Digital MMC Control, which controls up to 64 Digital Interfaced drives (Digital MMC-SD Drives and S200-DSL Drives) via a digital connection (Digital Link).
- The Standalone MMC-DSAXX Control, which controls up to 16 Digital Interfaced drives (Digital MMC-SD Drives and S200-DSL Drives) via a digital connection (Digital Link).
- MMC Option Modules, which provide various added functionality to the Standalone MMC Control, the Standalone Digital MMC Control, and the Standalone MMC-DSAXX Control.

Unless otherwise noted, all of the information in this manual applies to all of the MMC Controls described above.

1.2 Contents of This Manual

This manual includes the following major topics:

- Information to safely operate and maintain the equipment in a safe manner.
- User responsibilities for product acceptance and storage.
- Power and environmental information for general power, control cabinet, grounding, heat control and handling.
- Procedures for mounting, wiring, and connecting the MMC Control.
- The function, location, and signal descriptions of connectors on the MMC Control.
- Physical, electrical, environmental and functional specifications/dimensions.
- Description of the minimal maintenance necessary.
- A troubleshooting chart of potential problems and possible solutions.
- Part numbers and descriptions for the MMC Control, MMC Option Modules, and related equipment.

1.3 Software and Manuals

1.3.1 Required Software and Manuals

- PiCPro (one of the following):
 - Professional Edition
 - MMC Limited Edition
 - Monitor Edition

1.3.2 Suggested Manuals

- Function/Function Block Reference Guide
- Motion Application Specific Function Block Manual
- Ethernet Application Specific Function Block Manual
- General Purpose Application Specific Function Block Manual

1.4 Kollmorgen Support Contact

Contact your local Kollmorgen representative for:

- Sales and order support
- Product technical training
- Warranty support
- Support service agreements

Kollmorgen Technical Support can be reached:

- In the United States, telephone (800) 558-4808
- Outside the United States, telephone (920) 921-7100
- E-mail address: glmotion.support@kollmorgen.com
- Web site: www.glcontrols.com

2 Safety Precautions

READ AND UNDERSTAND THIS SECTION IN ITS ENTIRETY
BEFORE UNDERTAKING INSTALLATION OR ADJUSTMENT OF
THE MMC SMART DRIVE AND ANY ASSOCIATED SYSTEMS OR
EQUIPMENT

The instructions contained in this section will help users to operate and maintain the equipment in a safe manner.

PLEASE REMEMBER THAT SAFETY IS EVERYONE'S RESPONSIBILITY

2.1 System Safety

The basic rules of safety set forth in this section are intended as a guide for the safe operation of equipment. This general safety information, along with explicit service, maintenance and operational materials, make up the complete instruction set. All personnel who operate, service or are involved with this equipment in any way should become totally familiar with this information prior to operating.

2.1.1 User Responsibility

It is the responsibility of the user to ensure that the procedures set forth here are followed and, should any major deviation or change in use from the original specifications be required, appropriate procedures should be established for the continued safe operation of the system. It is strongly recommended that you contact your OEM to ensure that the system can be safely converted for its new use and continue to operate in a safe manner.

2.1.2 Safety Instructions

- Do not operate your equipment with safety devices bypassed or covers removed.
- Only qualified personnel should operate the equipment.
- Never perform service or maintenance while automatic control sequences are in operation.
- To avoid shock or serious injury, only qualified personnel should perform maintenance on the system.

ATTENTION

Do not touch the main power supply fuses or any components internal to the power modules while the main power supply switch is ON. Note that when the main power switch is OFF, the incoming supply cable may be live.

GROUNDING (Protective Earth)

The equipment must be grounded (connected to the protective earth connection) according to OEM recommendations and to the latest local regulations for electrical safety. The grounding (protective earth) conductor must not be interrupted inside or outside the equipment enclosures. The wire used for equipment grounding (connection to protective earth) should be green with a yellow stripe.

2.2 Safety Signs

The purpose of a system of safety signs is to draw attention to objects and situations which could affect personal or plant safety. It should be noted that the use of safety signs does not replace the need for appropriate accident prevention measures. Always read and follow the instructions based upon the level of hazard or potential danger.

2.3 Warning Labels

Hazard warning

Danger Electric Shock Risk

When you see this safety sign on a system, it gives a warning of a hazard or possibility of a hazard existing. The type of warning is given by the pictorial representation on the sign plus text if used.

To ignore such a caution could lead to severe injury or death arising from an unsafe practice.

Danger, Warning, or Caution warning

Symbol plus DANGER, WARNING or CAUTION: These notices provide information intended to prevent potential sonal injury and equipment damage.

Hot Surface warning

Symbol plus HOT SURFACE: These notices provide information intended to prevent potential posonal injury.

2.4 Safety First

Kollmorgen equipment is designed and manufactured with consideration and care to generally accepted safety standards. However, the proper and safe performance of the equipment depends upon the use of sound and prudent operating, maintenance and servicing procedures by trained personnel under adequate supervision.

For your protection, and the protection of others, learn and always follow these safety rules. Observe warnings on machines and act accordingly. Form safe working habits by reading the rules and abiding by them. Keep these safety rules handy and review them from time to time to refresh your understanding of them.

2.5 Safety Inspection

2.5.1 Before Starting System

- Ensure that all guards and safety devices are installed and operative and all doors which carry warning labels are closed and locked.
- Ensure that all personnel are clear of those areas indicated as potentially hazardous.
- Remove (from the operating zone) any materials, tools or other objects that could cause injury to personnel or damage the system.
- Make sure that the control system is in an operational condition.
- Make certain that all indicating lights, horns, pressure gauges or other safety devices or indicators are in working order.

2.6 After Shutdown

Make certain all controlled equipment in the plant is safe and the associated electrical, pneumatic or hydraulic power is turned off. It is permissible for the control equipment contained in enclosures to remain energized provided this does not conflict with the safety instructions found in this section.

2.7 Operating Safely

- Do not operate the control system until you read and understand the operating instructions and become thoroughly familiar with the system and the controls.
- Never operate the control system while a safety device or guard is removed or disconnected
- Where access to the control system is permitted for manual operation, only those
 doors which provide that access should be unlocked. They should be locked
 immediately after the particular operation is completed.
- Never remove warnings that are displayed on the equipment. Torn or worn labels should be replaced.
- Do not start the control system until all personnel in the area have been warned.
- Never sit or stand on anything that might cause you to fall onto the control equipment or its peripheral equipment.
- Horseplay around the control system and its associated equipment is dangerous and should be prohibited.

Know the emergency stop procedures for the system.

- Never operate the equipment outside specification limits.
- Keep alert and observe indicator lights, system messages and warnings that are displayed on the system.
- Do not operate faulty or damaged equipment. Make certain proper service and maintenance procedures have been performed.

2.8 Electrical Service & Maintenance Safety

- ALL ELECTRICAL OR ELECTRONIC MAINTENANCE AND SERVICE SHOULD BE PERFORMED BY TRAINED AND AUTHORIZED PERSONNEL ONLY.
- It should be assumed at all times that the POWER is ON and all conditions treated as live. This practice assures a cautious approach which may prevent accident or injury.
- To remove power:
 - LOCK THE SUPPLY CIRCUIT DISCONNECTING MEANS IN THE OPEN POSITION.
 - APPLY LOCKOUT/TAGOUT DEVICES IN ACCORDANCE WITH A DOCU-MENTED AND ESTABLISHED POLICY.

Make sure the circuit is safe by using the proper test equipment. Check test equipment regularly.

ATTENTION

Care should be taken if you are manually discharging the bus capacitors.

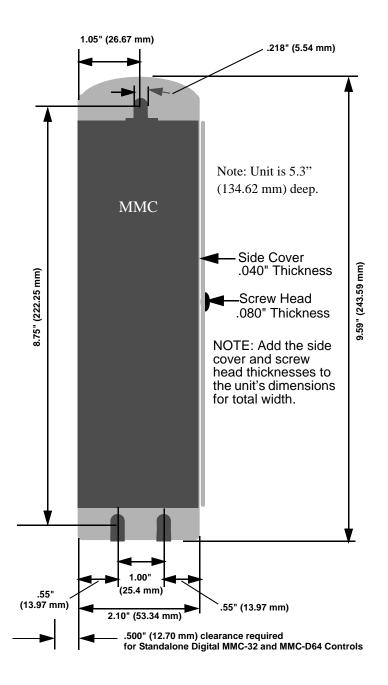
WARNING

Even after power to the drive is removed, it may take up to 10 minutes for bus capacitors to discharge to a level below 50 VDC. To be sure the capacitors are discharged, measure the voltage across the + and - terminals for the DC bus.

- There may be circumstances where troubleshooting on live equipment is required. Under such conditions, special precautions must be taken:
 - Make sure your tools and body are clear of the areas of equipment which may be live.
 - Extra safety measures should be taken in damp areas.
 - Be alert and avoid any outside distractions.
 - Make certain another qualified person is in attendance.
- Before applying power to any equipment, make certain that all personnel are clear of associated equipment.
- Control panel doors should be unlocked only when checking out electrical equipment or wiring. On completion, close and lock panel doors.
- All covers on junction panels should be fastened closed before leaving any job.
- Never operate any controls while others are performing maintenance on the system.
- Do not bypass a safety device.
- Always use the proper tool for the job.
- Replace the main supply fuses only when electrical power is OFF (locked out).

2.9 Safe Cleaning Practices

- Do not use toxic or flammable solvents to clean control system hardware.
- Turn off electrical power (lock out) before cleaning control system assemblies.
- Keep electrical panel covers closed and power off when cleaning an enclosure.


Standalone MMC Hardware Manual - SAFETY PRECAUTIONS

- Always clean up spills around the equipment immediately after they occur.
- Never attempt to clean a control system while it is operating.
- Never use water to clean control equipment unless you are certain that the equipment has been certified as sealed against water ingress. Water is a very good conductor of electricity and the single largest cause of death by electrocution.

3 Installation, Operation, & Maintenance

3.1 Mounting the MMC Control

Mount the unit to your cabinet using the mounting slots on the MMC as shown. (Note: the Standalone MMC-D32 and MMC-D64 Digital Controls requires a minimum of 1/2 in clearance on the left side, for proper fan air movement). The MMC unit must be mounted vertically. The recommended size of mounting hardware is #10 bolts with #10 star washers (to ensure proper ground connection) as shown in Figure 3-1 below.

Figure 3-1: MMC Mounting Dimensions

3.2 Adding an Option Module to the MMC Control

Several Option Modules are available to add functionality to the MMC system. These modules are described in the later sections of this manual, starting with section 7 on page 153.

• The standard Standalone MMC Control (MMC-A2, MMC-A4, and MMC-S8) accepts up to two MMC Option Modules.

The Standalone MMC Control Plus (MMC-A2 Plus and MMC-A4 Plus), the Standalone MMC-DSAXX Control (MMC-DSA2, -DSA4, -DSA8, and -DSA16), and the Standalone Digital MMC Control (MMC-D32 and MMC-D64), accepts up to four MMC Option Modules.

Option modules are shipped with a 50-pin square post connector and screws needed to attach the module to the MMC (or to another option module). Follow the procedure below to add an option module to the MMC (or to another option module).

- 1. Place the MMC and the option module on a static free surface. Ground yourself using a properly grounded wrist strap before you begin. These are standard precautions before handling any electronic components.
- 2. Remove the five screws securing the MMC cover using a #1 Phillips screwdriver and set them aside. There are two screws on the top, two screws on the bottom, and one screw on the side of the module. Lift the side cover off and set aside.
- 3. Locate the 50-pin square post socket at the top of the MMC board. Press one side of the 50-pin square post male connector into this socket ensuring that the pins are aligned and it is firmly seated.
- 4. Pick up the option module. Line up the socket on the option module with the male end of the connector extending from the MMC ensuring that the pins are aligned. Press firmly into place. Be sure to align the screw tabs on the top and bottom of the option module with the screw slots on the top and bottom of the MMC module so that the modules slide together easily.
- 5. Screw four screws (of the five included in your package) into the screw tabs to attach the option module to the MMC.
- 6. Lay the unit on the bench. Place the cover you set aside in Step 3 on the option module. Be sure to align the screw tabs on the top and bottom of the cover with the screw slots on the top and bottom of the option module.
- 7. Screw the five screws removed in Step 2 back into place to secure the cover.

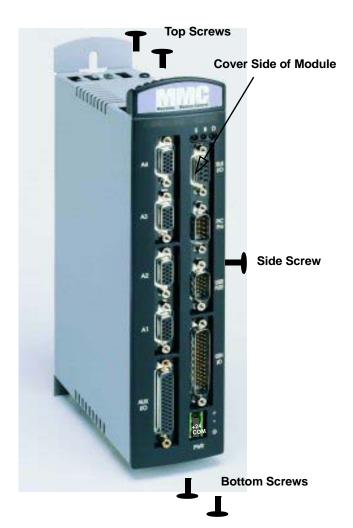


Figure 3-2: Location of Screws on the MMC Control (MMC A-4 Servo Unit Shown)

3.3 Dimensions and Mounting of MMC with Option Modules Attached

After attaching option modules to the MMC module, mount the unit to your cabinet using the mounting slots on the MMC and the option module. The recommended size of mounting hardware is #10 bolts with #10 star washers (to ensure proper ground connection).

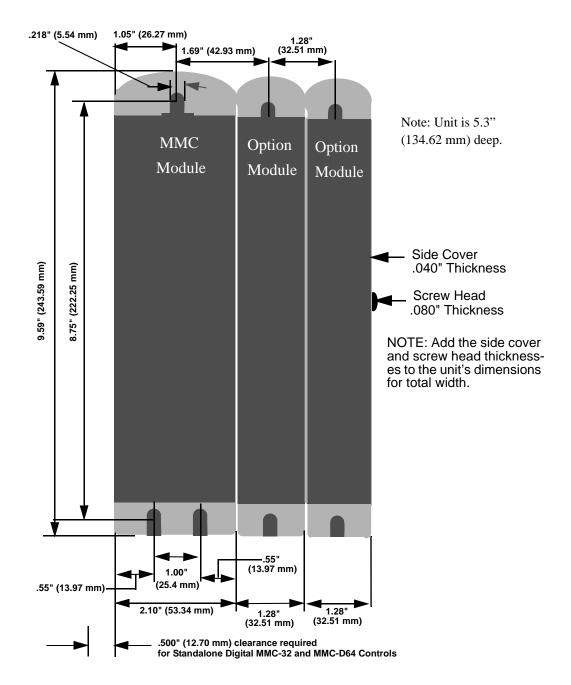


Figure 3-3: MMC Mounting Dimensions with 2 Option Modules Attached

3.4 System Power and Environment Requirements

3.4.1 General Power and Environment Requirements

The MMC is suitable for operation in a pollution degree 2 environment (i.e., normally, only non-conductive pollution occurs). You are not required to install the system rack

in a control cabinet. However a cabinet protects the system from dust and mechanical damage and is recommended.

Power distribution is shown in Figure 3-4 on page 21. Install the system rack away from all sources of strong electromagnetic noise. Such noise can interfere with MMC operation.

Protect the MMC system from all the following:

- conductive fluids and particles
- corrosive atmosphere
- explosive atmosphere

The diagrams and recommendations may be modified if necessary so the wiring conforms to current NEC standards or government regulations.

3.4.2 Control Cabinet Specifications

The control cabinet housing the MMC:

- should have a NEMA-12 rating or better. A cabinet with this rating protects its contents from dust and mechanical damage.
- must be large enough to provide adequate air circulation for the MMC, drives, and other components. Always allow for adequate air flow through the MMC vents.
- must have a rigid vertical surface to mount the MMC on.
- should be positioned to allow the cabinet door to open fully for easy access to the MMC Control.

IMPORTANT

Post warnings according to National, State, or local codes for the voltage present in the control cabinet.

3.4.3 Power Distribution Diagram

The MMC requires an external DC power source. The power distribution drawing that follows shows an MMC connected to an Analog Interfaced MMC-SD Drive. The drive's 24 VDC power is supplied via the MMC in this example. If the drive has its own external 24 VDC supply, the +24 V line would not be connected.

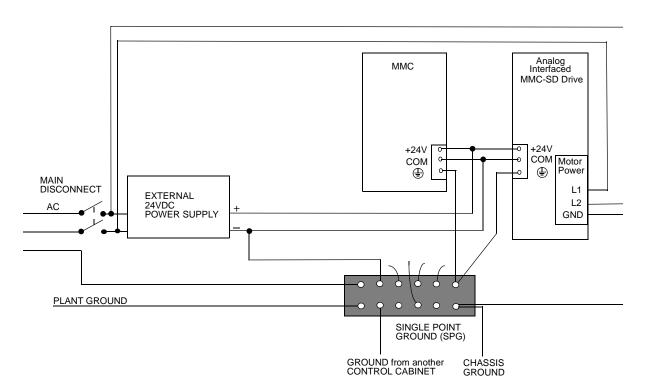


Figure 3-4: Example of 24 VDC Power Distribution to an MMC System

The DC power source is connected to the MMC system through a 3-pin connector. It plugs into the power connector of the MMC. The ground from the power source and ground from the MMC must be connected to the Single-Point Ground (SPG).

Devices connected to the hardware may have their own power sources for input data or output control signals. You can use other wiring setups, provided that each one is:

- at the correct voltage and current levels for the module and the device.
- connected to the same Single-Point Ground that the MMC uses.

It is recommended that the same main disconnect switch be used for the MMC system and for all devices in the application.

IMPORTANT

No matter how the system is installed, before you connect the MMC to the application, make sure that power is off to the system and to the devices that are wired to the MMC.

3.4.4 Grounding the System

The ground of the MMC power source must be connected directly to a *Single Point Ground* (SPG) tie block. The tie block should be made of brass or copper, bolted or brazed to the control cabinet. If the tie block is bolted rather than brazed, scrape away paint or grease at the point of contact. Put star washers between the tie block and the cabinet to ensure good electrical contact.

Metal enclosures of power supplies, drives, etc., should also have good electrical contact with the SPG.

CAUTION

The Single Point Ground should be the only common point for all the ground lines. If not, ground loops may cause current flow among components of the system which can interfere with proper operation of the MMC.

Devices to be connected directly to the Single Point Ground include:

- Plant safety ground.
- Chassis ground from MMC power connector.
- The metal panel or cabinet on which the MMC is mounted.
- "Common" or "0 V" lines from power supplies that provide external power to the I/O modules and the devices to which they are connected.
- Chassis grounds from the devices themselves, such as device drivers, machinery, and operator interface devices.
- AC common line from the noise filter, if any.
- The ground of the power source of the computer workstation, if any, from which
 you monitor the system operation. An AC outlet in the control cabinet is recommended.
- Single point grounds from other control cabinets, if any, in the system.

IMPORTANT

You must ensure that the "0V" or "Common" of all devices connected to the MMC are connected to Single Point Ground (SPG). Failure to do so may result in erratic operation or damage to the MMC. Examples of devices connected to the MMC include the power source that supplies 24VDC power to the MMC and devices connected to the MMC PiCPro Port or User Port. Note that some devices (for example, a Personal Computer) may have their "0V" and "Chassis" connected together internally, in which case only one connection has to be made to SPG for that device.

Also, you must ensure that the MMC "Chassis" connection is connected to SPG, and that the MMC is mounted to a metal panel or enclosure that is connected to SPG.

3.4.5 Controlling Heat Within the System

The MMC hardware case is designed to promote air circulation and dissipate heat. The MMC must be mounted vertically to take advantage of this design. Normally no fans or air conditioners are needed. However, if the environment outside the control cabinet is hot or humid, you may need to use a fan, heat exchanger, dehumidifier or air conditioner to provide the correct operating environment.

Table 3-1: Operating Limits for the MMC Control		
Temperature	5 to 55° C (41 to 131° F)	
Relative humidity	5 to 95%, non-condensing	

Make sure that components installed in the cabinet with the MMC do not raise the temperature above system limits and that any hot spots do not exceed specifications. For example, when heat-generating components such as transformers, drives or motor controls are installed, separate them from the system by doing one of the following:

- Place them near the top of the control cabinet so their heat output rises away from the MMC.
- Put them in another control cabinet above or to one side of the cabinet with the MMC. This protects the MMC from both heat and electrical noise.

The MMC itself is a source of heat, though in most installations its heat dissipates without harmful effects. System heat is generated from power dissipated by:

- field side input/output components
- other components within the MMC

CAUTION

If the MMC is operated outside the recommended limits, it may be damaged. This will void the warranty.

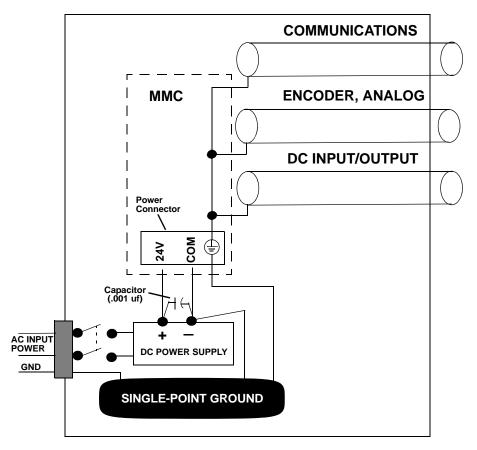
3.4.6 Handling an MMC Control

The case protects the MMC's internal circuitry against mechanical damage in shipping and handling. However, like any electronics device, the circuitry can be destroyed by:

- temperatures over 55° C (131° F)
- moisture condensing inside the module
- static discharge
- exposure to a magnetic field strong enough to induce a current in the circuitry
- freezing temperatures, vibration, and other hazards

Normally there is no need to open the case. Occasionally, a battery must be replaced. A diagram and detailed anti-static precautions in the appendices are included with modules that have replaceable components.

3.5 System Wiring Guidelines


The MMC relies on electrical signals to report what is going on in the application and to send commands to it. In addition, signals are constantly being exchanged within the system. The MMC is designed for use in industrial environments, but some guidelines should be followed.

3.5.1 Recommended Signal Separation

Kollmorgen continues to recommend separation of low level signals (encoder, analog, communications, fast DC inputs) from high voltage (110 Vac, 220 Vac, 440 Vac, etc.) or high current lines (such as motor armature cables). Maintain at least one inch of separation around signals.

Figure 3-5 below illustrates the recommended connections when using EMC compliant products. Note that a capacitor is connected to the 24 VDC supply. To prevent excessive conducted emissions from a DC power source (typically 24 V) used for digital I/O, a 1000 picofarad capacitor should be used. Connect the capacitor from the +24 VDC to COMMON at the distribution terminals.

Figure 3-5: Recommended EMC Compliant Connections

Inside a control cabinet, connect the shields of shielded cables at the MMC. Figure 3-6 below illustrates shielded cable entering/leaving the cabinet.

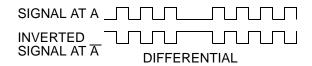
MMC External Drive Cabinet Enclosure

Figure 3-6: Connecting Shielded Cable

The two different methods of terminating shields are used to accommodate two different immunity requirements. Immunity required inside an enclosure is considered lower because cables are typically less than three meters in length and/or can be separated from each other and from noise sources.

Immunity required external to an enclosure is considered higher because the user may have less control over the noise environment. Low level signal cables that can be external to an enclosure are tested at a 2 KV level for electrical fast transients (EFTs). Low level signals that can be less than three meters in length or can be separated from noise sources are tested at a 1 KV level. Under the stated conditions, there will be no disturbance of digital I/O, encoder, or encoder operation. For analog signals, there may be momentary disturbances but there will be self-recovery when the noise subsides.

Do not operate transmitters, arc welding equipment, or other high noise radiators within one meter of an enclosure that has the door open. Continue to equip inductive devices, if they are in series with a mechanical contact or switch, with arc suppression circuits. These devices include contactors, solenoids and motors. Shield all cables that carry heavy current near the system, using continuous foil wrap or conduit grounded at both ends. Such cables include power leads for high-frequency welders and for pulse-width-modulated motor drives.


WARNING

Use care when wiring I/O devices to the MMC and when plugging in cables. Wiring the wrong device to the connector or plugging a connector into the wrong location could cause intermittent or incorrect machine operation.

3.5.2 Differential Devices for Analog and Encoder Signals

A differential device receives or sends one signal over two wires (typically a shielded twisted pair). The input/output voltage at the second terminal is the inverse of the first. Information is received/sent as the difference between the two voltages.

Figure 3-7: Differential Digital Pulse Train

The advantages of using differential signals are:

- A differential signal is less susceptible to electromagnetic noise. Static or other
 interference affects both of the twisted-pair wires equally, so the difference
 between the normal and inverted voltage remains unchanged. A differential signal
 can be transmitted over a much longer distance or in a much noisier environment
 than a single-ended one.
- MMC hardware circuitry can detect signal loss from an encoder if the signal is differential. The application program can be set to shut down the application if such an error is detected.

IMPORTANT

Always use differential drivers with differential inputs.

3.6 Starting an Application

To start an application:

- 1. Turn off the main disconnect switch in the control cabinet. If some devices are not powered from the control cabinet, turn them off also.
- 2. Connect the connectors according to your diagrams.
- 3. Turn on power to the system. The MMC goes through the following sequence:
 - The Power light (labeled "P") goes on and stays on.
 - The Diagnostic light (labeled "D") goes on briefly, then goes off.
 - If there is an application in the MMC's memory, the ladder starts scanning and the Scan light (labeled "S") goes on. If there is not an application in the MMC's memory, use the download command in the PiCPro software to place it there.

3.7 Basic Setup and Maintenance Procedures

Table below summarizes how to proceed when performing certain maintenance and/ or setup functions.

Table 3-2: Maintenance Procedure Summary		
In order to:		
Turn off the entire application.	Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the MMC.	
Wire the I/O to the application.	Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the MMC.	
Change the battery.	Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the MMC.	
Connect/disconnect the MMC with the computer workstation through the PiCPro port.	Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the MMC.	
Connect/disconnect the MMC with an operator interface through the User port.	Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the MMC.	
Download an application program into the memory.	Make sure power is on (check the P light).	
Stop the scan.	From the workstation - use the Stop Scan commands in the PiCPro software.	

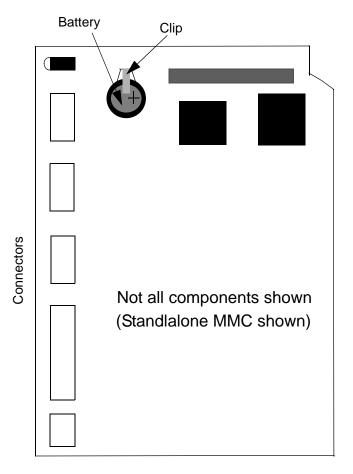
3.7.1 Battery Replacement

Replace the battery under the following conditions:

- as a preventative maintenance procedure (approximately every 2 years)
- or when the MMC indicates that the battery is low:
 - On a Standalone MMC Control (-A2, -A4, -S8, -S16), if the green Power light (P) starts flashing.
 - On a Standalone Digital MMC Control (-D32, -D64) or MMC-DSAXX Control (-DSA2, DSA-4, -DSA8, -DSA16), when the Diagnostic Light flashes the "Replace Battery" code:

Follow the procedure below to replace the battery:

- 1. After DC power has been applied to the MMC for at least five minutes, turn off power. This ensures that the contents of memory will not be lost while the battery is removed. Disconnect the input power connector from the MMC.
- 2. Remove the MMC (including any optional modules) from the cabinet.
- 3. Use a static-free work surface if possible. Ground yourself using a properly grounded wrist strap before you open the case. These are standard precautions before handling any electronics component.
- 4. Lay the MMC system on the work surface. If there are no optional modules attached, remove the cover by removing the five screws, two on top, two on the bottom, and one on the right side of the MMC.


If there are one or more optional modules attached, remove the four screws that attach the first optional module and remove the MMC from the optional modules.

WARNING

DO NOT touch any of the capacitors. Do not touch the pins on any of the ICs. Even with precautions against static you may destroy the circuitry.

5. Refer to Figure 3-8 for the location of the battery. Note how the polarity markers are oriented.

Figure 3-8: Battery Location in MMC

- 6. Use a screwdriver to gently pry up the battery clip. Slide the battery out. Replace it with a 3V coin cell, + side up:
 - For a Standalone Digital MMC Control (-D32, -D64), use a BR3032 battery
 - For a Standalone MMC control (-A2, -A4, -S8, -S16) or an MMC-DSAXX Control (-DSA2, DSA-4, -DSA8, -DSA16), use a BR2032 battery.

7. Screw the cover or optional modules back on. Return the MMC to the cabinet. Connect the power cable. Turn on power and check the lights.

3.8 System Status Lights

Three lights on the front of the Control (Scan, Power, and Diagnostic labeled "S", "P", and "D"), shown in Figure 3-9, provide diagnostic and operational information including power supply status, battery status, diagnostic status, and system status.

Figure 3-9: Status Lights

3.8.1 Power Status

The green Power light (P) indicates that the power supplies internal to the MMC are working properly. If the power light (P) does not go on, or goes off during operation of the system, check that the proper voltage is present at the MMC power connector. If it is, turn off the main disconnect switch and replace the MMC.

3.8.2 Battery Status

Battery Status is reported for the various MMC Controls as follows:

- Standalone MMC Control (-A2, -A4, -S8, -S16) If the green Power light (P) starts flashing
- Standalone Digital MMC Control (-D32, -D64) and MMC-DSAXX Control (-DSA2, -DSA4, -DSA8, -DSA16) If the Diagnostic Status Light flashes code 621 (see section 3.8.6 on page 30).

Follow the battery replacement procedure in section 3.7.1 on page 27.

3.8.3 Scan Status

The green Scan light (S) indicates that the application program is running. If the Scan light does not go on:

- 1. Check that the power light (P) is ON.
- 2. Check that the diagnostic light (D) is OFF.
- 3. Verify that there is a Ladder in the MMC's application memory.

Whenever the scan light is out, the discrete outputs go to the OFF state and the analog outputs are zeroed.

3.8.4 Power-up Diagnostics Status

When the system is powered up, it tests itself and reports the results of the tests using the yellow Diagnostic light (D).

When power is applied to the MMC, the Diagnostic light comes on briefly while its diagnostic tests are running. After the power-up diagnostics run, the Diagnostic light will be in one of the following states:

- off, indicating that the MMC is operating correctly.
- on, indicating that the power-up diagnostics found a hardware problem with the MMC.

NOTE

Power-up diagnostics are run only when the system is powered up. It is possible that a failure might occur during operation. If so, the Diagnostic light remains off. If you suspect that the MMC might be defective, cycle power to run diagnostics again.

3.8.5 Run-time Diagnostic Status

When the application is running (the Scan light is on), the Control constantly monitors the system for proper operation, and the yellow Diagnostic light (D) will be in one of the following states:

- off, indicating that the MMC is operating correctly.
- flashing a three digit error code (see section 3.8.6 on page 30)
- continuously pulsing from bright to dim, indicating one of the following:
 - The Servo Setup Function used in the ladder was compiled with a PiCPro version prior to 16.0. Recompile the Servo Setup Function, then compile and download the ladder with PiCPro 16.0 or greater.
 - The application has accessed an array element beyond the defined array boundary. Avoid this practice.
 - A UDFB is not preceded by the recommended Enable/OK lines. Precede UDFBs with Enable/OK lines as recommended in the Software Manual.
 - An internal software error has occurred. Consult the factory.

3.8.6 Diagnostic Error Codes

While the MMC is running, the Diagnostic light (D) on the CPU module will flash a three digit code signal if there is an error. For example, if there is a long pause-flash-pause-flash-flash-flash-long pause, the code is 123. The errors are described below.

Table 3-3: Diagnostic Light Error Codes		
Code	Error	Description
123	Scan too long	A ladder scan loss has occurred because the CPU takes more than 200 ms to scan the application program.
124	Excessive overhead	The system overhead update time is excessive. Consult the factory.
125	Insufficient memory	There is insufficient memory on the CPU to run the current program.

222	Driver error	No driver support on the CPU for the Option module. Update your system EPROMs.
22_	Master rack error	An Option Module in the master rack (or the Motion Control Board in a Standalone MMC Control) do not match what was declared in the hardware master declaration table. The number of flashes in the third digit (_) identifies the slot number that is in error. The first Option Module is Slot 3.
3	Expansion rack error	The Block I/O modules installed do not match what was declared in the expansion hardware declaration table. The number of flashes in the second and third digits indicates the block I/O module (01 through 77). The second digit will flash a 1 - 7, 10 for 0. The third digit will flash a 1 - 9, 10 for 0. For example, if the second digit flashes 3 times and the third digit flashes 10 times, the module 30 is being reported.
621	Low Battery	The MMC has detected that the on-board battery is low and needs to be replaced as soon as possible (Not for Standalone Digital MMC Control).

Standalone MMC Hardware Manual - INSTALLATION, OPERATION, & MAINTENANCE

4 Standalone MMC Control

4.1 Introduction

This section contains information on the Standalone MMC Control (MMC-A2, -A4, -S8, -S16) only. Information on the Standalone Digital MMC Control (MMC-D32, -D64) is contained in section 5 on page 95, and information on the MMC-DSAXX Control (MMC-DSA2, -DSA4, -DSA8, -DSA16) is contained in section 6 on page 119. Block I/O information can be found in the Block I/O Hardware Manual. Software information can be found in the PiCPro online help, the Function/Function Block Reference Guide, ASFB Manuals or on-line.

4.2 Features

- 32-bit RISC Processor
- 2 Mbytes of flash memory
- 256 Kbytes of Application Memory
- 128 Kbytes of User RAM Memory
- PicPro RS232 port, baud rates up to 57.6 Kbaud
- User RS232/RS485 port, RTS/CTS handshaking, baud rates up to 19.2 Kbaud
- Battery-backed time-of-day clock
- Application stored in battery-back RAM
- Block I/O port for I/O expansion
- Up to 4 MMC Option Modules can be user-installed
- One, two, four, and 16 axis analog versions available
- Eight and 16 axis SERCOS versions available
- UL Listed and CE Marked.

4.3 Overview

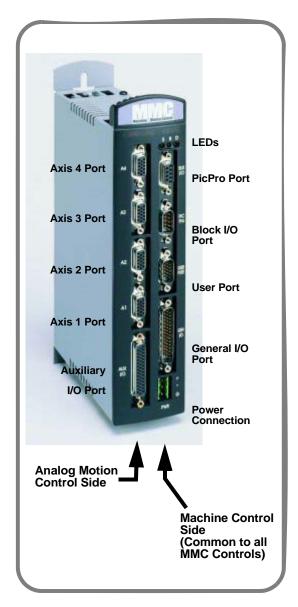
The MMC Control consists of a Machine Control board and a Motion Control board contained within a metal enclosure. External connections for the boards are located on the face of the enclosure.

The MMC Control offers a complete solution to both machine and motion control in a standalone unit. The Standalone MMC family includes these models:

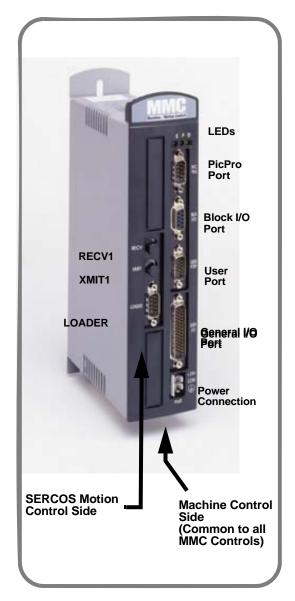
- MMC-A2 (2 1/2 axis analog servo control)
- MMC-A2 Plus (2 1/2 axis analog servo control, expandable)
- MMC-A4 (4 1/2 axis analog servo control)
- MMC-A4 Plus (2 1/2 axis analog servo control, expandable)
- MMC-S8 Plus (8 axis SERCOS control)
- MMC-S16 Plus (16 axis SERCOS control)

The PiCPro programming tool used with the PiC family of controls is also used to program the MMC. The built-in I/O [up to 28 inputs (24 VDC) and 16 outputs (24 VDC)] can be expanded using Kollmorgen serially distributed block I/O. There are also eight (four) low current DC and four (two) DC inputs on the Axis connectors of the

Standalone MMC Hardware Manual - STANDALONE MMC CONTROL


MMC-A4 (MMC-A2). I/O can be added using Kollmorgen's serially distributed Block I/O Modules (covered in the Block I/O Modules Manual).

MMC Option Modules are available to expand the MMC Control. A maximum of two MMC Expansion Modules may be added to the MMC-A2 and MMC A-4. A maximum of four MMC Expansion Modules may be added to the MMC-A2 Plus, MMC A-4 Plus, MMC S-8 Plus, and MMC-S16 Plus.


The following is a list of available MMC Option Modules:

- MMC Ethernet Option Module, see section 7 on page 153.
- MMC DeviceNet Option Module, see section 8 on page 165.
- MMC Profibus Option Module, see section 9 on page 171.
- MMC Axis I/O Option Module (limitations apply), see section 10 on page 177.
- MMC 32 In/32 Out Option Module, see section 11 on page 183.

Figure 4-1: The MMC Control Units

MMC-A4 Servo Control (MMC-A2 also available)

MMC-S8 SERCOS Control (MMC-S16 also available)

4.3.1 Machine Control Board

The Machine Control Board and it's related external connections is located on the right side of the Control. The Machine Control Board contains the CPU. Ladder logic programming is used for machine control. This board also provides a PiCPro Port (RS-232 serial interface for communicating with a computer), User Port (RS-232/RS-485 serial interface for communicating with a serial device), Block I/O Port (proprietary serial interface for communicating with Block I/O Expansion Modules), and a General I/O Port (16 DC outputs and 16 DC inputs).

4.3.2 Motion Control Board

The Motion Control Board and it's related external connections are located on the left side of the control. The motion control side of the MMC unit can be either an Analog Servo board or a SERCOS board.

4.3.2.1 Analog Servo board

The Analog Servo board provides conventional analog/digital interfacing for two or four drives.

The typical signals needed to interface to an analog drive are provided by the analog servo module. The drive command is in the form of an analog voltage (±10V). Feedback is accepted from quadrature type encoders with differential outputs. Digital I/O (+24 VDC) is used for drive signals such as enable, reset, and fault. Fast inputs are provided for each encoder input and can be configured to latch encoder position under various conditions.

The analog servo board is offered in both 2 1/2 and 4 1/2 axis configurations. An axis is considered to be an analog output with a corresponding encoder input. In each configuration shown in the following table, note that there is an extra encoder input. This is referred to as a half axis.

Table 4-1: Available Analog Servo Board I/O					
Available I/O	2 1/2 Axis	4 1/2 Axis			
Analog Inputs	1	1			
Analog Outputs	2	4			
Encoder Inputs	3	5			
Axis DC Inputs	2	4			
Axis DC Outputs	4	8			
Axis Fast DC Inputs	3	5			
AUX I/O Port DC Inputs	6	12			

4.3.2.2 SERCOS board

The SERCOS Motion Control board provides a fiber optic input and output for one SERCOS ring (MMC-S8) or two SERCOS rings (MMC-S16). There is also a serial port for field upgrade of the board's FLASH memory.

4.4 Power Supply Requirements

An MMC system consists of a main module (Analog Servo or SERCOS based) and up to four option modules. An external 24 Vdc supply is required to power the MMC's internal circuitry and external I/O. The 24 Vdc is distributed internally to three different buses or sections. When you size your power supply, you must ensure that the supply is large enough to handle the total load and that the maximum current capability of each bus is not exceeded. Table 4-2 below shows the distribution of the 24 Vdc power within the MMC system:

Table 4-2: MMC 24 Vdc Power Distribution					
Power Bus	Supplying Current To:	Maximum Current			
1	Module Circuitry	3 A			
2	General I/O	5 A			
3	Module I/O	1 A			

In most cases, one power supply can be used for the entire control system. However, depending upon the modules, drives, and external I/O used in your application, you may split the power distribution into two or more power supplies. For example, the Axis I/O on an MMC A2 module can be powered from the MMC, from the drive, or from another external power supply.

Refer to Table 4-3 to size the power supply required by your application. Refer to Table 4-4 to calculate the maximum current required for a theoretical 4 axes MMC.

CAUTION

A possible ignition hazard within the MMC exists if the maximum currents listed for Bus 2 or Bus 3 are exceeded or if excessive current is drawn at the 24 V line going into the MMC. If these currents might be exceeded (due to improper wiring or external device failure), circuit breakers or fuses should be used in series with the 24 Vdc going to and coming from the MMC. Specifically, the circuit breakers or fuses should be sized for 10 A total on the 24 Vdc line coming into the MMC, 1 A total from the +24 Vdc OUT pins of the AXIS and AUXILIARY I/O connectors, and 5 A total from the I/O 24V pins of the GENERAL I/O connector. For maximum protection, use fast blow fuses. When using molded cables supplied by Kollmorgen to connect the MMC to the drives, no overload protection is required.

	Table 4-3: 24 VDC Power Supply Sizing Worksheet					
Line	MMC Module		Current (mA)	# of Units	Col A Subtotal (mA)	Col B Current (mA)
1	MMC-A2 or MMC-A4 (PLUS)		250 (450)			
2	MMC-S8 or MMC-S16 SERCOS P	LUS	500			_
3	Axis I/O Option Module		100			_
4	MMC Ethernet Option Module		200			
5a	MMC DeviceNet Option Module		100			
5b	MMC 32 In/32 Out Option Module		100			
6	Subtotal, Power Bus 1 (Add Colum	nn A (3000 m	A max)	•	1	
Line	MMC Component (Lines 7-12 are for General I/O Port, Lines 14-21 are for Axis I/O Ports)	Max Current (mA)	Actual Current (mA)	Number of I/O	Col A Subtotal (mA)	Col B Current (mA)
7	General Inputs	7.5	7.5			
8	General Outputs	250				
9		250				
10		250				
11		250				
12		250				
13	Subtotal, Power Bus 2 (Add Colum	nn A, Lines 7-	·12, 5000 mA	max)		
14	Axis inputs	7.5	7.5			
15	Axis outputs	100				
16		100				
17		100				
18		100				
19	Auxiliary inputs	7.5	7.5			
20	Fast inputs	7.5	7.5			
21	Current supplied by AUX +24					
22	Subtotal Power Bus 3 (Add Column A, Lines 14-21, 1000 mA max)					
23	MMC Power (Add Column B, Lines 6, 13, and 22, 10,000 mA max)					
24	Other (i.e. block I/O)					
25						
26						
27	Subtotal (Add Column A, Lines 24-26					
28	Total Power (Add Column A, Lines 23 and 27)					

	Table 4-4: 24 VDC Power Supply Sizing Worksheet					
Line	MMC Module		Current (mA)	# of Units	Col A Subtotal (mA)	Col B Current (mA)
1	MMC-A2 or MMC-A4 (PLUS)		250 (450)	1	250	
2	MMC-S8 or MMC-S16 SERCOS P	LUS	500			
3	Axis I/O Option Module		100			-
4	MMC Ethernet Option Module		200			-
5a	MMC DeviceNet Option Module		100			-
5b	MMC 32 In/32 Out Option Module		100			
6	Subtotal, Power Bus 1 (Add Colum	n A (3000 m/	A max)		-	250
Line	MMC Component (Lines 7-12 are for General I/O Port, Lines 14-21 are for Axis I/O Ports)	Max Current (mA)	Actual Current (mA)	Number of I/O	Col A Subtotal (mA)	Col B Current (mA)
7	General Inputs	7.5	7.5	16	120	
8	General Outputs	250	200	5	1000	
9		250	100	9	900	
10		250				
11		250				
12		250				-
13	Subtotal, Power Bus 2 (Add Colum	n A, Lines 7-	12, 5000 mA	max)	•	2020
14	Axis inputs	7.5	7.5	4	30	
15	Axis outputs	100	50	8	200	
16		100			100	
17		100			60	
18		100				
19	Auxiliary inputs	7.5	7.5		120	
20	Fast inputs	7.5	7.5	6	45	
21	Current supplied by AUX +24				400	
22	Subtotal Power Bus 3 (Add Column A, Lines 14-21, 1000 mA max)					
23	MMC Power (Add Column B, Lines 6, 13, and 22, 10,000 mA max) 3225					
24	Other (i.e. block I/O)					
25						
26						
27	Subtotal (Add Column A, Lines 24-26 0					
28	Total Power (Add Column A, Lines 23 and 27)				3225	

4.5 Machine Control Connectors & Operation

This section provides theory-of-operation and connection information on the Machine Control board, which is located on the right side of an MMC Control.

Three lights on the front of the Control (Scan, Power, and Diagnostic) provide operational and diagnostic information, as described in section 3.8 on page 29.

The Machine Control Board does the following:

- Performs diagnostic tests.
- Checks the battery.
- Performs routine maintenance tasks.
- Executes the application program.
- Communicates with the I/O.
- Maintains communication with the workstation through the PiCPro port.
- Maintains communication with the user interface device through the user port. (Details for this communication depend partly on the type of interface device. Refer to the manual that comes with the device.)
- Provides Block I/O expansion capability.

The MMC has a flash chip on board that allows you to load an application program into it. This is standard on the MMC. Having the application in the standard flash chip ensures that you will not lose the application if the battery fails. On power up, the application is transferred from the flash chip to RAM as it is when directly downloaded from PiCPro.

To place the application in flash:

- 1. Compile the application into a hex file in PiCPro.
- 2. Use the Download Hex command in PiCPro to download the application into flash.

Even though you have placed an application in flash, you can still download and run a different application from PiCPro. However, when you cycle power on the MMC, the application in flash will always be placed into RAM.

4.5.1 PiCPro Port

The 9-pin male D-sub PiCPro Port connector (labeled "PiCPro" on the front of the Control) provides serial communication between the Control and a computer for the PiCPro programming interface.

- Pin descriptions for are provided in Table 4-5
- Pin assignments are provided in Table 4-6
- The available PiCPro Port to PC cable is described in Table 4-7

USB ADAPTER

A USB-to-RS232 Adapter is avalable (P/N M.3000.0879) that allows you to connect the PiCPro Port on the Control to a USB connector on your PC. One side of the Adapter contains a 6in cable that connects to your PC. The other side of the Adapter contains a male DB9 connector that allows connection to the Control using a PiCPro Cable M.1302.8250 (not provided, described in Table 4-7 on page 44).

Table 4-5: PiCPro Port Pin Descriptions				
Function	Notes	Pin		
Receive Data	RS232-level signal that receives serial data from the connected PC running PiCPro.	2		
Transmit Data	RS232-level signal that transmits serial data to the connected PC running PiCPro.	3		
Signal Ground	Provides the return path for signals	5		
Data Terminal Ready	Always high (tied to +12V through 1K resistor)	4		
Request-to-send	Always high (tied to +12V through 1K resistor)	7		
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Connector Shell		

Table 4-6: PiCPro Port Pin Assignments					
Pin	Signal	In/Out	Connector Pinout		
1	NC	N/A			
2	RS232 Receive Data	In	9-pin male D-sub		
3	RS232 Transmit Data	Out			
4	Data Terminal Ready	Out			
5	Signal Ground	In/Out			
6	NC	N/A			
7	Request-to-send	Out	9005		
8	NC	N/A			
9	NC	N/A			
Connector Shield	Drain	In			

	Table 4-7: PiCPr0 Port to PC Cable					
Length:	Part Number: M.1302.8250 Length: 4 M (13 ft) Cable type: 24 AWG, shielded, twisted pair, 4 conductor.					
	female D-sub (to ro Port, face view)		female D-sub (to M Port, face view)			
	9 0 0 0 0 0 0 0 0 1		9 5 0000 6 000 1			
Pin	Signal	Pin	Signal	Notes		
2	Receive Data	3	Transmit Data	Twisted		
3	Transmit Data	2 Receive Data		Pair		
5	Signal Ground	5	Signal Ground			
Shell	Drain	Shell	Drain			

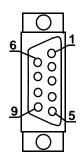
4.5.2 Block I/O Port

The 9-pin female D-sub PiCPro Port connector (labeled "BLK IO" on the front of the Control) provides serial communication between 1 to 77 Block I/O modules and the Control.

- Pin descriptions for are provided in Table 4-8.
- Pin assignments are provided in Table 4-9.
- The available Flying Lead cable is described in Table 4-10.
- Connections to the Block I/O Module are described in Table 4-11.
- Available Breakout Boxes and Cables are described in Table 4-12.
- Breakout Box dimensions are shown in Figure 4-2

Table 4-8: Block I/O Port Pin Descriptions				
Function	Notes	Pin		
Transmit Data +	Transmits data to Block I/O Modules.	3		
Transmit Data -	Transmits data to Block I/O Modules.	4		
Receive Data +	Receives data from Block I/O Modules.	5		
Receive Data -	Receives data from Block I/O Modules.	6		
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	7 & Shell		

Table 4-9: Block I/O Port Pin Assignment				
Pin	Signal	In/Out	Connector Pinout	
1	NC	N/A		
2	N/C	N/A	9-pin female D-sub	
3	Transmit Data +	Out		
4	Transmit Data -	Out	9 5	
5	Receive Data +	In		
6	Receive Data -	In		
7	Shield	In	6 0 1	
8	NC	N/A		
9	NC	N/A		
Connector Shell	Drain	In		


NOTE

Pin 7 of the Block I/O port connector is connected to the connector shell within the MMC. Therefore, the shield may be connected to either pin 7 or the connector shell.

Table 4-10: Block I/O Port to Flying Lead Cable

Part Number: M.1016.2568 Length: 3 M (10 ft) Cable type: 24 AWG, twisted pair (individually shielded), 4 conductor.

9-Pin male D-sub (to Block I/O Port, face view)

Pin	Signal	Color	Notes
3	Transmit Data +	White	Twisted
4	Transmit Data -	Black	Pair
7	Shield	N/A	with Shield
5	Receive Data +	Red	Twisted
6	Receive Data -	Black	Pair
7	Shield	N/A	with Shield

	Table 4-11: Block I/O Port to Block I/O Module Wiring						
Use	Use this table to wire from the Block I/O Port to the first Block I/O Module.						
9-Pin r	9-Pin male D-sub (to Block I/O 5-Pin Pluggable Screw Terminal (to Block I/O Module, face view)						
	9 0 5	1 0 0 0 0 3 4 0 5					
Pin	Signal	Pin	Signal	Notes			
3	Transmit Data +	1	Receive Data +	Twisted Pair			
4	Transmit Data -	2	Received Data -	i wisteu raii			
5	Receive Data +	4	Transmit Data +	Twisted Pair			
6	Received Data -	5	Transmit Data -	i wisicu raii			
7	Shield Ground	3	Shield Ground				
Shell	Drain	Shell	Drain				

Table 4-12: Block I/O Port Breakout Box and Cables ^a					
Description	Length	Part Number			
MMC Block I/O Breakout Box	N/A	M.1016.2533			
MMC Block I/O Connector to Breakout Box Cable	.3 M (1 ft)	M.1016.2543			
MMC Block I/O Connector to Breakout Box Cable	.6 M (2 ft)	M.1016.2544			
MMC Block I/O Connector to Breakout Box Cable	.9 M (3 ft)	M.1016.2545			

a. The Breakout Box (see Figure 4-2 on page 48) is DIN-rail mounted, and provides screw terminal wire termination. It can be attached to the "BLK I/O" port on the MMC Control. The pinouts on the terminal strip interface provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block. The connector pins marked with the "ground" symbol on the screw connector are connected to the "D" connector shell for shield grounding purposes.

3.000"

1 5

2.250"

1.750"

Figure 4-2: Block I/O Breakout Box Dimensions

4.5.3 User Port

The 15-pin HD male D-sub User Port connector (labeled "USER PORT" on the front of the Control) provides RS232 and RS485 serial communication between a serial device and the Control

- Pin descriptions are provided in Table 4-13
- Pin assignments are provided in Table 4-14
- The available Flying Lead cable is described in Table 4-15.
- The available RS-232 Exter HMI cable is described in Table 4-16.
- The available RS-485 Exter HMI cable is described in Table 4-17.
- Available Breakout Boxes and Cables are described in Table 4-18.
- Breakout Box dimensions are shown in Figure 4-3

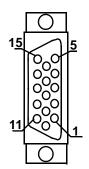

Table 4-13: User Port Pin Descriptions				
Function	Notes	Pin		
RS232 Receive Data	RS232-level signal that receives serial data from the connected serial device.	9		
RS232 Transmit Data	RS232-level signal that sends serial data to the connected serial device.	10		
RS232 Request-to-send	RS232-level signal that indicates to the connected serial device that it can transmit data to the Control.	5		
RS232 Clear-to-send	RS232-level signal that indicates to the Control that it can transmit data to the connected serial device.	7		
RS-232 Data-terminal- ready	This output from the Control is always high (12 Vdc).	4		
RS-485 Receive Data +	RS485-level signal that receives serial data from the connected serial device(s).	12		
RS-485 Receive Data -	RS485-level signal that receives serial data from the connected serial device(s).	13		
RS-485 Transmit Data +	RS485-level signal that transmits serial data to the connected serial device(s).	14		
RS-485 Transmit Data - RS485-level signal that transmits serial data to the connected serial device(s).		15		
Signal Ground	Provides the return path for signals	8		
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell		

Table 4-14: User Port Pin Assignments					
Pin	Signal	In/Out	Connector Pinout		
1	NC	N/A			
2	N/C	N/A			
3	N/C	N/A			
4	RS232 Data-terminal-ready (12 Vdc)	Out	_		
5	RS232 Request-to-Send	Out	15-pin HD male D-sub		
6	N/C	N/A			
7	RS232 Clear- to-Send	In	11/0/1		
8	Signal Ground	In/Out			
9	RS232 Receive Data	In			
10	RS232 Transmit Data	Out	15 0 5		
11	N/C	N/A			
12	RS485 Receive Data +	In			
13	RS485 Receive Data -	In			
14	RS485 Transmit Data +	Out			
15	RS485 Transmit Data -	Out	1		
Connector Shell	Drain	In			

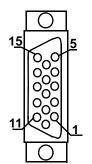
Table 4-15: User Port to Flying Lead Cable

Part Number: M.1016.2565 Length: 3 M (10 ft) Cable type: 28 AWG, shielded, twisted pair, 16 conductor.

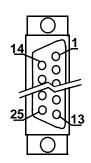
15-Pin HD female D-sub (to User Port, face view)

Pin	Signal	Color	Notes
3	N/C	Blue	Twisted
8	Signal Ground	Blue/Black	Pair
12	RS485 Receive Data +	Brown	Twisted
13	RS485 Receive Data -	Brown/Black	Pair
14	RS485 Transmit Data +	Violet	Twisted
15	RS485 Transmit Data -	Violet/Black	Pair
4	RS232 Data-terminal Ready	White	
5	RS232 Request-to-send	Red	
7	RS232 Clear-to-send	Green	
9	RS232 Receive Data	Yellow	
10	RS232 Transmit Data	Orange	
Shell	Drain	N/A	

Table 4-16: User Port to RS-232 Exter HMI Cable Part Number: M.1302.8453 Length: 4 M (13 ft) Cable type: 24 AWG, shielded, twisted pair, 4 conductor. 9-Pin female D-sub (to 15-Pin HD female D-sub Exter HMI COM2 Port, (to User Port, face view) face view) 00 0 0 Pin Pin Signal Signal **Notes** 9 3 Receive Data Transmit Data Twisted 2 10 Transmit Data Receive Data Pair 8 Signal Ground 5 Signal Ground Shell Shell Drain Drain


Table 4-17: User Port to RS-485 Exter HMI Cable

Part Number: M.1302.8454


Length: 4 M (13 ft)

Cable type: 24 AWG, shielded, twisted pair, 6 conductor.

15-Pin HD female D-sub (to User Port, face view)

25-Pin male D-sub (to Exter HMI COM1 Port, face view)

Pin	Signal	Pin	Signal	Notes
12	Receive Data+	2	Transmit Data+	Twisted
13	Receive Data-	15	Transmit Data-	Pair
14	Transmit Data+	3	Receive Data+	Twisted
15	Transmit Data-	16	Receive Data-	Pair
8	Signal Ground	7	Signal Ground	
Shell	Drain	Shell	Drain	

Table 4-18: User Port Breakout Box and Cables ^a					
Description	Length	Part Number			
MMC User Port Breakout Box	N/A	M.1016.2530			
MMC User Port to Breakout Box Cable	.3 M (1 ft)	M.1016.2715			
MMC User Port to Breakout Box Cable	.6 M (2 ft)	M.1016.2716			
MMC User Port to Breakout Box Cable	.9 M (3 ft)	M.1016.2717			

a. The Breakout Box (see Figure 4-3 on page 54) is DIN-rail mounted, and provides screw terminal wire termination. It can be attached to the "USER PORT" connector on the MMC Control. The pinouts on the terminal strip interface provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block. The connector pins marked with the "ground" symbol on the screw connector are connected to the "D" connector shell for shield grounding purposes.



Figure 4-3: User Port Breakout Box Dimensions

4.5.4 General I/O Port

The 44-pin HD male D-sub General I/O Port connectors (labeled "GEN I/O" on the front of the Control) provides connection between user I/O devices and the Control. This port provides 16 source-only outputs (described in detail in section 4.5.4.1 on page 58), and 16 sink or source inputs (described in detail in section 4.5.4.2 on page 61).

- Pin descriptions are provided in Table 4-19
- Pin assignments are provided in Table 4-20
- The available Flying Lead cable is described in Table 4-21.
- Available Breakout Boxes and Cables are described in Table 4-22.
- Breakout Box dimensions are shown in Figure 4-4

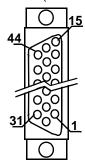
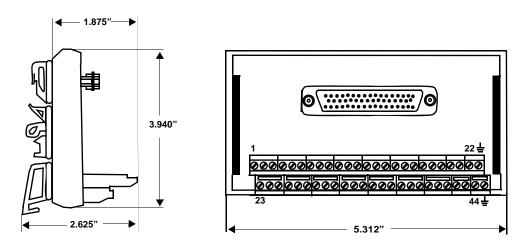

Table 4-19: General I/O Port Pin Descriptions				
Function	Notes	Pin		
DC Outputs 1-16	Nominal 24 Vdc Outputs capable of sourcing up to 250 ma.	1-16		
DC Inputs 1-8	Nominal 24 Vdc Inputs (Sink or Source) Inputs 1-8	23-30		
Sink/Source select pin for DC Inputs 1-8	To make DC Inputs 1-8 "sourcing" inputs (24 Vdc applied to the DC Input turns the input "on"), connect 24 Vdc Common to this pin. To make DC Inputs 1-8 "sinking" inputs (24 Vdc Common applied to the DC Input turns the input "on"), connect 24 Vdc (nominal) to this pin.	21		
DC Inputs 9-16	24 Vdc (nominal) Inputs (Sink or Source) 9- 16.	37-44		
Sink/Source select pin for DC Inputs 9-16	To make DC Inputs 9-16 "sourcing" inputs (24 Vdc applied to the DC Input turns the input "on"), connect 24 Vdc Common to this pin. To make DC Inputs 9-16 "sinking" inputs (24 Vdc Common applied to the DC Input turns the input "on"), connect 24 Vdc (nominal) to this pin.	35		
24 Vdc Out	24 Vdc power (nominal) is routed from the 3- pin Power connector to these pins. Connect the Sink/Source select pin (described above) to this pin to configure the associated Inputs as "sinking" inputs.	20, 34		
24 Vdc Common	24 Vdc Common is routed from the 3-pin Power connector to these pins. Connected the Sink/Source select pin (described above) to this pin to configure the associated Inputs as "sourcing" inputs.	22, 36		
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell		

	Table 4-20: General I/O Port Pin Assignments				
Pin	Signal	In/Out	Connect	or Pinout	
1	DCOUT1	Out			
2	DCOUT2	Out			
3	DCOUT3	Out			
4	DCOUT4	Out			
5	DCOUT5	Out	4	4-pin HD male	D-sub
6	DCOUT6	Out		0,	
7	DCOUT7	Out		31	-
8	DCOUT8	Out	44 000		
9	DCOUT9	Out			
10	DCOUT10	Out		44	
11	DCOUT11	Out		1	<u>5</u>
12	DCOUT12	Out			
13	DCOUT13	Out			
14	DCOUT14	Out			
15	DCOUT15	Out			
16	DCOUT16	Out			
17-19	N/C	N/A	Pin	Signal	In/Out
20	IO24V	Out	34	IO24V	Out
21	DCSS1	In	35	DCSS2	In
22	IO24C	Out	36	IO24C	Out
23	DCIN1	In	37	DCIN9	In
24	DCIN2	In	38	DCIN10	In
25	DCIN3	In	39	DCIN11	In
26	DCIN4	In	40	DCIN12	In
27	DCIN5	In	41	DCIN13	In
28	DCIN6	In	42	DCIN14	In
29	DCIN7	In	43	DCIN15	In
30	DCIN8	In	44	DCIN16	In
31-33	N/C	N/A	Shell	Drain	In

Table 4-21: General I/O Port to Flying Lead Cable

Part Number: M.1016.2567 Length: 3 M (10 ft) Cable type: 28 AWG, shielded, twisted pair, 44 conductor.

44-Pin HD female D-sub (to Gen I/O Port, face view)



Pin	Signal	Color	Notes	Pin	Signal	Color	Notes
1	DCOUT1	Black	Twisted	22	IO24C	Red	Twisted
2	DCOUT2	Red	Pair	23	DCIN1	Brown	Pair
3	DCOUT3	Black	Twisted	24	DCIN2	Red	Twisted
4	DCOUT4	White	Pair	27	DCIN5	Orange	Pair
5	DCOUT5	Black	Twisted	25	DCIN3	Green	Twisted
6	DCOUT6	Green	Pair	26	DCIN4	White	Pair
7	DCOUT7	Black	Twisted	28	DCIN6	Green	Twisted
8	DCOUT8	Blue	Pair	29	DCIN7	Blue	Pair
9	DCOUT9	Black	Twisted	31	None	Green	Twisted
10	DCOUT1	Yellow	Pair	32	None	Yellow	Pair
11	DCOUT1	Black	Twisted	33	None	Green	Twisted
12	DCOUT1	Brown	Pair	34	IO24V	Brown	Pair
13	DCOUT1	Black	Twisted	35	DCSS2	Green	Twisted
14	DCOUT1	Orange	Pair	36	IO24C	Orange	Pair
15	DCOUT1	Red	Twisted	37	DCIN9	White	Twisted
30	DCIN8	White	Pair	38	DCIN10	Blue	Pair
16	DCOUT1	Red	Twisted	39	DCIN11	White	Twisted
17	None	Green	Pair	40	DCIN12	Yellow	Pair
18	None	Red	Twisted	41	DCIN13	White	Twisted
21	DCSS1	Blue	Pair	42	DCIN14	Brown	Pair
19	None	Red	Twisted	43	DCIN15	White	Twisted
20	IO24V	Yellow	Pair	44	DCIN16	Orange	Pair
Shell	Drain	N/A					

Table 4-22: General I/O Port Breakout Box and Cables ^a					
Description	Length	Part Number			
MMC Gen I/O Breakout Box	N/A	M.1016.2532			
MMC Gen I/O & Aux I/O Connector to Breakout Box Cable	.3 M (1 ft)	M.1016.2539			
MMC Gen I/O & Aux I/O Connector to Breakout Box Cable	.6 M (2 ft)	M.1016.2540			
MMC Gen I/O & Aux I/O Connector to Breakout Box Cable	.9 M (3 ft)	M.1016.2541			

a. The Breakout Box (see Figure 4-4 on page 58) is DIN-rail mounted, and provides screw terminal wire termination. It can be attached to the "GEN I/O" port on the MMC Control, and on the "GEN I/O A" and "GEN I/O B" ports on the MMC 32 In/32 Out Expansion module. The pinouts on the terminal strip interface provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block. The connector pins marked with the "ground" symbol on the screw connector are connected to the "D" connector shell for shield grounding purposes.

Figure 4-4: General I/O Port Breakout Box Dimensions

4.5.4.1 DC Output Operation

The General I/O Port provides 16 source-only 24 Vdc outputs. Each of the 16 outputs on the general I/O connector is a solid state switch rated at 250 ma. An example of connecting the DC Outputs to loads is shown in Figure 4-5.

There are two groups of eight outputs: group A = output 1 through output 8, group B = output 9 through output 16. Each group is capable of detecting a short circuit condition. When a short circuit condition is sensed, all outputs in the group are turned off and remain off for approximately 100 ms regardless of ladder activity. After 100 ms, the ladder again controls the outputs. In addition, each output is protected with internal

Standalone MMC Hardware Manual - STANDALONE MMC CONTROL

clamping diodes. Without clamping, high voltage transients (kickback) from inductive loads might damage the module.

For safety reasons, all outputs turn off (no current flow) when a scan loss condition occurs.

For more information on DC output operation, refer to Section 13.3 on page 208 of Appendix A.

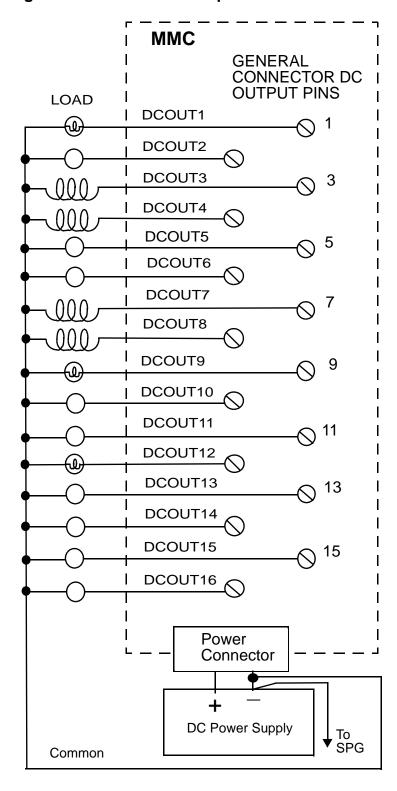


Figure 4-5: General I/O Outputs Connected to Loads

4.5.4.2 DC Input Operation

The General I/O Port provides sixteen 24 Vdc inputs. There are two groups of eight inputs: group A = input 1 through output 8, group B = input 9 through output 16. Each group can be configured as sourcing or sinking. Connect the DCSS pin (DCSS1 for Group A, DCSS2 for Group B) to IO24C for a sourcing configuration. Connect the DCSS pin (DCSS1 for Group A, DCSS2 for Group B) to +24 Vdc for a sinking configuration. An example of connecting input devices in both a sink and source configuration is shown in Figure 4-6.

In addition, the first input of each Group (Input 1 of Group A, and input 9 of Group B), can be programmed to provide a processor interrupt on either a low-to-high or high-to-low transition.

For more information on DC input operation, refer to Section 13.2 on page 207 of Appendix A.

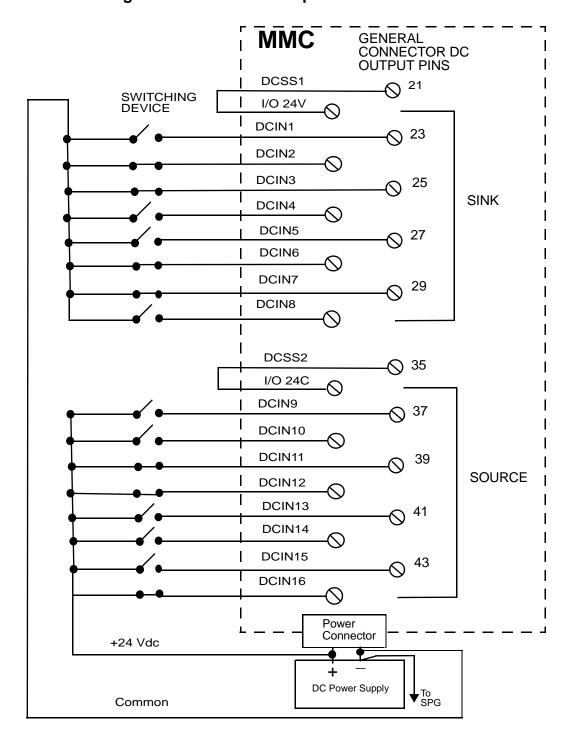
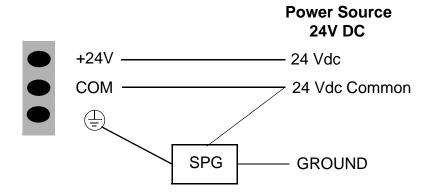


Figure 4-6: General I/O Inputs Connected to Devices

4.5.5 Power Connection

The Power connector (labeled "PWR" on the front of the Control) must be connected to a user-supplied +24 VDC power supply to provide power to the Control. The power supply screw terminal connection (3 pin) is at the bottom of the CPU section of the MMC. This +24 Vdc appears as an output at several points on the MMC connectors. Figure 4-7 illustrates the pin-out.

The MMC converts +24 Vdc power from this connector to DC power at voltages of +5 Vdc, + 15 Vdc, and -15 Vdc and supplies them to the logic side of the system. The same supply that powers the Control can be used for the field side of the system. Optionally, an external power supply (or supplies) can be used for the field side of the system. Such supplies are not routed through the MMC, but they should all have the same power cut-off switch as the Control.


The 24 VDC applied at the MMC input power connector is also available:

- To power the DC outputs
- To power the sink/source inputs
- To power the axes interface
- To power any attached MMC Option Modules

CAUTION

Always shut off power at the main disconnect switch before you begin to work on the MMC.

Figure 4-7: Pin Out for the 3-pin Power Supply Screw Terminal Connection

4.6 Analog Motion Control Connectors & Operation

This section provides theory-of-operation and connection information on the Analog Motion Control board, which is located on the left side of an MMC Control.

4.6.1 Axis I/O Ports

The 15-pin HD female D-sub Axis I/O Port connectors (labeled "A1", "A2", "A3", and "A4" on the front of the Control) provide connection between analog drives and the Control by providing the following:

- Two 24 Vdc outputs, described in detail in section 4.6.1.1 on page 68.
- One DC input, described in detail in section 4.6.1.2 on page 70.
- One 16-bit resolution analog output, described in detail in section 4.6.1.3 on page
 71.
- One quadrature, incremental encoder input, described in detail in section 4.6.1.4 on page 72.

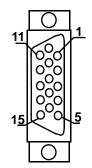
Additional information is provided in this section as follows:

- Pin descriptions provided in Table 4-23
- Pin assignments are provided in Table 4-24
- Available MMC Smart Drive cables are described in Table 4-25.
- The available Flying Lead cable is described in Table 4-26.
- Available Breakout Boxes and Cables are described in Table 4-27.
- Breakout Box dimensions are shown in Figure 4-8

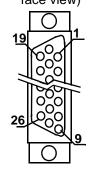
Table 4-23: Axis I/O Port Pin Descriptions				
Function	Notes	Pin		
Encoder Input (A, A/, B, B/, I, I/)	Provides connections to an incremental encoder having differential outputs.	1-5, 10		
D/A Output (DA+, DA-)	+/- 10V D/A output for controlling an analog drive having a differential input.	8, 9		
DC Input (DCIN+, DCIN-)	Provides connection to an input device (sink or source).	6, 7		
DC Outputs (DCOUT1, DCOUT2)	Provides connection to an output device (sink or source).	13, 14		
DCOSS	Connect this pin to +24 Vdc to configure the outputs (DCOUT1 & DCOUT2) as sinking-type, and to +24 Vdc Common to configure the DC Outputs (DCOUT1 & DCOUT2) as sourcing-type.	15		
24 Vdc out	24 Vdc output to be used to power connected input and/or output devices.	11		
СОМ	24 Vdc Common used to provide the 24 Vdc return path for sinking-type outputs.	12		
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell		

-	Table 4-24: Axis I/O Port Pin Assignments					
Pin	Signal	In/Out	Connector Pinout			
1	А	In				
2	A/	In				
3	В	In				
4	B/	In				
5	1	In				
6	DCIN+	In	15-pin HD female D-sub			
7	DCIN-	Out	15 5			
8	D/A+	Out				
9	DA-	Out	11 000			
10	1/	In	11 000 1			
11	+24 Vdc	Out				
12	СОМ	In				
13	DCOUT1	In/Out				
14	DCOUT2	In/Out				
15	DCOSS	In/Out				
Connector Shell	Drain	In				

Table 4-25: Axis I/O Port to MMC Smart Drive Cable


Part Numbers:

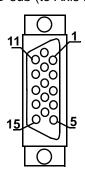
.5 M (1.6 ft): M.1302.5990 2.5 M (8.2 ft): M.1302.7714 1 M (3.3 ft): M.1302.5991 3.5 M (11.5 ft): M.1302.7715 5 M (4.9 ft): M.1301.5992 5 M (16.4 ft): M.1302.7537


2 M (6.6 ft): M.1302.5993

Cable type: 28 AWG, shielded, twisted pair, 18 conductor.

15-Pin HD male D-sub (to Axis I/O Port, face view)

26-Pin HD male D-sub (to MMC Smart Drive I/O Port, face view)

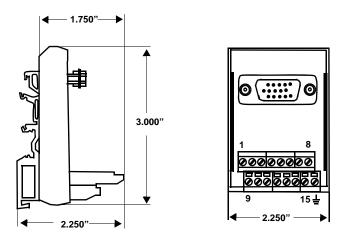


Pin	Signal	Pin	Signal	Notes
1	Α	1	Α	Twisted
2	A/	2	A/	Pair
3	В	3	В	Twisted
4	B/	4	B/	Pair
5	I	5	I	Twisted
10	1/	6	1/	Pair
11	+24 Vdc	10	IO24V	Twisted Pair
12	СОМ	16	ЮСОМ	(20 AWG)
13	DCOUT1	17	IN1	Twisted
14	DCOUT2	18	IN2	Pair
6	DCIN+	26	OUT4	
7	DCIN -			Jumpered
12	СОМ			Jumpered
15	DCOSS			Jumpered
11	+24 Vdc			Gumpered
Shell	Drain	Shell	Drain	

Table 4-26: Axis I/O Port to Flying Lead Cable

Part Number: M.1016.2519 Length: 3 M (10 ft) Cable type: 28 AWG, shielded, twisted pair, 16 conductor.

15-Pin HD male D-sub (to Axis I/O Port, face view)



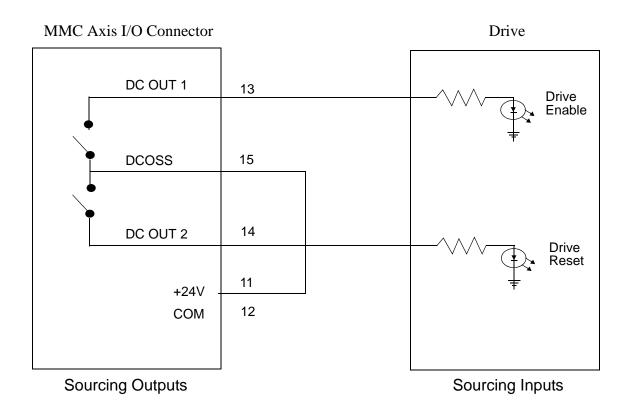
Pin	Signal	Color	Notes
1	Α	Blue	Twisted
2	A/	White/Blue	Pair
3	В	Black	Twisted
4	B/	White/Black	Pair
5	I	Red	Twisted
10	I/	White/Red	Pair
8	D/A+	Green	Twisted
9	D/A -	White/Green	Pair
6	DCIN+	Yellow	Twisted
7	DCIN-	White/Yellow	Pair
11	+24 Vdc	Orange	Twisted
11	+24 Vdc	White/Orange	Pair
12	СОМ	Brown	Twisted
13	DCOUT1	White/Brown	Pair
14	DCOUT2	Violet	Twisted
15	DCOSS	White/Violet	Pair
Shell	Drain	N/A	

Table 4-27: Axis I/O Port Breakout Box and Cables ^a			
Description	Length	Part Number	
Axis Connector Breakout Box	N/A	M.1016.2529	
MMC Axis A"n" to Breakout Box Cable	.3 M (1 ft)	M.1016.2535	
MMC Axis A"n" to Breakout Box Cable	.6 M (2 ft)	M.1016.2536	
MMC Axis A"n" to Breakout Box Cable	.9 M (3 ft)	M.1016.2537	

a. The Breakout Box (see Figure 4-8 on page 68) is DIN-rail mounted, and provides screw terminal wire termination. It can be attached to the A1, A2, A3, and A4 ports on the Standalone MMC Control or the MMC Axis I/O Option Module. The pinouts on the terminal strip interface provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block. The ground pin on the terminal strip provides a connection to the metal D-shell.

Figure 4-8: Axis I/O Port Breakout Box Dimensions

4.6.1.1 Axis I/O Port DC Outputs


Each Axis I/O Port provides 2 sink or source 24 Vdc outputs. Each of the 2 outputs consists of an optically isolated solid state switch rated at 100 ma. It turns on or off according to the logic state sent to it by the CPU. When the switch turns on, current flows through the switch. When the switch turns off, current flow stops. When the DCOSS pin is tied to the +24V, the outputs will be in a source configuration as shown in Figure 4-9. When the DCOSS pin is tied to COMMON, the outputs will be in a sink configuration as shown in Figure 4-10.

These outputs are intended to interface with the drive enable and drive reset inputs.

For safety reasons, all outputs turn off (no current flow) when a scan loss condition occurs.

For more information on DC output operation, refer to Section 13.3 on page 208 of Appendix A.

Figure 4-9: Axis I/O DC Output Source Configuration

MMC Axis I/O Connector **Drive** +24V DC OUT 1 13 Enable **DCOSS** 15 +24V 14 DC OUT 2 Drive Reset 11 +24V 12 COM Sinking Inputs Sinking Outputs

Figure 4-10: Axis I/O DC Output Sink Configuration

4.6.1.2 Axis I/O Port DC Input

Each Axis I/O Port provides one 24 Vdc input. Each input consists of an optically isolated solid state switch that can be wired in either a sourcing or sinking configuration. The input is turned on or off by the connected external device. One of the input pins should be connected to either +24 Vdc or COM. The remaining input pin should be tied to the input device. Refer to Figure 4-11.

This input is intended to interface with the drive ready output.

For more information on DC input operation, refer to Section 13.2 on page 207 of Appendix A.

MMC Axis I/O Connector

DC IN+ 6

Drive Ready

Drive Ready

Figure 4-11: Axis I/O Port DC Input

4.6.1.3 Axis I/O Port Analog Output


The Axis I/O Port provides a +/-10 V differential Analog Output. The Analog Output is typically connected to the drive Command Input. Only shielded twisted pair wire should be used to make the connection between the analog output and the drive as shown in Figure 4-12.

The CPU sends the analog output section a 16-bit digital word to each analog output channel. Each digital word is converted to a corresponding voltage within the range of ±10 Vdc. The voltage is buffered and brought out to a pair of I/O connections as a differential type voltage output. This output is less subject to interference from electrical noise than a single-ended output would be.

You can adjust each analog output channel in software for offset adjustments, gain scaling, and unipolar outputs.

For safety reasons, all outputs are automatically reset to 0 Vdc when a scan loss condition occurs.

Figure 4-12: Axis Port D/A Output

4.6.1.4 Axis I/O Port Encoder Input

The Axis I/O Port provides an input for a differential incremental encoder. The encoder output signals from the drive should be connected to the Axis I/O Port encoder input for each axis. The Axis I/O Port encoder input accepts RS422 differential inputs. The encoder signals should be quadrature type. All encoder wiring between the MMC and the drive should be shielded twisted pair as shown in Figure 4-13.

For more information on the Encoder input operation, refer to Section 13.4 on page 209 of Appendix A.

NOTE

The power supply that powers the encoder must be referenced to the power supply that powers the MMC. This is done by connecting the "common" terminal of each supply back to Single Point Ground. Failure to observe this precaution may result in sporadic encoder operation and/or damage to the MMC.

MMC Axis I/O Connector **Drive** 1 Α Α ₹ A/ 2 A/ 3 В В ₹ B/ 4 B/ ı 5 ₹ ľ 10 1/ Shielded Twisted **Pairs**

Figure 4-13: Axis Port MMC Encoder Input

4.6.2 Aux I/O Port

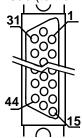
The 44-pin HD female D-sub Auxiliary I/O Port connector (labeled "AUX I/O" on the front of the Control) provides connection to an incremental encoder and various I/O devices by providing the following inputs to the Control:

- Five fast DC inputs, described in detail in section 4.6.2.2 on page 80.
- 12 optically isolated DC inputs, described in detail in section 4.6.2.3 on page 82.
- One quadrature, incremental encoder channel, described in detail in section 4.6.2.4 on page 83.
- One 12-bit resolution analog input channel, described in detail in section 4.6.2.5 on page 84.

Additional information is provided in this section as follows:

- Pin descriptions fare provided in Table 4-28
- Pin assignments are provided in Table 4-29
- The available Flying Lead cable is described in Table 4-30.
- Available Breakout Boxes and Cables are described in Table 4-31.
- Breakout Box dimensions are shown in Figure 4-14

Table 4-28: Aux I/O Port Pin Descriptions					
Function	Notes	Pin			
Encoder Input (A, A/, B, B/, I, I/)	Provides connections to an incremental encoder having differential outputs.	1-6			
DC Input 1-6 (DCIN1- DCIN12)	Provides connection to an input device (sink or source).	32-37			
DC Input 7-12 (DCIN1-DCIN12)	Provides connection to an input device (sink or source).	39-44			
DC Sink/Source A (DCSSA)	If this pin is connected to +24 Vdc, inputs 1-6 are "sinking". If this pin is connected to +24 Common, inputs 1-6 are "sourcing".	31			
DC Sink/Source B (DCSSB)	If this pin is connected to +24 Vdc, inputs DCIN1-DCIN6 are "sinking". If this pin is connected to +24 Common, inputs DCIN7-DCIN12 are "sourcing".	38			
Analog Input (ANL- GIN+, ANLGIN-)	+/- 10V 16-bit A/D input	13,14			
Fast Inputs 1-5 (FASTIN1-5+, FASTIN1-5-)	Differential Fast Inputs for latching Encoder position.	16, 17, 19, 20, 22, 23, 25, 26, 28, 29			
24 Vdc out	24 Vdc output to be used to power connected input and/or output devices.	8, 9			
СОМ	24 Vdc Common used to provide the 24 Vdc return path for sinking-type outputs.	10, 11			
+5 Vdc Out	+5 Vdc output to be used to power connected encoder (150 ma maximum).	12			
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	7, 15, 18, 21, 24, 27, 30, Shell			

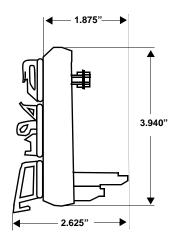

	Table 4-29: Aux I/O Port Pin Assignment						
Pin	Signal	In/Out	Pin	Signal	In/Out	Connector Pinout	
1	А	In	25	FASTIN4+ ^{(a}	In		
2	A/	In	26	FASTIN4-(a)	In		
3	В	In	27	Shield	In		
4	B/	In	28	FASTIN5+	In		
5	1	In	29	FASTIN5-	In		
6	1/	In	30	Shield	In		
7	Shield-	In	31	DCSSA	In/Out		
8, 9	+24 Vdc Out	Out	32	DCIN1	In	44-pin HD	
10, 11	СОМ	In	33	DCIN2	In	female D- sub	
12	+5 Vdc Out	Out	34	DCIN3	In	15	
13	ANLGIN+	In	35	DCIN4	In	44 600	
14	ANLGIN-	In	36	DCIN5	In	000	
15	Shield	In	37	DCIN6	In	31	
16	FASTIN1+	In	38	DCSSB ^(a)	In/Out	31/20/1	
17	FASTIN1-	In	39	DCIN7 ^(a)	In		
18	Shield	In	40	DCIN8 ^(a)	In		
19	FASTIN2+	In	41	DCIN9 ^(a)	In		
20	FASTIN2-		42	DCIN10 ^(a)	In		
21	Shield		43	DCIN11 ^(a)	In		
22	FASTIN3+ ^a		44	DCIN12 ^(a)	In		
23	FASTIN3- ^(a)		Shell	Drain	In		
24	Shield	MAAG A					

a. Signal not available on MMC-A2

Table 4-30: Aux I/O Port to Flying Lead Cable

Part Number: M.1016.2566 Length: 3 M (10 ft) Cable type: 28 AWG, shielded, twisted pair, 44 conductor.

44-Pin HD male D-sub (to Aux I/O Port, face view)


Pin	Signal	Color	Notes	Pin	Signal	Color	Notes
1	Α	Black	Twisted	22	FASTIN3+	Red	Twisted
2	A/	Red	Pair	23	FASTIN3-	Brown	Pair
3	В	Black	Twisted	24	Shield	Red	Twisted
4	B/	White	Pair	27	Shield	Orange	Pair
5	I	Black	Twisted	25	FASTIN4+	Green	Twisted
6	I/	Green	Pair	26	FASTIN4-	White	Pair
7	Shield	Black	Twisted	28	FASTIN5+	Green	Twisted
8	+ 24 Vdc	Blue	Pair	29	FASTIN5-	Blue	Pair
9	+ 24 Vdc	Black	Twisted	31	DCSSA	Green	Twisted
10	СОМ	Yellow	Pair	32	DCIN1	Yellow	Pair
11	СОМ	Black	Twisted	33	DCIN2	Green	Twisted
12	+5 Vdc Out	Brown	Pair	34	DCIN3	Brown	Pair
13	ANLGIN+	Black	Twisted	35	DCIN4	Green	Twisted
14	ANLGIN-	Orange	Pair	36	DCIN5	Orange	Pair
15	Shield	Red	Twisted	37	DCIN6	White	Twisted
30	Shield	White	Pair	38	DCSSB ^(a)	Blue	Pair
16	FASTIN1+	Red	Twisted	39	DCIN7 ^(a)	White	Twisted
17	FASTIN1-	Green	Pair	40	DCIN8 ^(a)	Yellow	Pair
18	Shield	Red	Twisted	41	DCIN9 ^(a)	White	Twisted
21	Shield	Blue	Pair	42	DCIN10 ^(a)	Brown	Pair
19	Fastin2+	Red	Twisted	43	DCIN11 ^(a)	White	Twisted
20	Fastin2-	Yellow	Pair	44	DCIN12 ^(a)	Orange	Pair
Shell	Drain	N/A					

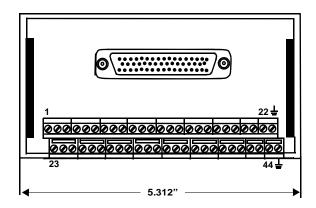
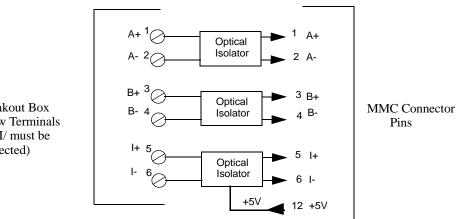

a. Signal not available on MMC-A2

Table 4-31: Aux I/O Port Breakout Box and Cables ^a					
Description	Length	Part Number			
MMC Aux I/O Breakout Box ^b	N/A	M.1016.2531			
MMC Aux I/O Breakout Box with Encoder Isolation ^c	N/A	M.1017.4236			
MMC Gen I/O & Aux I/O Connector to Breakout Box Cable	.3 M (1 ft)	M.1016.2539			
MMC Gen I/O & Aux I/O Connector to Breakout Box Cable	.6 M (2 ft)	M.1016.2540			
MMC Gen I/O & Aux I/O Connector to Breakout Box Cable	.9 M (3 ft)	M.1016.2541			

- a. The Breakout Box (see Figure 4-14 on page 77) is DIN-rail mounted, and provides screw terminal wire termination. It can be attached to the AUX I/O port on the Standalone MMC Control or the MMC Axis I/O Option Module. Both a standard Breakout Box as well as a Breakout Box that provides encoder isolation are available. The pinouts on the terminal strip interface provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block. The connector pins marked with the "ground" symbol on the screw connector are connected to the "D" connector shell for shield grounding purposes.
- b. Aux I/O Breakout Box dimensions are shown in Figure 4-14.
- c. See section 4.6.2.1 on page 78 for details on the Breakout Box with Encoder Isolation.

Figure 4-14: Aux I/O Port Breakout Box Dimensions



4.6.2.1 **Isolated Breakout Box Details**

The Isolated Breakout Box is different then the Standard Breakout Box in three ways:

- The Isolated Breakout Box provides optical isolation between the encoder (A, A/, B, B/, I, I/) signals and the Control. This boosts the encoder common mode voltages allowed from approximately 10 volts to hundreds of volts. This allows reliable encoder operation in the presence of large amounts of electrical noise and ground disturbances relative to the Control.
- Since the Isolated Breakout Box uses +5 Vdc from pin 12 of the Control to power it's internal circuitry, there is no +5 Vdc current to power the encoder. Therefore, the pin 12 screw terminal on the Isolated Breakout Box does not carry +5 Vdc, and the encoder must be powered by an external supply.
- When using the Isolated Breakout Box, the "index" inputs (I, I/) must be connected. If the connected encoder does not provide the index function, connect I on the Breakout Box to +5 Vdc, and I/ to +5 Vdc Common. Failure to connect I and I/ will result in a "loss-of-feedback" by the Control.

Figure 4-15: Connections from Encoder to Encoder Isolated AUX I/O

Breakout Box Screw Terminals (I & I/ must be connected)

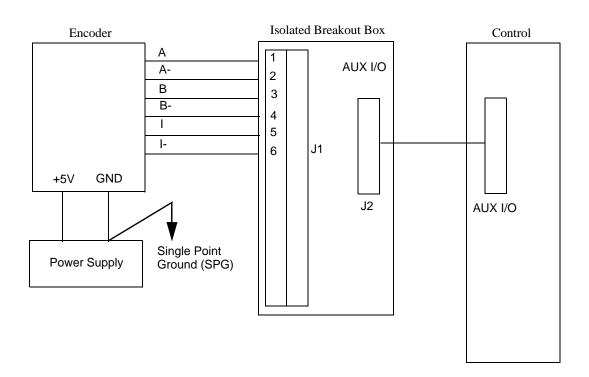


Figure 4-16: Encoder and Power Connections for Encoder Isolator

Table 4-32: Encoder Specifications				
Item	Specification			
Encoder Driver Required	RS-422 differential			
Recommended Encoder Drivers	7272, 75183, 8830, 75114, 9614, 26LS31 (or equivalent)			
Differential Input Voltage Range	2.5 volts to 7.0 volts			
Differential Input Current Range	2.5 ma (Input Voltage = 2.5 volts) to 30ma (Input Voltage = 7.0 volts)			
Input pulse width (minimum)	600 nanoseconds			
Input frequency (maximum) on A or B inputs from Quadrature output encoder	250KHz (1.0 MHz count rate, using quadrature edges)			
Input frequency (maximum) on A or B inputs from Pulse output encoder	500KHz (500KHz count rate)			

IMPORTANT

When using the Isolated Breakout Box, the "index" inputs (I, I/) must be connected. If the connected encoder does not provide the index function, connect I on the Breakout Box to +5 Vdc, and I/ to +5 Vdc Common. Failure to connect I and I/ will result in a "loss-of-feedback" by the Control.

4.6.2.2 Aux I/O Port Fast Inputs

The Aux I/O Port provides one fast 24 Vdc input for each encoder input, as follows:

Fast Input Association - Aux I/O Port			
Fast Input	Encoder		
FASTIN1	Axis 1		
FASTIN2	Axis 2		
FASTIN3	Axis 3		
FASTIN4	Axis 4		
FASTIN5	Aux I/O		

The fast input can be used to latch the encoder position under various conditions. Shielded twisted pair wiring should be used for all fast input connections. The fast inputs can be connected in either a source or sink configuration. The source configuration is illustrated in Figure 4-17, and the sink configuration is illustrated in Figure 4-18.

Figure 4-17: Fast Inputs Connected Using Shielded Twisted Pair (Source)

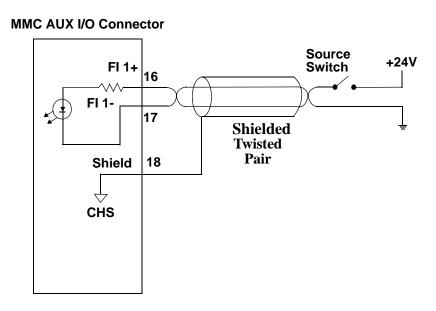
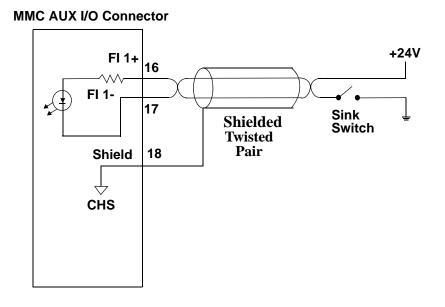
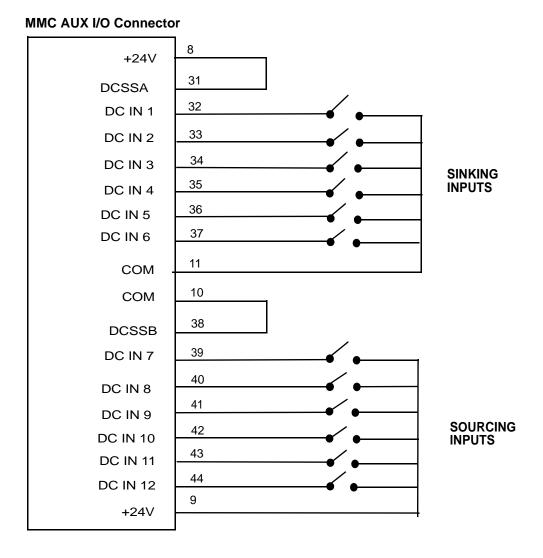



Figure 4-18: Fast Inputs Connected Using Shielded Twisted Pair (Sink)


4.6.2.3 Aux I/O Port DC Inputs

The Aux I/O Port provides 12 general purpose 24 Vdc inputs. The inputs are configured as two groups of six. Each group can be configured as sourcing or sinking. Connect the DCSS pin to COM for a sourcing configuration by connecting the DCSS pin to either the COM pin on the Aux I/O Port or to the Common of an external supply. Connect the DCSS pin to +24 Vdc for a sinking configuration by connecting the DCSS pin to either the +24 Vdc pin on the Aux I/O Port or to the +24 Vdc of an external supply. Both sinking and sourcing configurations, using the Aux I/O +24V and COM pins, are shown in Figure 4-19.

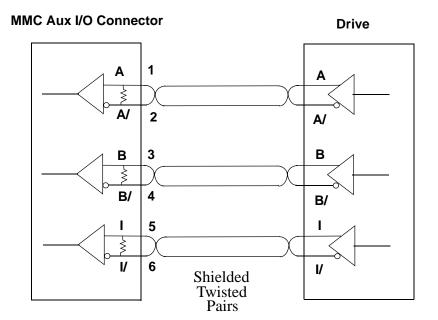
All 12 inputs are available on the four axis MMC-A4, and 6 inputs are available on the two axis MMM-A2.

For more information on DC input operation, refer to Section 13.2 on page 207 of Appendix A.

Figure 4-19: Aux I/O Port Inputs

Kollmorgen - April 2010

4.6.2.4 Aux I/O Port Encoder Input


The Aux I/O Port provides an input for a differential incremental encoder. This encoder is typically used as a digitizing (read only) axis. This axis then acts as a "master" axis, and the other servo axis are "slaved" to its position. The Aux I/O Port encoder input accepts RS422 differential inputs. The encoder signals should be quadrature type. All encoder wiring between the MMC and the drive should be shielded twisted pair as shown in Figure 4-20.

For more information on the Encoder input operation, refer to Section 13.4 on page 209 of Appendix A.

NOTE

The power supply that powers the encoder must be referenced to the power supply that powers the MMC. This is done by connecting the "common" terminal of each supply back to Single Point Ground. Failure to observe this precaution may result in sporadic encoder operation and/or damage to the MMC.

Figure 4-20: Aux Port MMC Encoder Input

4.6.2.5 Aux I/O Port Analog Input

The Aux I/O Port provides one differential analog input channel. The input range is ±10 VDC. The analog input voltage is sampled every 100 µsec by a 12-bit A/D converter. The most recent conversion result is stored in an on-board register. This register can be read at any time by the application.

The analog input signal passes through a common mode and differential mode filter prior to being applied to the A/D converter. These filters improve the noise immunity of the module.

4.7 SERCOS Motion Control Connections & Operation

This section provides information on connecting to the SERCOS Motion Control board, which is located on the left side of a SERCOS MMC Control.

The MMC SERCOS board is an alternate type of motion control used as part of an MMC base unit. It provides an interface between the MMC and 1 fiber optic ring (MMC-S8) or 2 fiber optic rings (MMC-S16). A ring can have from one to eight SERCOS slaves. The module contains an on board processor. The MMC-S8 has one SERCOS ring port located at the center of the module. The MMC-S16 has an additional ring port located at the top of the module. Each ring port has a receive and a transmit fiber optic connector. There is also an RS232 port used for loading FLASH memory updates.

The SERCOS board is controlled by an application created in PiCPro. An on-board processor interprets the functions and performs appropriate operations according to the SERCOS communications protocol.

Data Transfer Rates of 2 Mbaud, 4 Mbaud, 8 Mbaud, and 16 Mbaud are available, and Update Rates of 1 msec, 2 msec, 4 msec, and 8 msec are available.

If a scan loss occurs, SERCOS communications are reset. There is no communication with the SERCOS slaves until they are re-initialized.

4.7.1 SERCOS Receive and Transmit Ports

The SERCOS Receive Port and Transmit Port connectors (labeled "RECV1" and "XMIT1" on the front of the Module) located at the center of the module can connect to one SERCOS ring. On an MMC-S16, there is a second Receive Port connector and a second Transmit Port connector (labeled "RECV2" and "XMIT2" on the front of the Module) located at the top of the module that can connect to another SERCOS ring. The connection to each ring is made through a pair of female fiber optic SMA connectors. The module's transmitter is connected to the first receiver in the loop and the module's receiver is connected to the last transmitter in the loop.

Available SERCOS cables are shown in Table 4-33.

Table 4-33: SERCOS Cables ^a						
Description	Model Number	Length	Part Number			
	SERCOS-0.50m-6mm-AA	.5 M (1.6 ft)	M.1302.6379			
	SERCOS-1.00m-6mm-AA	1 M (3.3 ft)	M.1302.6400			
	SERCOS-2.00m-6mm-AA	2 M (6.6 ft)	M.1302.6401			
Heavy Duty SERCOS Ca-	SERCOS-3.00m-6mm-AA	3 M (9.8 ft)	M.1302.6402			
ble	SERCOS-5.00m-6mm-AA	5 M (16.4 ft)	M.1302.6403			
	SERCOS-10.00m-6mm-AA	10 M (32.8 ft)	M.1302.6404			
	SERCOS-15.00m-6mm-AA	15 M (49.2 ft)	M.1302.6405			
	SERCOS-30.00m-6mm-AA	30 M (98.4 ft)	M.1302.6406			

a. SERCOS Cables can be used to make the connection between a Standalone MMC SERCOS Control and a SERCOS Drive, and between SERCOS drives.

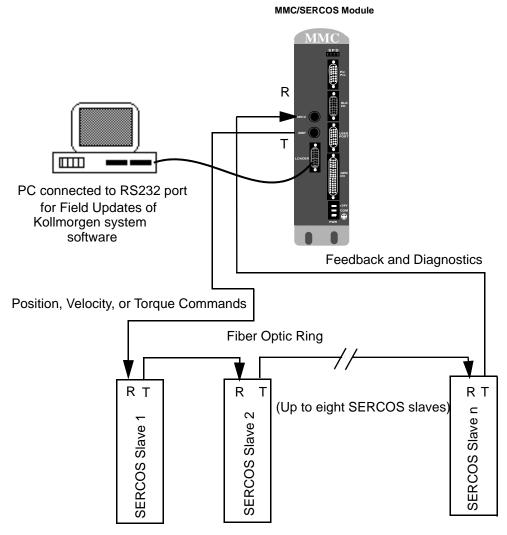


Figure 4-21: SERCOS Connections - One Ring

4.7.2 Loader Port

The 9-pin male D-sub Loader Port connector (labeled "LOADER" on the front of the Module) provides a serial connection to a PC to enable the user to update the FLASH memory on the Module.

- Pin descriptions for are provided in Table 4-34
- Pin assignments are provided in Table 4-35
- The available SERCOS Loader Port to PC cable is described in Table 4-36

Table 4-34: SERCOS Loader Port Pin Descriptions					
Function	Notes	Pin			
Receive Data	RS232-level signal that receives serial data from the connected PC running PiCPro.	2			
Transmit Data	RS232-level signal that transmits serial data to the connected PC running PiCPro.	3			
Signal Ground	Provides the return path for signals	5			
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Connector Shell			

Table 4-35: SERCOS Loader Port Pin Assignments						
Pin	Signal	In/Out	Connector Pinout			
1	NC	N/A				
2	RS232 Receive Data	In				
3	RS232 Transmit Data	Out	9-pin male D-sub			
4	NC	N/A				
5	Signal Ground	In/Out	6 601			
6	NC	N/A				
7	NC	N/A	9 0 0 5			
8	NC	N/A				
9	NC	N/A				
Connector Shield	Shield	In				

Table 4-36: SERCOS Loader Port to PC Cable Part Number: M.1302.8250 Length: 4 M (13 ft) Cable type: 24 AWG, shielded, twisted pair, 4 conductor. 9-Pin female D-sub (to 9-Pin female D-sub (to SERCOS Loader Port, PC COM Port, face view) face view) og ŏŏ 0 0 Pin Pin Signal Signal **Notes** 2 3 Receive Data Transmit Data Twisted 3 2 Pair Transmit Data Receive Data 5 5 Signal Ground Signal Ground

Drain

Shell

Shell

Drain

4.8 Specifications

	Table 4-37: Part Numbers										
Characteristic MMC Specifications Number of servo axes available at six update rates*							lable				
Model	Part Number	Speed	App Mem	RAM Mem	User Mem	8 ms	4 ms	2 ms	1 ms	.5 ms	.25 ms
MMC-A2	M.1017.3772	Std.	256K	128K	64K	2	2	2	2	2	1
MMC-A2 Plus	M.1302.7095	Х3	256K	128K	64K	18	18	16	8	3	1
MMC-A4	M.1017.3774	Std.	256K	128K	64K	4	4	4	4	2	1
MMC-A4 Plus	M.1302.7096	Х3	256K	128K	64K	20	20	16	8	3	1
MMC-S8 Plus	M.1302.7479	Х3	256K	128K	64k	8	8	8	4		
MMC- S16 Plus	M.3000.0472	Х3	256K	128K	64K	16	16	8	4		

^{*} Using features such as servo tasks, S-curve, RATIO_RL, M_LINCIR, M_SCRVLC, PLS, and CAM_OUT places a heavier burden on available CPU time. Consult Kollmorgen for assistance if you want to exceed the number of axes in this chart.

Table 4-38: General Specifications					
CPU	32 bit RISC processor with numeric coprocessor				
Battery	3V Coin Cell, BR2032 lithium battery				
CAUTION for Lithium Batteries Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.					
Flash Disk 2 Megabytes					
Memory	See Table 4-37 above.				
PiCPro Port (to workstation)	RS232 serial port, secured protocol. Software selectable baud rate to 57.6K				
User Port (to serial interface device)	RS232/RS485 serial port Supports RTS/CTS hardware handshaking Software selectable baud rate to 19.2K				
Input voltage	20 VDC to 30 VDC				
Input power	MMC: 250 mA plus I/O & Expansion Module power MMC Plus: 450mA plus I/O & Expansion Module power 10 A max				

Time-of-day clock Clock tolerance	Access via PiCPro 10.2 and above or your application program At 25°C (77°F),±1 second per day Over temperature, voltage and aging variation, +2/-12 seconds per day
Operating temperature range	5°C to 55°C (41°F to 131°F)
Storage temperature range	-40°C to 85°C (-40°F to 185°F)
Humidity	5 to 95%, non-condensing
CE Marked UL and C/UL Listed	Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards: EN 50081-2:1993EMC Generic Industrial Emissions EN 50082-2:1995EMC Generic Industrial Immunity EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers Operates with emissions below EN55011/ CISPR 11 Class A limits Immune to: • Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2 • RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204 • Electrical fast transients per EN61000-4-4 • Magnetic fields per EN61000-4-8 Refer to the EMC Guidelines for more information.
CE and 0/OE Elotod	
Physical size	2.25" wide x 9.6" high x 5.3" deep 57.15 mm x 243.84 mm x 134.62 mm
Vibration (per IEC 68-2-6)	10-57 Hz (constant amplitude = .15 mm) 57 - 2000 Hz (acceleration = 2 g)
Shock (per IEC 68-2-27)	Four shocks per axis (15g/11 msec)
Axis Port Analog Output	
Output channels	2 or 4
Resolution	16 bits
Output voltage range	±10 VDC
Maximum output current (1K Ω load)	±10 mA
Power on output voltage	0 V ±100 mV
Scan loss output voltage	0V ±100 mV
Accuracy	±0.375% of FSR Drift ± 50ppm/°C
Update rate	68 µsec

Aux Port Analog Input	
Input channel	1
Resolution	12 bits
Input voltage range	±10 V
Accuracy	±0.2% of FSR
Sample rate	100 µsec
Common mode filter	3 dB @ 10 K Hz
Differential mode filter	3 dB @ 475 Hz
Axis Port & Aux Port Encoder Inpu	ut
Input channels	3 or 5
Input receiver	26C32 differential RS422 receiver
Recommended Encoder Drivers	7272, 75183, 8830, 75114, 9614, 26LS31 (or equivalent)
Encoder signals	Differential quadrature
Input threshold	±750 mV
Input termination	120 ohm, provided on board
Maximum input voltage	5 V
Maximum A or B input frequency	250 K Hz (1 M feedback unit count rate)
Fast input voltage	Nominal 24 VDC, maximum 30 VDC
Guaranteed on voltage	15 VDC
Guaranteed off voltage	5 VDC
Turn on/off time	1 ms

Auda Dant Aura Bant and LOSS US	Part DO Investo		
Axis Port, Aux Port, and Gen I/O F	ort DC Inputs		
Configuration	The general inputs are divided into two groups of eight. Each group can be configured for sourcing or sinking. The auxiliar inputs are divided into two groups of six inputs. Each group can be configured for sourcing or sinking. The axis inputs have one input per axis. Each input can be configured for sourcing or sinking. Operates with IEC Type 1 inputs (per IEC 1131=2).		
Input voltage	Nominal 24 VDC, maximum 30 VDC		
Guaranteed on voltage	15 VDC		
Guaranteed off voltage	5 VDC		
Turn on/off time	1 ms		
Fast inputs	50 μsec		
Gen I/O Port DC Outputs			
Number of outputs	16 outputs		
Input voltage	Nominal 24 VDC, 30 VDC maximum		
Configuration	Two groups of eight solid-state switches.		
Protection of logic circuits	Optical isolation between the logic and field side, transient suppression on the 24V external supply		
Maximum current	.25 A per output		
Voltage range	24 VDC nominal, 5 to 30 VDC		
Switch characteristics	Solid-state switches		
Time delay on for resistive loads	50 μsec max		
Time delay off for resistive loads	50 µsec max		
Leakage current in off state	0.5 mA max		
Switch voltage, maximum ON	1 VDC max		
Short circuit protection for each group	15 A (max) pulses for about 130 µsec every 100 msec until short is removed		
Scan loss response	Outputs turn off		

Axis Port DC Outputs	
Number of outputs	2 outputs per axis
Configuration	Each set of axis outputs can be configured as sourcing or sinking.
Maximum current	100 mA per output
Voltage range	24 VDC nominal, 5 to 30 VDC range
Scan loss response	Outputs turn off
Aux Port +5 Vdc Output	
+5 VDC	150 mA maximum current available. Connections to this point should be over short distances and away from electric noise signals.
SERCOS Motion Board	
SERCOS Interface	Interfaces with one ring (MMC-S8) or two rings (MMC-S16) with from one to eight Sercos drives per ring
SERCOS port	SMA female connectors for interfacing to 1000 µ meter plastic fiber optic cable with SMA male connectors. Fiber optic receiver specifications: Peak input power (optical level low) -31.2dBm max Peak input power (optical level high) -20.0 dBm min, 0.0dBm max Fiber optic transmitter specifications: Peak output power (optical level high) is -10.5 dBm min, -5.5 dBm max
Update loader port	RS232 interface
SERCOS Cable	
Туре	Plastic with step index profile (POF)
Core diameter Fiber diameter	980 μm ±60 μm 1000 μm ±60 μm
Operating temperature	0° C to 55° C (32° F to 131° F)
Minimum bend radius	One time: 30 mm Continuous: 80 mm
Tensile strength	One time: 250 N Continuous: 100 N
Connectors	SMA style male

Standalone MMC Hardware Manual - STANDALONE MMC CONTROL

5 Standalone Digital MMC Control

5.1 Introduction

This section contains information for the Standalone Digital MMC Control (MMC-D32, -D64) only. Information on the Standalone MMC Control (MMC-A2, -A4, -S8, -S16) is contained in section 4 on page 33, and information on the MMC-DSAXX Control (MMC-DSA2, -DSA4, -DSA8, -DSA16) is contained in section 6 on page 119. Block I/O information can be found in the Block I/O Hardware Manual. Software information can be found in the PiCPro online help, the Function/Function Block Reference Guide, ASFB Manuals or on-line.

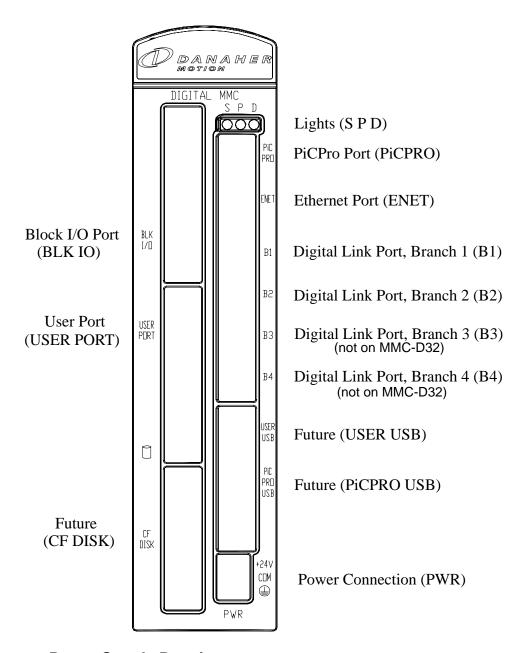
5.2 Features

- 400 Mhz Celeron Processor with 256 Kbytes of level 2 cache
- 3 Mbytes of Application Memory
- 960 Kbytes of RAMDISK Memory
- 192 Kbytes of Data Memory
- 100Base-T Ethernet port
- PicPro RS232 port, baud rates up to 115.2 Kbaud
- User RS232/RS485 port, RTS/CTS handshaking, baud rates up to 115.2 Kbaud
- Battery-backed time-of-day clock
- Application stored in battery-back RAM
- Block I/O port for I/O expansion
- Up to 4 MMC Option Modules can be user-installed
- 32 and 64 axis versions available
- PicPro USB high speed peripheral port (future)
- User USB high speed peripheral port (future)
- Compact Flash memory socket (future)
- UL Listed and CE Marked.

5.3 Overview

The Standalone Digital MMC-D64 Control can control up to 64 Digital MMC Smart Drives (32 drives on the -D32), providing 64 (32) axis of servo control. I/O can be added using Kollmorgen's serially distributed Block I/O Modules (covered in the Block I/O Modules Manual) and Digital Link Slice I/O Modules (covered in the Digital Link Accessories Hardware Manual).

The PiCPro programming tool used with the PiC family of controls is also used to program the MMC.


Up to four MMC Option Modules may be added to the Standalone Digital MMC Control.

The following is a list of available MMC Option Modules:

- MMC DeviceNet Option Module, see section 8 on page 165.
- MMC Profibus Option Module, see section 9 on page 171.

- MMC Axis I/O Option Module (limitations apply), see section 10 on page 177.
- MMC 32 In/32 Out Option Module, see section 11 on page 183.

Figure 5-1: Standalone Digital MMC Control

5.4 Power Supply Requirements

The Standalone Digital MMC Control is powered by user-supplied 24 Vdc (nominal). The maximum power consumption is 1A (24 W). Also, MMC Option Modules attached to the Standalone Digital MMC Control draw power from the Control's 24 Vdc connector. When determining the size of the 24 Vdc power supply, use the worksheet found in Table 5-1.

Standalone MMC Hardware Manual - STANDALONE DIGITAL MMC CONTROL

Table 5-1: Power Supply Worksheet			
MMC Module	Current (mA)	# of Units	Subtotal (mA)
64 Axis Standalone Digital MMC Control (-D64)	1,000		
32 Axis Standalone Digital MMC Control (-D32)	900		
Axis I/O Option Module	100		
MMC Ethernet Option Module	200		
MMC DeviceNet Option Module	100		
MMC Profibus Option Module	100		
MMC 32 In/32 Out Option Module	100		
Required power supply current			

5.5 Connectors & Operation

This section provides theory-of-operation and connection information for the Standalone Digital MMC Control. See Figure 5-1 for connector locations.

The Standalone Digital MMC Control converts +24 Vdc input power to various DC voltage levels that power the logic side of the Control. This same 24 Vdc power is also routed to any MMC Option Modules that may be connected to the Control.

Three lights on the front of the Control (Scan, Power, and Diagnostic) provide operational and diagnostic information, as described in section 3.8 on page 29.

The Control does the following after +24 Vdc input power is applied:

- Performs diagnostic tests.
- Checks the battery.
- Performs routine maintenance tasks.
- Executes the application program.
- Communicates with any attached MMC Option Modules.
- Communicates with any Block I/O connected to the Block I/O port.
- Communicates with workstation connected to the PiCPro port.
- Communicates with any serial device(s) connected to the User Port.
- Communicates with any device(s) connected to the Ethernet Port.
- Communicates with any Digital MMC Smart Drives that are connected to one of the four Digital Link branches.

The Standalone Digital MMC Control contains a Compact Flash socket that is accessible from the front of the control. In the future, the Compact Flash may be used to store application object code, application source code, user data, etc. As of this writing, the Compact Flash socket is not supported, and a Compact Flash device should never be installed into the socket.

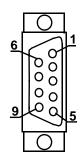
5.5.1 Block I/O Port

The 9-pin female D-sub PiCPro Port connector (labeled "BLK IO" on the front of the Control) provides serial communication between 1 to 77 Block I/O modules and the Control.

- Pin descriptions for are provided in Table 5-2.
- Pin assignments are provided in Table 5-3.
- The available Flying Lead cable is described in Table 5-4.
- Connections to the Block I/O Module are described in Table 5-5.
- Available Breakout Boxes and Cables are described in Table 5-6.
- Breakout Box dimensions are shown in Figure 5-2

Table 5-2: Block I/O Port Pin Descriptions			
Function	Notes	Pin	
Transmit Data +	Transmits data to Block I/O Modules.	3	
Transmit Data -	Transmits data to Block I/O Modules.	4	
Receive Data +	Receives data from Block I/O Modules.	5	
Receive Data -	Receives data from Block I/O Modules.	6	
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	7 & Shell	

Table 5-3: Block I/O Port Pin Assignment				
Pin	Signal	In/Out	Connector Pinout	
1	NC	N/A		
2	N/C	N/A		
3	Transmit Data +	Out	9-pin female D-sub	
4	Transmit Data -	Out	9 5	
5	Receive Data +	In		
6	Receive Data -	In		
7	Shield	In	6001	
8	NC	N/A		
9	NC	N/A		
Connector Shell	Drain	In		


NOTE

Pin 7 of the Block I/O port connector is connected to the connector shell within the MMC. Therefore, the shield may be connected to either pin 7 or the connector shell.

Table 5-4: Block I/O Port to Flying Lead Cable

Part Number: M.1016.2568 Length: 3 M (10 ft) Cable type: 24 AWG, twisted pair (individually shielded), 4 conductor.

9-Pin male D-sub (to Block I/O Port, face view)

Pin	Signal	Color	Notes
3	Transmit Data +	White	Twisted
4	Transmit Data -	Black	Pair
7	Shield	N/A	with Shield
5	Receive Data +	Red	Twisted
6	Receive Data -	Black	Pair
7	Shield	N/A	with Shield

	Table 5-5: Block I/O Port to Block I/O Module Wiring				
Use	Use this table to wire from the Block I/O Port to the first Block I/O Module.				
9-Pin n	nale D-sub (to Block I/O Port, face view)		Pluggable Screw Terminal ck I/O Module, face view)		
	6 000 9 00 5	1 0 1 2 0 3 0 4 0 5 5			
Pin	Signal	Pin	Signal	Notes	
3	Transmit Data +	1	Receive Data +	Twisted Pair	
4	Transmit Data -	2	Received Data -	i wisteu Pali	
5	Receive Data +	4	Transmit Data +	Twisted Pair	
6	Received Data -	5	Transmit Data -	i wisteu raii	
7	Shield Ground	3	Shield Ground		
Shell	Drain	Shell	Drain		

Table 5-6: Block I/O Port Breakout Box and Cables ^a				
Description Length Part Number				
MMC Block I/O Breakout Box	N/A	M.1016.2533		
MMC Block I/O Connector to Breakout Box Cable	.3 M (1 ft)	M.1016.2543		
MMC Block I/O Connector to Breakout Box Cable	.6 M (2 ft)	M.1016.2544		
MMC Block I/O Connector to Breakout Box Cable	.9 M (3 ft)	M.1016.2545		

a. The Breakout Box (see Figure 5-2 on page 103) is DIN-rail mounted, and provides screw terminal wire termination. It can be attached to the "BLK I/O" port on the MMC Control. The pinouts on the terminal strip interface provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block. The connector pins marked with the "ground" symbol on the screw connector are connected to the "D" connector shell for shield grounding purposes.

1.750"

3.000"

1 5

00000

1 5

00000

1 750"

Figure 5-2: Block I/O Breakout Box Dimensions

5.5.2 User Port

The 15-pin HD male D-sub User Port connector (labeled "USER PORT" on the front of the Control) provides RS232 and RS485 serial communication between a serial device and the Control

- Pin descriptions are provided in Table 5-7
- Pin assignments are provided in Table 5-8
- The available Flying Lead cable is described in Table 5-9.
- The available RS-232 Exter HMI cable is described in Table 5-10.
- The available RS-485 Exter HMI cable is described in Table 5-11.
- Available Breakout Boxes and Cables are described in Table 5-12.
- Breakout Box dimensions are shown in Figure 5-3

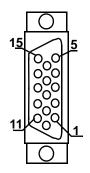

Table 5-7: User Port Pin Descriptions			
Function	Notes	Pin	
RS232 Receive Data	RS232-level signal that receives serial data from the connected serial device.	9	
RS232 Transmit Data	RS232-level signal that sends serial data to the connected serial device.	10	
RS232 Request-to-send	RS232-level signal that indicates to the connected serial device that it can transmit data to the Control.	5	
RS232 Clear-to-send	RS232-level signal that indicates to the Control that it can transmit data to the connected serial device.	7	
RS-232 Data-terminal- ready	This output from the Control is always high (5 Vdc).	4	
RS-485 Receive Data +	RS485-level signal that receives serial data from the connected serial device(s).	12	
RS-485 Receive Data -	RS485-level signal that receives serial data from the connected serial device(s).	13	
RS-485 Transmit Data +	RS485-level signal that transmits serial data to the connected serial device(s).	14	
RS-485 Transmit Data -	RS485-level signal that transmits serial data to the connected serial device(s).	15	
Signal Ground	Provides the return path for signals	8	
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell	

	Table 5-8: User Port Pin Assignments				
Pin	Signal	In/Out	Connector Pinout		
1	NC	N/A			
2	N/C	N/A			
3	N/C	N/A			
4	RS232 Data-terminal-ready (5 Vdc)	Out			
5	RS232 Request-to-Send	Out	15-pin HD male D-sub		
6	N/C	N/A	13-piil lib lilale b-sub		
7	RS232 Clear- to-Send	In	11 1		
8	Signal Ground	In/Out			
9	RS232 Receive Data	In			
10	RS232 Transmit Data	Out	15 0 5		
11	N/C	N/A			
12	RS485 Receive Data +	In			
13	RS485 Receive Data -	In			
14	RS485 Transmit Data +	Out			
15	RS485 Transmit Data -	Out			
Connector Shell	Drain	In			

Table 5-9: User Port to Flying Lead Cable

Part Number: M.1016.2565 Length: 3 M (10 ft) Cable type: 28 AWG, shielded, twisted pair, 16 conductor.

15-Pin HD female D-sub (to User Port, face view)

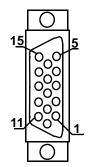
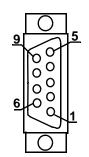

Pin	Signal	Color	Notes
3	N/C	Blue	Twisted
8	Signal Ground	Blue/Black	Pair
12	RS485 Receive Data +	Brown	Twisted
13	RS485 Receive Data -	Brown/Black	Pair
14	RS485 Transmit Data +	Violet	Twisted
15	RS485 Transmit Data -	Violet/Black	Pair
4	RS232 Data-terminal Ready	White	
5	RS232 Request-to-send	Red	
7	RS232 Clear-to-send	Green	
9	RS232 Receive Data	Yellow	
10	RS232 Transmit Data	Orange	
Shell	Drain	N/A	

Table 5-10: User Port to RS-232 Exter HMI Cable


Part Number: M.1302.8453

Length: 4 M (13 ft)
Cable type: 24 AWG, shielded, twisted pair, 4 conductor.

15-Pin HD female D-sub (to User Port, face view)

9-Pin female D-sub (to Exter HMI COM2 Port, face view)

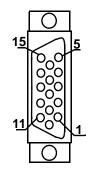
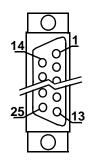

Ì				
Pin	Signal	Pin	Signal	Notes
9	Receive Data	3	Transmit Data	Twisted
10	Transmit Data	2	Receive Data	Pair
8	Signal Ground	5	Signal Ground	
Shell	Drain	Shell	Drain	

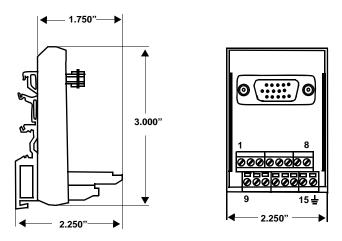
Table 5-11: User Port to RS-485 Exter HMI Cable


Part Number: M.1302.8454

Length: 4 M (13 ft)
Cable type: 24 AWG, shielded, twisted pair, 6 conductor.

15-Pin HD female D-sub (to User Port, face view)

25-Pin male D-sub (to Exter HMI COM1 Port, face view)



Pin	Signal	Pin	Signal	Notes
12	Receive Data+	2	Transmit Data+	Twisted
13	Receive Data-	15	Transmit Data-	Pair
14	Transmit Data+	3	Receive Data+	Twisted
15	Transmit Data-	16	Receive Data-	Pair
8	Signal Ground	7	Signal Ground	
Shell	Drain	Shell	Drain	

Table 5-12: User Port Breakout Box and Cables ^a					
Description	Length	Part Number			
MMC User Port Breakout Box	N/A	M.1016.2530			
MMC User Port to Breakout Box Cable	.3 M (1 ft)	M.1016.2715			
MMC User Port to Breakout Box Cable	.6 M (2 ft)	M.1016.2716			
MMC User Port to Breakout Box Cable	.9 M (3 ft)	M.1016.2717			

a. The Breakout Box (see Figure 5-3 on page 109) is DIN-rail mounted, and provides screw terminal wire termination. It can be attached to the "USER PORT" connector on the MMC Control. The pinouts on the terminal strip interface provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block. The connector pins marked with the "ground" symbol on the screw connector are connected to the "D" connector shell for shield grounding purposes.

Figure 5-3: User Port Breakout Box Dimensions

5.5.3 PiCPro Port

The 6-pin circular DIN PiCPro Port connector (labeled "PiCPro" on the front of the Control) provides serial communication for the PiCPro programming interface.

- Pin descriptions for are provided in Table 5-13
- Pin assignments are provided in Table 5-14
- The available PiCPro Port to PC cable is described in Table 5-15

USB ADAPTER

A USB-to-RS232 Adapter is avalable (P/N M.3000.0879) that allows you to connect the PiCPro Port on the Control to a USB connector on your PC. One side of the Adapter contains a 6in cable that connects to your PC. The other side of the Adapter contains a male DB9 connector that allows connection to the Control using a PiCPro Cable M.1302.8250 (not provided, described in Table 4-7 on page 44).

Table 5-13: PiCPro Port Pin Descriptions					
Function	Notes	Pin			
Receive Data	RS232-level signal that receives serial data from the connected PC running PiCPro.	1			
Transmit Data	RS232-level signal that transmits serial data to the connected PC running PiCPro.	2			
Signal Ground	Provides the return path for signals	3 and 5			
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Connector Shell			

Table 5-14: PiCPro Port Pin Assignments				
Pin	Signal	In/Out	Connector Pinout	
1	RS232 Receive Data	In		
2	RS232 Transmit Data	Out	6-pin Female Miniature Circular DIN	
3	Signal Ground	In/Out	2 4 6	
4	NC	N/A		
5	Signal Ground	In/Out		
6	NC	N/A		
Connector Shield	Shield	In	3	

	Table 5-15: PiCPr0 Port to PC Cable					
Length: 4	Part Number: M.1302.8284 Length: 4 M (13 ft) Cable type: 24 AWG, shielded, twisted pair, 4 conductor.					
6-Pin male Miniature Circular DIN (to PiCPro Port, face view)		9-Pin female D-sub (to PC COM Port, face view)				
		9 0 0 0 0 0 0 1				
Pin	Signal	Pin	Signal	Notes		
1	RS232 Receive Data	3	RS232 Trans- mit Data	Twisted		
2	RS232Transmit Data	2	RS232 Receive Data	Pair		
5	Signal Ground	5	Signal Ground			
Shell	Drain	Shell	Drain			

5.5.4 Ethernet Port

The 8-pin RJ-45 Ethernet Port connector (labeled "ENET" on the front of the Control) provides IEEE 802.3/802.3u-100Base-TX/10Base T, half duplex connectivity between an Ethernet device and the Control. Also provided on the RJ-45 connector is a green "Link" light (which will be on if there is either a 100Base-T or 10Base-T Link) and a green "Activity" light (which will be on whenever a send or receive packet has occurred on the network).

Communication using the Ethernet Port can be between the Control and a PC, User Interface, or other Ethernet device or network. For example, PiCPro running on a PC can communicate to the Control through this Ethernet connector.

Typically, a "straight-through" shielded cable should be used when connecting the Control to another Ethernet device.

- Pin descriptions for are provided in Table 5-16
- Pin assignments are provided in Table 5-17
- The available Ethernet Port to Ethernet Device cables are described in Table 5-18

Table 5-16: Ethernet Port Pin Descriptions					
Function	Notes	Pin			
Receive Data +	Receives data from connected device.	3			
Receive Data -	Receives data from connected device.	6			
Transmit Data +	Transmits data to connected device.	1			
Transmit Data -	Transmits data to connected device.	2			
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell			

Table 5-17: Ethernet Port Pin Assignments					
Pin	Signal	In/Out	Connector Pinout		
1	Transmit Data +	Out			
2	Transmit Data -	Out	RJ-45		
3	Receive Data +	In	KJ-45 ACTIVITY		
4	Termination Resistors ^a	In	light		
5	Termination Resistors ^(a)	In	8		
6	Receive Data -	In	enet		
7	Termination Resistors ^(a)	In	LINK		
8	Termination Resistors ^(a)	In	light		
Connector Shell	Shield	In			

a. Pins 4, 5, 7, and 8 are tied to termination resistors on the Control. Standard Ethernet cables contain 8 wires. The Control only uses 4 of these wires as shown. Connecting the 4 unused wires to pins 4, 5, 7, and 8, (as will be done in a standard Ethernet cable) reduces noise that can be induced from the unused wires to the Transmit and Receive wires.

	Table 5-18: Ethernet Port to Ethernet Device Cables					
.3 M (1 1 M (3. 3 M (9. 10 M (3. 30 M (9.	Part Numbers: .3 M (1.0 ft): M.1302.8285 .6 M (2.0 ft): M.1302.8286 1 M (3.3 ft): M.1302.8287 2 M (6.6 ft): M.1302.8288 3 M (9.8 ft): M.1302.8289 5 M (16.4 ft): M.1302.8300 10 M (32.8 ft): M.1302.8301 15 M (49.2 ft): M.1302.8302 30 M (98.4 ft): M.1302.8303 Cable type: 28 AWG, shielded, twisted pair, 8 conductor.					
	in RJ-45 Plug (to net Port, face view)		Pin RJ-45 Plug (to et Device, face view)			
	■ 1 ■ 8		1 8			
Pin	Signal	Pin	Signal	Notes		
1	Transmit Data +	1	Receive Data +	Twisted		
2	Transmit Data -	2	Receive Data -	Pair		
3	Receive Data +	3	Transmit Data +	Twisted		
6	Receive Data -	6	Transmit Data -	Pair		
4	None	4	None	Twisted		
5	None	5	None	Pair		
7	None	7	None	Twisted		
8	None	8	None	Pair		
Shell	Drain	Shell	Drain			

5.5.5 Digital Link Ports

The four 8-pin RJ-45 Digital Link Port connectors (labeled "B1", "B2", "B3", and "B4" on the front of the Control) provide communications between the Control and Digital MMC Smart Drives and/or S200-DLS Drives. Also provided on the RJ-45 connector is a green "Link" light (which will be on if there is a Drive connected to the branch) and a green "Activity" light (which will be on whenever a data packet is transmitted to the drive(s) on the branch).

Each of the four branches (two branches on the Digital MMC-D32) can control up to 16 drives. A "straight-through" shielded cable must be used when connecting the Control to the Digital Drive. Connect the cable from the Control to the Drives "IN" connector. Refer to the MMC Smart Drive manual for Drive information.

Pin descriptions for are provided in Table 5-19

- Pin assignments are provided in Table 5-20
- The available Digital Link Port to Digital Drive cables are described in Table 5-21

Table 5-19: Digital Link Port Pin Descriptions					
Function	Notes	Pin			
Receive Data +	Receives data from connected drives.	3			
Receive Data -	Receives data from connected drives.	6			
Transmit Data +	Transmits data to connected drives.	1			
Transmit Data -	Transmits data to connected drives.	2			
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell			

Table 5-20: Digital Link Port Pin Assignments					
Pin	Signal	In/Out	Pin Sequence		
1	Transmit Data +	Out			
2	Transmit Data -	Out	RJ-45		
3	Receive Data +	In	TRANSMIT		
4	Termination Resistors ^a	In	light		
5	Termination Resistors ^(a)	In	8 E B1 (2.2.4)		
6	Receive Data -	In	B1 (2,3,4)		
7	Termination Resistors ^(a)	In	LINK		
8	Termination Resistors ^(a)	In	light		
Connector Shell	Shield	In			

a. Pins 4, 5, 7, and 8 are tied to termination resistors on the Control. Standard Ethernet cables contain 8 wires. The Control only uses 4 of these wires as shown. Connecting the 4 unused wires to the Control pins 4, 5, 7, and 8, (as will be done in a standard Ethernet cable) reduces noise that can be induced from the unused wires to the Transmit and Receive wires.

	Table 5-21: Digital Link Port to Digital Drive Cables					
.3 M (1 1 M (3. 3 M (9. 10 M (3. 30 M (9.	Part Numbers: .3 M (1.0 ft): M.1302.8285 .6 M (2.0 ft): M.1302.8286 1 M (3.3 ft): M.1302.8287 2 M (6.6 ft): M.1302.8288 3 M (9.8 ft): M.1302.8289 5 M (16.4 ft): M.1302.8300 10 M (32.8 ft): M.1302.8301 15 M (49.2 ft): M.1302.8302 30 M (98.4 ft): M.1302.8303 Cable type: 28 AWG, shielded, twisted pair, 8 conductor.					
	in RJ-45 Plug (to tal Link Port, face view)		RJ-45 Plug (to Digital brive, face view)			
	■	1 8				
Pin	Signal	Pin	Signal	Notes		
1	Transmit Data +	1	Receive Data +	Twisted		
2	Transmit Data -	2	Receive Data -	Pair		
3	Receive Data +	3	Transmit Data +	Twisted		
6	Receive Data -	6	Transmit Data -	Pair		
4	None	4	None	Twisted		
5	None	5	None	Pair		
7	None	7	None	Twisted		
8	None	8	None	Pair		
Shell	Drain	Shell	Drain			

5.5.6 User USB Port

The User USB Port connector (labeled "USER USB" on the front of the Control) is for future use. Do not connect any cables or devices to this port.

5.5.7 PiCPro USB Port

The PiCPro USB Port connector (labeled "PiCPro USB" on the front of the Control) is for future use. Do not connect any cables or devices to this port.

5.5.8 Power Connection

The Power connector (labeled "PWR" on the front of the Control) must be connected to a user-supplied +24 VDC power supply to provide power to the Standalone Digital MMC Control. This power supply also provides power to any attached MMC Option

modules. The power supply screw terminal connection (3 pin) is at the bottom of the Control. Figure 5-4 illustrates the pin-out.

Figure 5-4: Pin Out for the 3-pin Power Supply Screw Terminal Connection

5.6 Specifications

Table 5-22: Part Numbers							
		Number of servo axes available at indicated update rate ^a					
Model	Part Number	8 ms 4 ms 2 ms 1 ms .5 ms .25 ms			.25 ms		
MMC-D32	M.3000.0816	32	32	32	32	24	8
MMC-D64	M.3000.0817	64	64	64	45	24	8

a. Using features such as servo tasks, S-curve, RATIO_RL, M_LINCIR, M_SCRVLC, PLS, and CAM_OUT places a heavier burden on available CPU time. Consult Kollmorgen for assistance if you want to exceed the number of axes in this chart.

Table 5-23: General Specifications					
Physical size	2.25" wide x 9.6" high x 5.3" deep 57.15 mm x 243.84 mm x 134.62 mm				
CPU	600 Mhz Celeron ULV processor with numeric coprocessor				
Battery	3V Coin Cell, BR3032 lithium battery				
Battery Life	2 power-off years, minimum				
CAUTION for Lithium Danger of explosion if equivalent type recom cording to the manufac	battery is incorrectly replaced. Replace only with the same or mended by the manufacturer. Dispose of used batteries ac-				
Input voltage	20 VDC to 30 VDC (24 Vdc nominal)				
Input power	1 A, maximum				
Application Memory	3 Mbytes				
RAMDISK Memory	960 Kbytes				
Data Memory	192 Kbytes				
Flash Disk	Future				
PiCPro Port (to work- station)	RS232 serial port, secured protocol Software selectable baud rate to 115.2 Kbaud				
User Port (to serial interface device)	RS232/RS485 serial port Supports RTS/CTS hardware handshaking Software selectable baud rate to 115.2 Kbaud				

IEEE 802.3/802.3u-100Base-TX/10Base T Half duplex Cable type: Shielded, Straight Pinned, CAT5 or better (CAT5e, CAT6, etc.) Maximum cable length: 50 M (164 ft)
1 to 77 Block I/O Modules may be connected. Maximum cable length: 61 M (200 ft)
IEEE 802.3/802.3u-100Base-TX Cable type: Shielded, Straight Pinned, CAT5 or better (CAT5e, CAT6, etc.) Maximum cable length: 30 M (98.4 ft)
Access via PiCPro 16.0 and above or your application program At 25°C (77°F),±1 second per day Over temperature, voltage and aging variation, +2/-12 seconds per day
5°C to 55°C (41°F to 131°F)
-40°C to 85°C (-40°F to 185°F)
5 to 95%, non-condensing
Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards: EN 50081-2:1993EMC Generic Industrial Emissions EN 50082-2:1995EMC Generic Industrial Immunity EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers Operates with emissions below EN55011/ CISPR 11 Class A limits Immune to: • Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2 • RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204 • Electrical fast transients per EN61000-4-4 • Magnetic fields per EN61000-4-8 Refer to the EMC Guidelines for more information.
E126417
10-57 Hz (constant amplitude = .15 mm) 57 - 2000 Hz (acceleration = 2 g)
Four shocks per axis (15g/11 msec)

6 MMC-DSAXX Control

6.1 Introduction

This section contains information for the MMC-DSAXX Control (MMC-DSA2, -DSA4, -DSA8, -DSA16) only. Information on the Standalone MMC Control (MMC-A2, -A4, -S8, -S16) is contained in section 4 on page 33, and information on the Standalone Digital MMC Control (MMC-D32, -D64) is contained in section 5 on page 95. Block I/O information can be found in the Block I/O Modules Manual. Software information can be found in the PiCPro Online Help, the Function/Function Block Reference Guide, ASFB Manuals or on-line.

6.2 Features

- 32-bit RISC Processor
- 2 Mbytes of flash memory
- 384 Kbytes of Application Memory
- 256 Kbytes of User RAM Memory
- PicPro RS232 port, baud rates up to 57.6 Kbaud
- User RS232/RS485 port, RTS/CTS handshaking, baud rates up to 19.2 Kbaud
- Battery-backed time-of-day clock
- Application stored in battery-back RAM
- Block I/O port for I/O expansion
- Up to 4 MMC Option Modules can be user-installed
- Two, four, eight 16 axis versions available
- UL Listed and CE Marked.

6.3 Overview

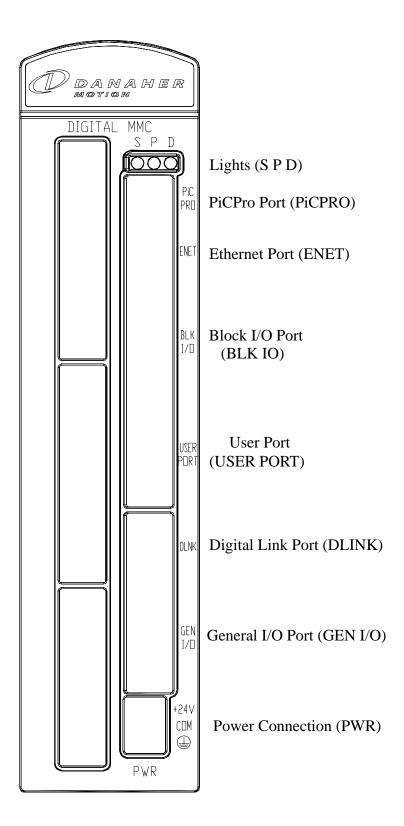
The MMC-DSAXX Control offers a complete solution to both machine and motion control in a panel-mounted module. One MMC-DSAXX Control can control from 1 to 16 Digital Link enabled drives (230V Smart Drive, 460V Smart Drive, and S200-DLS Drive) as follows:

- Digital MMC- D2 (controls two Drive)
- Digital MMC- D4 (controls four Drive)
- Digital MMC- D8 (controls eight Drive)
- Digital MMC- D16 (controls 16 Drive)

PiCPro is used to program the MMC-DSAXX Control. The built-in I/O (eight 24VDC inputs and seven 24VDC outputs) can be expanded using Kollmorgen serially distributed block I/O (not included on the Digital MMC-D1) and Digital Link Slice I/O Modules (covered in the Digital Link Accessories Hardware Manual).

Up to four MMC Option Modules may be added to the MMC-DSAXX Control.

The following is a list of available MMC Option Modules:


- MMC DeviceNet Option Module, see section 8 on page 165.
- MMC Profibus Option Module, see section 9 on page 171.

- MMC Axis I/O Option Module (limitations apply), see section 10 on page 177.
- MMC 32 In/32 Out Option Module, see section 11 on page 183.

6.3.1 Major Components

The MMC-DSAXX Control contains the CPU, a User Serial port, a Block I/O port, an Ethernet port, a Digital Link port, and a General I/O port consisting of eight DC inputs and seven DC outputs.

Figure 6-1: The MMC-DSAXX Control

6.4 Power Supply Requirements

The MMC-DSAXX Control is powered by user-supplied 24 Vdc (nominal). The maximum power consumption is 1A (24 W). Also, MMC Option Modules attached to the MMC-DSAXX Control draw power from the Control's 24 Vdc connector. When determining the size of the 24 Vdc power supply, use the worksheet found in Table 6-1.

Table 6-1: Power Supply Worksheet					
MMC Module	Current (mA)	# of Units	Subtotal (mA)		
MMC-DSAXX Control	250				
Total MMC-DSXX DCOUT current ^a					
Axis I/O Option Module	100				
MMC Ethernet Option Module	200				
MMC DeviceNet Option Module	100				
MMC Profibus Option Module	100				
MMC 32 In/32 Out Option Module	100				
Required power supply current					

a. The MMC-DSAXX Control DCOUT current is the maximum simultaneous current being driven out of Outputs 1 through 7. This will depend on the number and loading of each DC Output.

6.5 Connectors & Operation

This section provides theory-of-operation and connection information for the MMC-DSAXX Control. See Figure 6-1 on page 121 for connector locations.

The MMC-DSAXX Control converts +24 Vdc input power to various DC voltage levels that power the logic side of the Control. This same 24 Vdc also power the 24 Vdc Outputs, and is also routed to any MMC Option Modules that may be connected to the Control.

Three lights on the front of the Control (Scan, Power, and Diagnostic) provide operational and diagnostic information, as described in section 3.8 on page 29.

The Control does the following after +24 Vdc input power is applied:

- Performs diagnostic tests.
- Checks the battery.
- Performs routine maintenance tasks.
- Executes the application program.
- Communicates with any attached MMC Option Modules.
- Communicates with any Block I/O connected to the Block I/O port.

- Communicates with workstation connected to the PiCPro port.
- Communicates with any serial device(s) connected to the User Port.
- Communicates with any device(s) connected to the Ethernet Port.
- Communicates with any Digital MMC Smart Drives that are connected to the Digital Link Port.

6.5.1 PiCPro Port

The 6-pin circular DIN PiCPro Port connector (labeled "PiCPro" on the front of the Control) provides serial communication for the PiCPro programming interface.

- Pin descriptions for are provided in Table 6-2
- Pin assignments are provided in Table 6-3
- The available PiCPro Port to PC cable is described in Table 6-4

USB ADAPTER

A USB-to-RS232 Adapter is avalable (P/N M.3000.0879) that allows you to connect the PiCPro Port on the Control to a USB connector on your PC. One side of the Adapter contains a 6in cable that connects to your PC. The other side of the Adapter contains a male DB9 connector that allows connection to the Control using a PiCPro Cable M.1302.8250 (not provided, described in Table 4-7 on page 44).

Table 6-2: PiCPro Port Pin Descriptions					
Function	Notes	Pin			
Receive Data	RS232-level signal that receives serial data from the connected PC running PiCPro.	1			
Transmit Data	RS232-level signal that transmits serial data to the connected PC running PiCPro.	2			
Signal Ground	Provides the return path for signals	3 and 5			
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Connector Shell			

Table 6-3: PiCPro Port Pin Assignments				
Pin	Signal	In/Out	Connector Pinout	
1	RS232 Receive Data	In		
2	RS232 Transmit Data	Out	6-pin Female Miniature Circular DIN (face	
3	Signal Ground	In/Out	view)	
4	NC	N/A	2 7 6	
5	Signal Ground	In/Out		
6	NC	N/A		
Connector Shield	Shield	In	3 3	

Table 6-4: PiCPr0 Port to PC Cable					
Length: 4	Part Number: M.1302.8284 Length: 4 M (13 ft) Cable type: 24 AWG, shielded, twisted pair, 4 conductor.				
		female D-sub (to COM Port, face view)			
		5 0 00000000000000000000000000000000000			
Pin	Signal	Pin	Signal	Notes	
1	RS232 Receive Data	3	RS232 Trans- mit Data	Twisted	
2	RS232Transmit Data	2	RS232 Receive Data	Pair	
5	Signal Ground	5	Signal Ground		
Shell	Drain	Shell	Drain		

6.5.2 Ethernet Port

The 8-pin RJ-45 Ethernet Port connector (labeled "ENET" on the front of the Control) provides IEEE 802.3/802.3u-100Base-TX/10Base T, half duplex connectivity between an Ethernet device and the Control. Also provided on the RJ-45 connector is a green "Link" light (which will be on if there is either a 100Base-T or 10Base-T Link) and a green "Activity" light (which will be on whenever a send or receive packet has occurred on the network).

Communication using the Ethernet Port can be between the Control and a PC, User Interface, or other Ethernet device or network. For example, PiCPro running on a PC can communicate to the Control through this Ethernet connector.

Typically, a "straight-through" shielded cable should be used when connecting the Control to another Ethernet device.

- Pin descriptions for are provided in Table 6-5
- Pin assignments are provided in Table 6-6
- The available Ethernet Port to Ethernet Device cables are described in Table 6-7

Table 6-5: Ethernet Port Pin Descriptions					
Function	Notes	Pin			
Receive Data +	Receives data from connected device.	3			
Receive Data -	Receives data from connected device.	6			
Transmit Data +	Transmits data to connected device.	1			
Transmit Data -	Transmits data to connected device.	2			
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell			

Table 6-6: Ethernet Port Pin Assignments					
Pin	Signal	In/Out	Connector Pinout		
1	Transmit Data +	Out			
2	Transmit Data -	Out	RJ-45 Socket (face		
3	Receive Data +	In	view)		
4	Termination Resistors ^a	In	"Activity" LED		
5	Termination Resistors ^(a)	In			
6	Receive Data -	In	C4		
7	Termination Resistors ^(a)	In			
8	Termination Resistors ^(a)	In	"Link" LED		
Connector Shell	Shield	In			

a. Pins 4, 5, 7, and 8 are tied to termination resistors on the Control. Standard Ethernet cables contain 8 wires. The Control only uses 4 of these wires as shown. Connecting the 4 unused wires to pins 4, 5, 7, and 8, (as will be done in a standard Ethernet cable) reduces noise that can be induced from the unused wires to the Transmit and Receive wires.

	Table 6-7: Ethernet Port to Ethernet Device Cables			
.3 M (1 1 M (3. 3 M (9. 10 M (3. 30 M (9.	Part Numbers: .3 M (1.0 ft): M.1302.8285 .6 M (2.0 ft): M.1302.8286 1 M (3.3 ft): M.1302.8287 2 M (6.6 ft): M.1302.8288 3 M (9.8 ft): M.1302.8289 5 M (16.4 ft): M.1302.8300 10 M (32.8 ft): M.1302.8301 15 M (49.2 ft): M.1302.8302 30 M (98.4 ft): M.1302.8303 Cable type: 28 AWG, shielded, twisted pair, 8 conductor.			
	in RJ-45 Plug (to net Port, face view)		Pin RJ-45 Plug (to et Device, face view)	
Pin	Signal	Pin	Signal	Notes
1	Transmit Data +	1	Receive Data +	Twisted
2	Transmit Data -	2	Receive Data -	Pair
3	Receive Data +	3	Transmit Data +	Twisted
6	Receive Data -	6	Transmit Data -	Pair
4	None	4	None	Twisted
5	None	5	None	Pair
7	None	7 None Twisted		Twisted
8	None	8	None	Pair
Shell	Drain	Shell	Drain	

6.5.3 Block I/O Port (C1)

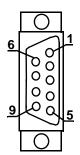
The 9-pin female D-sub PiCPro Port connector (labeled "BLK I/O" on the front of the Control) provides serial communication between 1 to 77 Block I/O modules and the Control. Cables connecting the Control to the first Block I/O Module and between Block I/O modules can be up to 200 feet in length.

- Pin descriptions for are provided in Table 6-8.
- Pin assignments are provided in Table 6-9.
- The available Flying Lead cable is described in Table 6-10.
- Connections to the Block I/O Module are described in Table 6-11.
- Available Breakout Boxes and Cables are described in Table 6-12.

Breakout Box dimensions are shown in Figure 6-2

Table 6-8: Block I/O Port Pin Descriptions					
Function	Notes	Pin			
Transmit Data +	Transmits data to Block I/O Modules.	3			
Transmit Data -	Transmits data to Block I/O Modules.	4			
Receive Data +	Receives data from Block I/O Modules.	5			
Receive Data -	Receives data from Block I/O Modules.	6			
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	7 & Shell			

Table 6-9: Block I/O Port Pin Assignment					
Pin	Signal	In/Out	Connector Pinout		
1	NC	N/A			
2	N/C	N/A	9-pin female D-sub (face view)		
3	Transmit Data +	Out	(rade view)		
4	Transmit Data -	Out			
5	Receive Data +	In	9 5		
6	Receive Data -	In			
7	Shield	In	6001		
8	NC	N/A			
9	NC	N/A			
Connector Shell	Drain	In			


NOTE

Pin 7 of the Block I/O port connector is connected to the connector shell within the MMC. Therefore, the shield may be connected to either pin 7 or the connector shell.

Table 6-10: Block I/O Port to Flying Lead Cable

Part Number: M.1016.2568 Length: 3 M (10 ft) Cable type: 24 AWG, twisted pair (individually shielded), 4 conductor.

9-Pin male D-sub (to Block I/O Port, face view)

Pin	Signal	Color	Notes
3	Transmit Data +	White	Twisted
4	Transmit Data -	Black	Pair
7	Shield	N/A	with Shield
5	Receive Data +	Red	Twisted
6	Receive Data -	Black	Pair
7	Shield	N/A	with Shield

	Table 6-11: Block I/O Port to Block I/O Module Wiring					
Use	Use this table to wire from the Block I/O Port to the first Block I/O Module.					
9-Pin male D-sub (to Block I/O Port, face view)			Pluggable Screw Terminal ck I/O Module, face view)			
6 0 0 0 0 0 0 0 0 0 0 0 0			0 1 2 3 4 5 5			
Pin	Signal	Pin	Signal	Notes		
3	Transmit Data +	1	Receive Data +	Twisted Pair		
4	Transmit Data -	2	Received Data -	i wisieu raii		
5	Receive Data +	4	Transmit Data +	Twisted Pair		
6	Received Data -	5	Transmit Data -	i wisteu Fall		
7	Shield Ground	3	Shield Ground			
Shell	Drain	Shell	Drain			

Table 6-12: Block I/O Port Breakout Box and Cables ^a			
Description	Length	Part Number	
MMC Block I/O Breakout Box	N/A	M.1016.2533	
MMC Block I/O Connector to Breakout Box Cable	.3 M (1 ft)	M.1016.2543	
MMC Block I/O Connector to Breakout Box Cable	.6 M (2 ft)	M.1016.2544	
MMC Block I/O Connector to Breakout Box Cable	.9 M (3 ft)	M.1016.2545	

a. The Breakout Box (see Figure 6-2 on page 131) is DIN-rail mounted, and provides screw terminal wire termination. The pinouts on the terminal strip interface provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block. The connector pins marked with the "ground" symbol on the screw connector are connected to the "D" connector shell for shield grounding purposes.

1.750" 3.000" 1 5 2.250" 1.750"

Figure 6-2: Block I/O Breakout Box Dimensions

6.5.4 User Port

The 15-pin HD male D-sub User Port connector (labeled "USER PORT" on the front of the Control) provides RS232 and RS485 serial communication between a serial device and the Control. The User Port provides RS232/RS485 communications at Baud rates to 115.2 K with Multidrop capability.

- Pin descriptions are provided in Table 6-13
- Pin assignments are provided in Table 6-14
- The available Flying Lead cable is described in Table 6-15.
- The available RS-232 Exter HMI cable is described in Table 6-16.
- The available RS-485 Exter HMI cable is described in Table 6-17.
- Available Breakout Boxes and Cables are described in Table 6-18.
- Breakout Box dimensions are shown in Figure 6-3

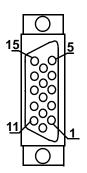

Table 6-13: User Port Pin Descriptions			
Function	Notes	Pin	
RS232 Receive Data	RS232-level signal that receives serial data from the connected serial device.	9	
RS232 Transmit Data	RS232-level signal that sends serial data to the connected serial device.	10	
RS232 Request-to-send	RS232-level signal that indicates to the connected serial device that it can transmit data to the Control.	5	
RS232 Clear-to-send	RS232-level signal that indicates to the Control that it can transmit data to the connected serial device.	7	
RS-232 Data-terminal- ready	This output from the Control is always high (12 Vdc).	4	
RS-485 Receive Data +	RS485-level signal that receives serial data from the connected serial device(s).	12	
RS-485 Receive Data -	RS485-level signal that receives serial data from the connected serial device(s).	13	
RS-485 Transmit Data +	RS485-level signal that transmits serial data to the connected serial device(s).	14	
RS-485 Transmit Data -	RS485-level signal that transmits serial data to the connected serial device(s).	15	
Signal Ground	Provides the return path for signals	8	
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell	

Table 6-14: User Port Pin Assignments			
Pin	Signal	In/Out	Connector Pinout
1	NC	N/A	
2	N/C	N/A	
3	N/C	N/A	
4	RS232 Data-terminal-ready (12 Vdc)	Out	15-pin HD male D-sub
5	RS232 Request-to-Send	Out	(face view)
6	N/C	N/A	
7	RS232 Clear- to-Send	In	11 1
8	Signal Ground	In/Out	
9	RS232 Receive Data	In	
10	RS232 Transmit Data	Out	15 0 5
11	N/C	N/A	
12	RS485 Receive Data +	In	
13	RS485 Receive Data -	In	
14	RS485 Transmit Data +	Out	
15	RS485 Transmit Data -	Out	
Connector Shell	Drain	In	

Table 6-15: User Port to Flying Lead Cable

Part Number: M.1016.2565 Length: 3 M (10 ft) Cable type: 28 AWG, shielded, twisted pair, 16 conductor.

15-Pin HD female D-sub (to User Port, face view)

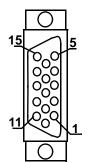
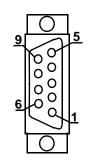

Pin	Signal	Color	Notes
3	N/C	Blue	Twisted
8	Signal Ground	Blue/Black	Pair
12	RS485 Receive Data +	Brown	Twisted
13	RS485 Receive Data -	Brown/Black	Pair
14	RS485 Transmit Data +	Violet	Twisted
15	RS485 Transmit Data -	Violet/Black	Pair
4	RS232 Data-terminal Ready	White	
5	RS232 Request-to-send	Red	
7	RS232 Clear-to-send	Green	
9	RS232 Receive Data	Yellow	
10	RS232 Transmit Data	Orange	
Shell	Drain	N/A	

Table 6-16: User Port to RS-232 Exter HMI Cable


Part Number: M.1302.8453

Length: 4 M (13 ft)
Cable type: 24 AWG, shielded, twisted pair, 4 conductor.

15-Pin HD female D-sub (to User Port, face view)

9-Pin female D-sub (to Exter HMI COM2 Port, face view)

Pin	Signal	Pin	Signal	Notes
9	Receive Data	3	Transmit Data	Twisted
10	Transmit Data	2	Receive Data	Pair
8	Signal Ground	5	Signal Ground	
Shell	Drain	Shell	Drain	

Table 6-17: User Port to RS-485 Exter HMI Cable Part Number: M.1302.8454 Length: 4 M (13 ft) Cable type: 24 AWG, shielded, twisted pair, 6 conductor. 25-Pin male D-sub (to 15-Pin HD female D-sub Exter HMI COM1 Port. (to User Port, face view) face view) Pin Pin Signal Signal Notes 12 Receive Data+ 2 Transmit Data+ Twisted 13 Receive Data-15 Transmit Data-Pair Transmit Data+ 3 Receive Data+ 14 Twisted 15 Transmit Data-16 Receive Data-Pair 8 Signal Ground 7 Signal Ground Shell Drain Shell Drain

Table 6-18: User Port Breakout Box and Cables ^a			
Description	Length	Part Number	
MMC User Port Breakout Box	N/A	M.1016.2530	
MMC User Port to Breakout Box Cable	.3 M (1 ft)	M.1016.2715	
MMC User Port to Breakout Box Cable	.6 M (2 ft)	M.1016.2716	
MMC User Port to Breakout Box Cable	.9 M (3 ft)	M.1016.2717	

a. The Breakout Box (see Figure 6-3 on page 137) is DIN-rail mounted, and provides screw terminal wire termination. Use one of the cables listed in the table to connect between the USER PORT connector and the Breakout Box. The pinouts on the terminal strip interface provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block. The connector pins marked with the "ground" symbol on the screw connector are connected to the "D" connector shell for shield grounding purposes.

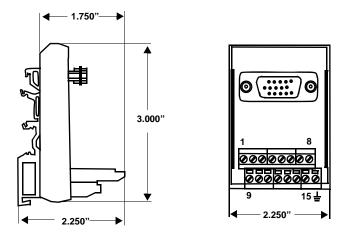


Figure 6-3: User Port Breakout Box Dimensions

6.5.5 Digital Link Port

The 8-pin RJ-45 Digital Link Port connector (labeled "DLINK" on the front of the Control) provide communications between Control and Digital MMC Smart Drives (and S200-DLS Drives). Also provided on the RJ-45 connector is a green "Link" light (which will be on if there is a Drive connected to the Digital Link Port).

The Control can be connected to either 2 (MMC-DSA2), 4 (MMC-DSA4), 8 (MMC-DSA8), or 16 (MMC-DSA8) Drives. A "straight-through" shielded cable must be used when connecting the Control to the Digital Drive. Connect the cable from the Control to the Drives "IN" connector. Refer to the MMC Smart Drive manual for Drive information.

- Pin descriptions for are provided in Table 6-19
- Pin assignments are provided in Table 6-20
- The available Digital Link Port to Digital Drive cables are described in Table 6-21

Table 6-19: Digital Link Port Pin Descriptions			
Function	Notes	Pin	
Receive Data +	Receives data from connected drives.	3	
Receive Data -	Receives data from connected drives.	6	
Transmit Data +	Transmits data to connected drives.	1	
Transmit Data -	Transmits data to connected drives.	2	
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell	

Table 6-20: Digital Link Port Pin Assignments			
Pin	Signal	In/Out	Pin Sequence
1	Transmit Data +	Out	
2	Transmit Data -	Out	RJ-45 Socket
3	Receive Data +	In	(face view)
4	Termination Resistors ^a	In	TRANSMIT light
5	Termination Resistors ^(a)	In	8 = 1
6	Receive Data -	In	B1 (2,3,4)
7	Termination Resistors ^(a)	In	1 <u>E </u>
8	Termination Resistors ^(a)	In	LINK light
Connector Shell	Shield	In	

a. Pins 4, 5, 7, and 8 are tied to termination resistors on the Control. Standard Ethernet cables contain 8 wires. The Control only uses 4 of these wires as shown. Connecting the 4 unused wires to the Control pins 4, 5, 7, and 8, (as will be done in a standard Ethernet cable) reduces noise that can be induced from the unused wires to the Transmit and Receive wires.

	Table 6-21: Digital Link Port to Digital Drive Cables				
.3 M (1 1 M (3. 3 M (9. 10 M (3. 30 M (9.	Part Numbers: .3 M (1.0 ft): M.1302.8285 .6 M (2.0 ft): M.1302.8286 1 M (3.3 ft): M.1302.8287 2 M (6.6 ft): M.1302.8288 3 M (9.8 ft): M.1302.8289 5 M (16.4 ft): M.1302.8300 10 M (32.8 ft): M.1302.8301 15 M (49.2 ft): M.1302.8302 30 M (98.4 ft): M.1302.8303 Cable type: 28 AWG, shielded, twisted pair, 8 conductor.				
	in RJ-45 Plug (to tal Link Port, face view)		RJ-45 Plug (to Digital rive, face view)		
	■		1 8		
Pin	Signal	Pin	Signal	Notes	
1	Transmit Data +	1	Receive Data +	Twisted	
2	Transmit Data -	2	Receive Data -	Pair	
3	Receive Data +	3	Transmit Data +	Twisted	
6	Receive Data -	6	Transmit Data -	Pair	
4	None	4	None	Twisted	
5	None	5	None	Pair	
7	None	7	None	Twisted	
8	None	8	None	Pair	
Shell	Drain	Shell	Drain		

6.5.6 General I/O Port

The 15-pin HD female D-sub General I/O Port connector (labeled "GEN I/O" on the front of the Control) provides connection between user I/O devices and the Control. This port provides 7 source-only, 250ma, protected outputs (described in detail in section 6.5.6.1 on page 144), and 8 source-only inputs (described in detail in section 6.5.6.2 on page 146).

- Pin descriptions are provided in Table 6-22
- Pin assignments are provided in Table 6-23
- The available Flying Lead cable is described in Table 6-24.
- Available Breakout Boxes and Cables are described in Table 6-25.
- Breakout Box dimensions are shown in Figure 6-4

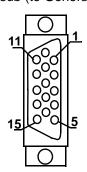

Table 6-22: General I/O Port Pin Descriptions			
Function	Notes	Pin	
DC Outputs 1-7	Nominal 24 Vdc Outputs capable of sourcing up to 250 ma.	1-7	
DC Inputs 1-8	Nominal 24 Vdc sourcing Inputs	8-15	
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell	

Table 6-23: General I/O Port Pin Assignments						
Pin	Signal	In/Out	Connector Pinout			
1	DCOUT1	Out				
2	DCOUT2	Out				
3	DCOUT3	Out				
4	DCOUT4	Out				
5	DCOUT5	Out	15-pin HD female D-sub (face view)			
6	DCOUT6	Out				
7	DCOUT7	Out	15 5			
8	DCIN1	In				
9	DCIN2	In				
10	DCIN3	In	11 000			
11	DCIN4	In				
12	DCIN5	In				
13	DCIN6	In				
14	DCIN7	In				
15	DCIN8	In				
Shell	Drain	In				

Table 6-24: General I/O Port to Flying Lead Cable

Part Number: M.1016.2519 Length: 3 M (10 ft) Cable type: 28 AWG, shielded, twisted pair, 16 conductor.

15-Pin HD male D-sub (to General I/O Port, face view)

Pin	Signal	Color	Notes
1	DCOUT1	Blue	Twisted
2	DCOUT2	White/Blue	Pair
3	DCOUT3	Black	Twisted
4	DCOUT4	White/Black	Pair
5	DCOUT5	Red	Twisted
10	DCIN3	White/Red	Pair
8	DCIN1	Green	Twisted
9	DCIN2	White/Green	Pair
6	DCOUT6	Yellow	Twisted
7	DCOUT7	White/Yellow	Pair
11	DCIN4	Orange	Twisted
11	DCIN4	White/Orange	Pair
12	DCIN5	Brown	Twisted
13	DCIN6	White/Brown	Pair
14	DCIN7	Violet	Twisted
15	DCIN8	White/Violet	Pair
Shell	Drain	N/A	

Table 6-25: General I/O Port Breakout Box and Cables					
Description	Length	Part Number			
General I/O Port Breakout Board ^a	N/A	M.1302.6970			
General I/O Port Breakout Boxb	N/A	M.1302.6972			
	1 M (3.3 ft)	M.1302.6976			
General I/O to Breakout Box Cable	3 M (9.8 ft)	M.1302.6977			
General I/O to Breakout Box Gable	9 M (29.5 ft)	M.1302.6979			
	15 M (49.2 ft)	M.1302.6980			
	1 M (3.3 ft)	M.1302.7005			
General I/O Breakout Box and Cable	3 M (9.8 ft)	M.1302.7006			
Kits. ^c	9 M (29.5 ft)	M.1302.7007			
	15 M (49.2 ft)	M.1302.7008			

a. The Breakout Board (see Figure 6-5 on page 144) is mounted directly to the GEN I/O connector, and provides screw terminals wire termination.

b. The Breakout Box (see Figure 6-4 on page 143) is DIN-rail mounted, and provides screw terminal wire termination. Use one of the cables listed in the table to connect between the GEN I/O connector and the Breakout Box.

c. These kits include an M.1302.6972 Breakout Box and an interconnect cable of the indicated length

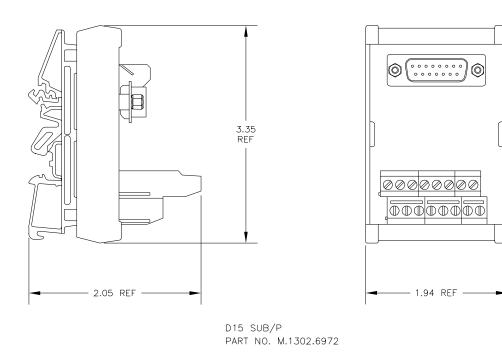
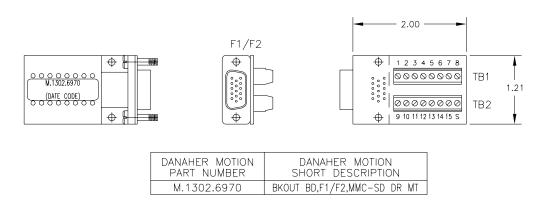



Figure 6-4: General I/O Breakout Box Dimensions

Kollmorgen - April 2010

Figure 6-5: General I/O Breakout Board Dimensions

6.5.6.1 DC Output Operation

The General I/O Port provides 7 source-only 24 Vdc outputs. These outputs get their power from the PWR connector located on the Control. Each of the 7 outputs on the General I/O connector is a solid state switch rated at 250 ma. An example of connecting the DC Outputs to loads is shown in Figure 6-6.

When a short circuit or overload condition is sensed, all Outputs are turned off and remain off for approximately 100 ms regardless of ladder activity. After 100 ms, the ladder again controls the Outputs. In addition, each output is protected with internal clamping diodes. Without clamping, high voltage transients (kickback) from inductive loads might damage the module.

For safety reasons, all outputs turn off (no current flow) when a scan loss condition occurs.

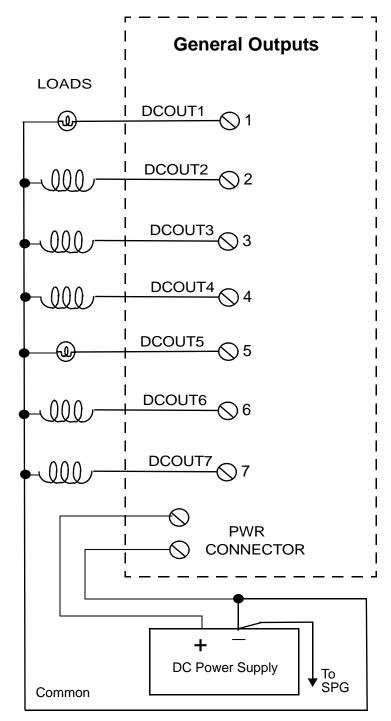


Figure 6-6: Connecting Output Devices to the General I/O Port

6.5.6.2 DC Input Operation

The General I/O Port provides eight 24 Vdc sourcing inputs (a nominal 24 Vdc at the Input turns the Input "on").

An example of connecting the DC Inputs to the Control is shown in Figure 6-7.

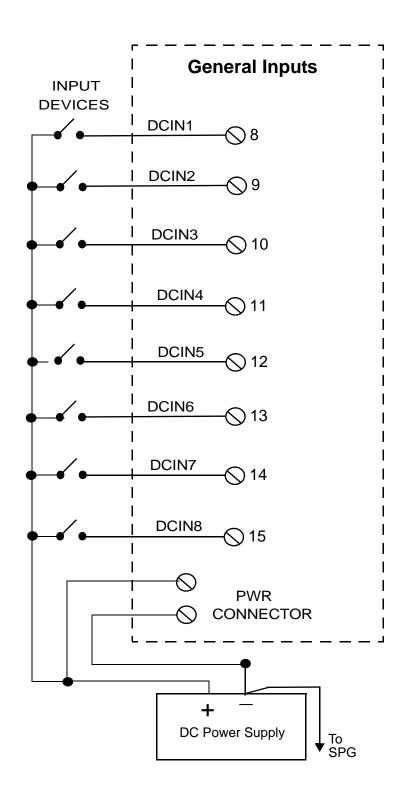
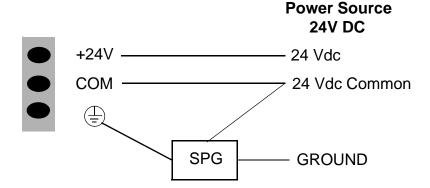


Figure 6-7: Connecting Input Devices to the General I/O Port

6.5.7 Power Connection


The Power connector (labeled "PWR" on the front of the Control) must be connected to a user-supplied +24 VDC power supply to provide power to the Control. The power supply screw terminal connection (3 pin) is at the bottom of the Control. Figure 6-8 illustrates the pin-out.

The Control converts +24 Vdc power from this connector to DC power at voltages of +3.3 Vdc and +1.5V and supplies them to the logic side of the system. The same +24 Vdc supply that powers the Control also supplies the 24 Vdc Outputs located on the General I/O connector, as well as any attached MMC Option Modules.

CAUTION

Always shut off power at the main disconnect switch before you begin to work on the Control.

Figure 6-8: Pin Out for the 3-pin Power Supply Screw Terminal Connection

6.6 Specifications

	General										
Charact	Characteristic MMC Specifications										
						N	lumber at		o axes late rate		le
Model	Part No.	Speed	App Mem	RAM Mem	User Mem	8 ms	4 ms	2 ms	1 ms	.5 ms	.25 ms
MMC- DSA2	M.3000 .0652	Std.	1.3M	256K	64K	2	2	2	2	2	1
MMC- DSA4	M.3000 .0653	Std.	1.3M	256K	64K	4	4	4	4	2	1
MMC- DSA8	M.3000 .0654	X1.5	1.3M	256K	64K	8	8	8	4-8	2-4	1-2
MMC- DSA16	M.3000 .0655	X1.5	1.3M	256K	64K	16	16	8-16	4-8	2-4	1-2

a. Using features such as servo tasks, S-curve, RATIO_RL, M_LINCIR, M_SCRVLC, PLS, and CAM_OUT places a heavier burden on available CPU time. Consult Kollmorgen for assistance if you want to exceed the number of axes in this chart.

CPU	32 bit RISC processor with numeric coprocessor		
Battery	3V Coin Cell, BR2032 lithium battery		
CAUTION for Lithium Batteries Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent ty recommended by the manufacturer. Dispose of used batteries according to the manufacturer's in structions.			
Flash Disk	2 Megabytes		
Memory	1 Megabyte max.		
PiCPro Port (to workstation)	RS232 serial port, secured protocol Software selectable baud rate to 115.2K		
User Port (to serial interface device)	RS232/RS485 serial port Supports RTS/CTS hardware handshaking Software selectable baud rate to 115.2K		
Ethernet Port (to Ethernet Device)	IEEE 802.3/802.3u-100Base-TX/10Base T Half duplex Cable type: Shielded, Straight Pinned, CAT5 or better (CAT5e, CAT6, etc.) Maximum cable length: 50 M (164 ft)		
Digital Link Ports (to Digital MMC Smart Drive)	IEEE 802.3/802.3u-100Base-TX Cable type: Shielded, Straight Pinned, CAT5 or better (CAT5e, CAT6, etc.) Maximum cable length: 30 M (98.4 ft)		

Input voltage	20 VDC to 30 VDC
Input power	500mA plus I/O & MMC Option Module power (10 A max)
Time-of-day clock Clock tolerance	Access via PiCPro 10.2 and above or your application program At 25°C (77°F),±1 second per day Over temperature, voltage and aging variation, +2/-12 seconds per day
Operating temperature range	5°C to 55°C (41°F to 131°F)
Storage temperature range	-40°C to 85°C (-40°F to 185°F)
Humidity	5 to 95%, non-condensing
CE Marked Note: Only units Rev 1 or higher are CE Marked.	Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards: EN 50081-2:1993EMC Generic Industrial Emissions EN 50082-2:1995EMC Generic Industrial Immunity EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers Operates with emissions below EN55011/ CISPR 11 Class A limits Immune to: • Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2 • RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204 • Electrical fast transients per EN61000-4-4 • Magnetic fields per EN61000-4-8 Refer to the EMC Guidelines for more information.
UL and C/UL Listed	E126417
Physical size	2.25" wide x 9.6" high x 5.3" deep 57.15 mm x 243.84 mm x 134.62 mm
Vibration (per IEC 68-2-6)	10-57 Hz (constant amplitude = .15 mm) 57 - 2000 Hz (acceleration = 2 g)
Shock (per IEC 68-2-27)	Four shocks per axis (15g/11 msec)
General DC Inputs	
Configuration	Sourcing only. Operates with IEC Type 1 inputs (per IEC 1131-2)
Input voltage	Nominal 24 VDC, maximum 30 VDC
Guaranteed on voltage	15 VDC
Cuaranteed off valtage	5 VDC
Guaranteed off voltage	

General DC Outputs				
Number of outputs	7 outputs			
Input voltage	Nominal 24 VDC, 30 VDC maximum			
Configuration	Seven solid-state switches.			
Protection of logic circuits	Optical isolation between the logic and field side, transient suppression on the 24V external supply			
Maximum current	.25 A per output			
Voltage range	24 VDC nominal, 5 to 30 VDC			
Switch characteristics	Solid-state switches			
Time delay on for resistive loads	50 μsec max			
Time delay off for resistive loads	50 μsec max			
Leakage current in off state	0.5 mA max			
Switch voltage, maximum ON	1 VDC max			
Over-current protection for entire group of 7 outputs	2 A (max) pulses for about 130 μsec every 100 msec until over-current is removed			
Short circuit protection for entire group of 7 outputs	15 A (max) pulses for about 130 µsec every 100 msec until short is removed			
Scan loss response	Outputs turn off			

Standalone MMC Hardware Manual - MMC-DSAXX CONTROL

7 MMC Ethernet TCP/IP Option Module

7.1 Introduction

The ETHERNET - TCP/IP Option Module provides the Standalone MMC Control (MMC-A2, -A4, -S8, -S16) with Ethernet access and Internet connectivity. This MMC Option module cannot be used with the Standalone Digital MMC Control (MMC-D32, -D64), or the MMC-DSAXX Control (MMC-DSA2, -DSA4, -DSA8, -DSA16). A 10Base T connection is provided following the IEEE 802.3 specification. The data transfer rate is 10 Mbps. Applications can range from connecting several MMCs, connecting groups of MMCs and PCs, or connecting to a system that includes Internet access.

At the end of this document is a partial list of Internet links to useful information about Ethernet and TCP/IP networking.

The Remote Programmer Access switch (future feature) will allow you to enable/ disable MMC running over Ethernet. The DIAG LED goes on briefly while the diagnostic tests are running shortly after power is applied.

Diagnostic LED

DIAG

GDLNK EO EI

COL PREV

OUT IN

COM1

PROGRAMMER

ACCESS

10 Base T

RJ-45 8-pin connector

RS232 COM Port 1

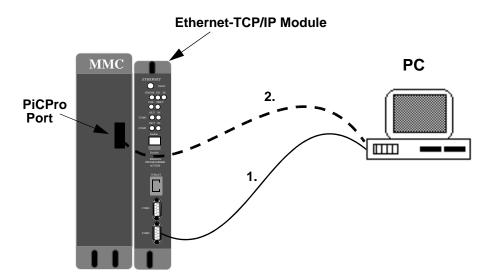
RS232 COM Port 1

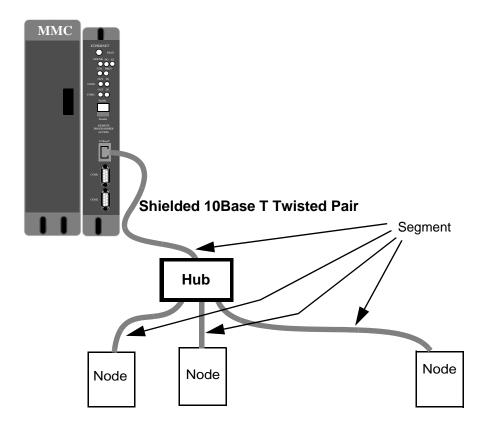
Figure 7-1: MMC Ethernet - TCP/IP Option Module

7.2 Connections

A serial cable is used to make a connection between the PC and the MMC Control, or between the PC and the Ethernet TCP/IP Option Module.

- 1. Connect the PC to the RS232 Com 2 Port on the Ethernet TCP/IP module to download the TCP/IP configuration file (connection 1 as shown in Figure 7-2).
- 2. Connect the PC to the PiCPro Port on the CPU to download the application LDO (connection 2 as shown in Figure 7-2).




Figure 7-2: MMC/PC Connections

Use 10Base T (10 Mbps, baseband, over twisted pair cable) to set up your Ethernet - TCP/IP system. The table below summarizes the specifications (IEEE 802.3) for the Ethernet connection available on the MMC Ethernet - TCP/IP module.

Table 7-1: Ethernet Port Specifications			
Item	Specification		
Type of Cable	Category 3 or 5 (5 recommended) UTP (shielded twisted-pair) Shielded category 5 cable is optional.		
Connection	RJ-45		
Topology	Star		
Distance	100 M (328 ft) between transceiver (TCP/IP module) and hub		
Maximum cable segment length	100 M (328 ft)		
Data Rate	10 Mbps		

A typical MMC 10Base T connection is shown below.

Figure 7-3: Ethernet - TCP/IP 10Base T Connections

Maximum segment length is 100 M (328 ft).

7.2.1 The Ethernet Port

The 10Base-T port uses a RJ-45 style 8-pin connector using 100 ohm unshielded twisted pair category 3 or 5 cable (IEEE 802.3 section 14.4). The maximum length of the twisted pair cable segment is 100 M (328 ft). NOTE: The connector is also suitable for shielded cable and will ground the shield to the chassis.

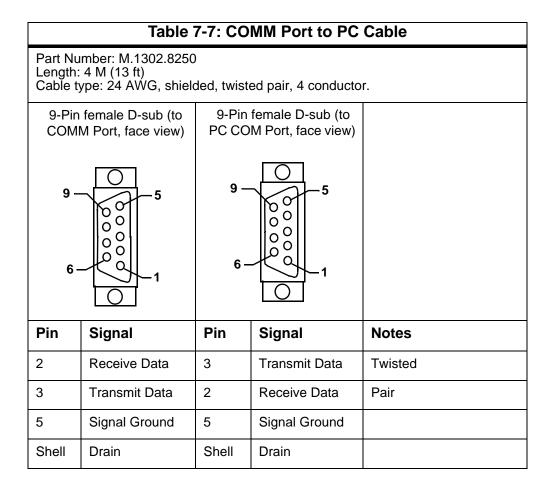
- Pin descriptions for are provided in Table 7-2
- Pin assignments are provided in Table 7-3
- The available Ethernet Port to Ethernet Device cables are described in Table 7-4

Table 7-2: Ethernet Port Pin Descriptions				
Function	Notes	Pin		
Receive Data +	Receives data from connected drives.	3		
Receive Data -	Receives data from connected drives.	6		
Transmit Data +	Transmits data to connected drives.	1		
Transmit Data -	Transmits data to connected drives.	2		
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell		

Table 7-3: Ethernet Port Pin Assignments				
Pin	Signal	In/Out	Pin Sequence	
1	Transmit Data +	Out		
2	Transmit Data -	Out	RJ-45	
3	Receive Data +	In	KJ-45	
4	Termination Resistors ^a	In		
5	Termination Resistors ^(a)	In		
6	Receive Data -	In		
7	Termination Resistors ^(a)	In		
8	Termination Resistors ^(a)	In		
Connector Shell	Shield	In		

a. Pins 4, 5, 7, and 8 are tied to termination resistors on the Module. Standard Ethernet cables contain 8 wires. The Module only uses 4 of these wires as shown. Connecting the 4 unused wires to pins 4, 5, 7, and 8, (as will be done in a standard Ethernet cable) reduces noise that can be induced from the unused wires to the Transmit and Receive wires.

	Table 7-4: Ethernet Port to Ethernet Device Cables				
.3 M (1 1 M (3. 3 M (9. 10 M (3. 30 M (9.	Part Numbers: .3 M (1.0 ft): M.1302.8285 .6 M (2.0 ft): M.1302.8286 1 M (3.3 ft): M.1302.8287 2 M (6.6 ft): M.1302.8288 3 M (9.8 ft): M.1302.8289 5 M (16.4 ft): M.1302.8300 10 M (32.8 ft): M.1302.8301 15 M (49.2 ft): M.1302.8302 30 M (98.4 ft): M.1302.8303 Cable type: 28 AWG, shielded, twisted pair, 8 conductor.				
	in RJ-45 Plug (to net Port, face view)		rin RJ-45 Plug (to et Device, face view)		
■			1 8		
Pin	Signal	Pin	Signal	Notes	
1	Transmit Data +	1	Receive Data +	Twisted	
2	Transmit Data -	2	Receive Data -	Pair	
3	Receive Data +	3	Transmit Data +	Twisted	
6	Receive Data -	6	Transmit Data -	Pair	
4	None	4	None	Twisted	
5	None	5	None	Pair	
7	None	7	None	Twisted	
8	None	8	None	Pair	
Shell	hell Drain Shell Drain				


7.2.2 The RS232 COMM Ports

There are two RS232 ports at the top of the module as shown in Figure 4-3. COMM 1 will be used for modem connections (future). COMM 2 is used to download your configuration file to the MMC.

- Pin descriptions for are provided in Table 7-5
- Pin assignments are provided in Table 7-6
- The available PiCPro Port to PC cable is described in Table 7-7

Table 7-5: COMM Port Pin Descriptions				
Function	Notes	Pin		
Receive Data	RS232-level signal that receives serial data from the connected PC running PiCPro.	2		
Transmit Data	RS232-level signal that transmits serial data to the connected PC running PiCPro.	3		
Signal Ground	Provides the return path for signals	5		
Data Terminal Ready	Always high (greater then +3 Vdc)	4		
Request-to-send	RS232-level signal that indicates to the connected serial device that it can transmit data to the Module.	7		
Clear-to-send	RS232-level signal that indicates to the Module that it can transmit data to the connected serial device.	8		
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Connector Shell		

Table 7-6: COMM Port Pin Assignments				
Pin	Signal	In/Out	Pin Sequence	
1	NC	N/A		
2	RS232 Receive Data	In		
3	RS232 Transmit Data	Out	9-pin male D-sub	
4	NC	NA		
5	Signal Ground	In/Out	6 60	
6	NC	N/A		
7	Request-to-send	Out	9005	
8	Clear-to-send	In		
9	NC	N/A		
Connector Shield	Shield	In		

7.3 LEDs

There are nine LEDs on the MMC Ethernet - TCP/IP module in addition to the DIAG LED. They are located directly under the DIAG LED as shown below.

Figure 7-4: Ethernet - TCP/IP LEDs

	DIAG	Diagnostic (yellow)
GDLNK OUT	IN O	Ethernet 10Base-T good link (green) Ethernet transmitting data (green) Ethernet receiving data (green)
COL PREV	,	Ethernet collision (yellow) Polarity reversed on 10Base-T receiver (yellow)
OUT IN		Com 1 transmit data (green) Com 1 receive data (green)
OUT IN		Com 2 receive data (green) Com 2 transmit data (green)

7.4 Firmware Update

See Appendix B of the PiCPro online help for firmware update information.

7.5 Theory of operation

The MMC Ethernet - TCP/IP module contains a 32-bit processor to handle TCP/IP, PPP (future), and Ethernet protocols. It allows you to use the Ethernet network architecture and the TCP/IP standard set of protocols to communicate and access other modules, computers, or the Internet and its resources. The design is based on the IEEE 802.3 specifications. The data rate is 10 Mbps. The diagram below provides an overview.

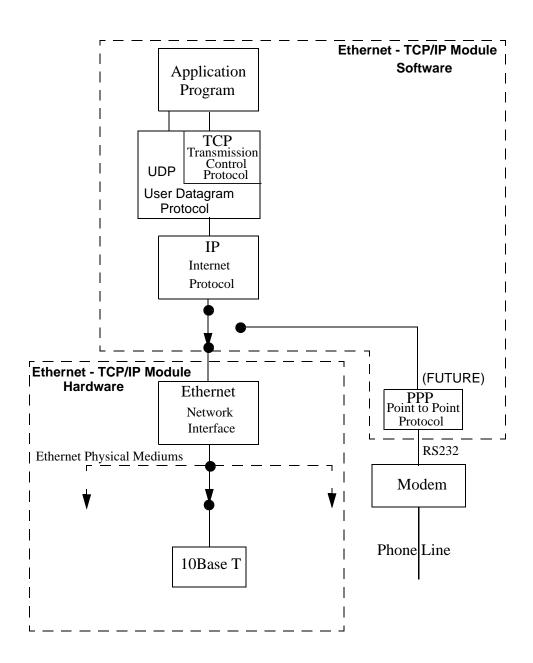


Figure 7-5: MMC Ethernet - TCP/IP Overview

7.6 Specifications Table

Characteristics	Ethernet - TCP/IP Module Specifications
Function	Provides the MMC with Ethernet access and Internet connectivity
Part number	M.1017.3888
RS232 Port 1	Com Port 1 modem (future)
RS232 Port 2	Com Port 2 (for firmware and configuration loading)
10Base T	RJ-45 8-pin connector Maximum twisted pair length is 100 M (328 ft).
24 VDC Power from the MMC	200 mA
Operating temperature range	7° C to 55° C (45° F to 131° F)
Storage temperature range	-40° C to 85° C (-40° F to 185° F)
Humidity	5 to 95%, non-condensing
CE Marked	Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards: EN 50081-2:1993EMC Generic Industrial Emissions EN 50082-2:1995EMC Generic Industrial Immunity EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers Operates with emissions below EN55011/ CISPR 11 Class A limits Immune to: • Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2 • RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204 • Electrical fast transients per EN61000-4-4 • Magnetic fields per EN61000-4-8 Refer to the EMC Guidelines for more information.
UL and C/UL Listed	E126417
Physical size	1.28" wide x 9.6" high x 5.3" deep 52.51 mm x 243.84 mm x 134.62 mm
Vibration (per IEC 68-2-6)	10-57 Hz (constant amplitude = .15 mm) 57 - 2000 Hz (acceleration = 2 g)
Shock (per IEC 68-2-27)	Four shocks per axis (15g/11 msec)

7.7 Useful Internet Links

http://www.3com.com/technology/tech_net/white_papers/500698.html#6

http://www.library.ucg.ie/Connected/Course/index.htm

http://www.combsnet.com/cable/Basics/types.html

http://www.jdltech.com/solutions/Standards_Terms.cfm

http://www.jdltech.com/solutions/LAN_terms.cfm

http://www.datatech.com/hot/w96_2.htm

http://www.standards.ieee.org/catalog/IEEE802.3.html

http://www.3com.com/nsc/glossary/main.htm

http://www.alliedtelesyn.com/prd_tran.htm#microtrans

http://www.lothlorien.net/collections/computer/ethernet_frames.html

http://www.lantronix.com/htmfiles/mrktg/catalog/etntba.htm

http://www.warehouse.com/datacomm/

Standalone MMC Hardware Manual - MMC ETHERNET TCP/IP OPTION MODULE

8 MMC DeviceNet[™] Option Module

8.1 Introduction

The MMC DeviceNet™ scanner module is an interface between any MMC Control and a DeviceNet network. The module contains an on-board processor, a DeviceNet compliant interface, and firmware that makes it act as the master to all other nodes on the network.

Prior to initial operation, a file is generated with specific configuration software in an external PC. This file must be downloaded via the RS232 configuration port to the DeviceNet module prior to initial operation. Two indicator LEDs (IN/OUT) are connected to this configuration port.

Directly above the DeviceNet port are two LEDs that provide operation information: Network Status and DeviceNet Scanner Status.

The DIAG LED goes on briefly while the diagnostic tests are running.

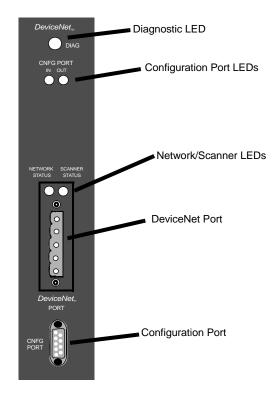


Figure 8-1: MMC DeviceNet Module

8.2 Connections

DeviceNet connections are illustrated in Figure 8-2. Up to 63 DeviceNet Nodes may be attached to the DeviceNet scanner module.

Figure 8-2: DeviceNet Connections

8.2.1 The DeviceNet Port

The DeviceNet port is on the front of the module near the center as shown in Figure 8-1 on page 165. The pinout for the DeviceNet port is shown below:

Pin #	Signal Name	Standard Wire Colors
1	V-	black
2	CAN_L	blue
3	Shield (drain)	bare
4	CAN_H	white
5	V+	red

In your network layout, follow DeviceNet specifications. Only use DeviceNet compliant cable, such as Belden 3084A thin wire and Belden 3082A thick wire.

8.2.2 The Configuration (RS232) Port

There is an RS232 port on the lower front of the module as shown in Figure 8-1 on page 165. This is used to connect to a PC in order to download a file representing your DeviceNet network.

Pin #	Signal Name	In/Out
2	Receive Data	In
3	Transmit Data	Out
5	Ground	In/Out

8.3 LEDs

The two configuration port LEDs and the two DeviceNet port LEDs are described below.

Port	LED	Color	State	Definition
	Network status	None	OFF	Off-line
		Green	ON	On-line and connected to at least one node
			Flashing	On-line but connection nodes not established
		Red	ON	Unrecoverable Fault (duplicate MAC ID check failed, critical bus fault etc.)
DeviceNet Port			Flashing	I/O connections in timed-out state or other Recoverable Fault
	Scanner status	Green	OFF	No power or else reset asserted
			ON	Scanner OK and active
			Flashing	Scanner OK but not active
		Red	ON	Hardware or software error
			Flashing	Recoverable configuration error (invalid data downloaded)
		Orange	ON	Configuration (download) mode
Configuration Port	IN	Red	Flickering	Data is being passed to the module
			OFF	No data to the module
	OUT	Red	Flickering	Data is being passed from the module
			OFF	No data from the module

8.4 Theory of Operation

The DeviceNet scanner module provides a memory image of the nodes (slaves) connected to a DeviceNet network. It is this memory image that is controlled by your LDO created in PiCPro. The module's on-board processor continually transfers data between this memory image and the actual DeviceNet nodes.

Communication between the DeviceNet module and the nodes can be set at 125 Kbaud, 250 Kbaud, or 500 Kbaud. The baud rate, the relationship between the memory image and specific data in each node, and other parameters are established with configuration software run in an external PC.

This configuration software generates two files. One file is downloaded to the DeviceNet module through its RS232 serial port. The other file is used by PiCPro to establish the relationship between the memory image and the declared variables in the LDO. To ensure that a given location in the memory image is connected to a variable in the LDO and to the corresponding data in the DeviceNet node, the same tag name or label must be used.

For example, when running the configuration software, PROX_SW1 could be used as the name for the boolean bit representing a DeviceNet proximity switch's logic state. The name PROX_SW1 must also be used for the corresponding variable in your LDO.

NOTE

The Kollmorgen DeviceNet configuration software (Kollmorgen Part No. M.1017.4267) is required to configure the DeviceNet scanner (within the DeviceNet module) for the devices on the associated network.

NOTE

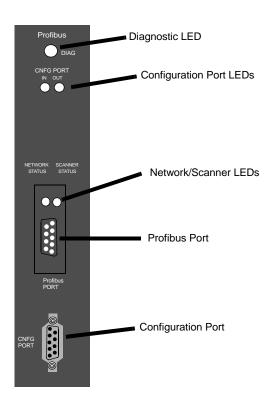
Additional information about DeviceNet can be obtained from www.odva.org.

8.5 Specifications

Characteristics	DeviceNet Module Specifications
Function	Interfaces to a DeviceNet network with up to 63 other nodes
Part number	M.1017.3889
DeviceNet Port	Phoenix style 5-pin male connector
Configuration Port	RS232 interface
24 V DC Power from the MMC	100 mA
Operating temperature range	7° C to 55° C (45° F to 131° F)
Storage temperature range	-40° C to 85° C (-40° F to 185° F)
Humidity	5 to 95%, non-condensing
CE Marked	Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards: EN 50081-2:1993EMC Generic Industrial Emissions EN 50082-2:1995EMC Generic Industrial Immunity EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers Operates with emissions below EN55011/ CISPR 11 Class A limits Immune to: • Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2 • RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204 • Electrical fast transients per EN61000-4-4 • Magnetic fields per EN61000-4-8 Refer to the EMC Guidelines for more information.
UL and C/UL Listed	File No. E126417 NRAQ Programmable Controllers
Physical size	1.28" wide x 9.6" high x 5.3" deep 52.51 mm x 243.84 mm x 134.62 mm
Vibration (per IEC 68-2-6)	10-57 Hz (constant amplitude = .15 mm) 57 - 2000 Hz (acceleration = 2 g)
Shock (per IEC 68-2-27)	Four shocks per axis (15g/11 msec)

9 MMC Profibus Option Module

9.1 Introduction

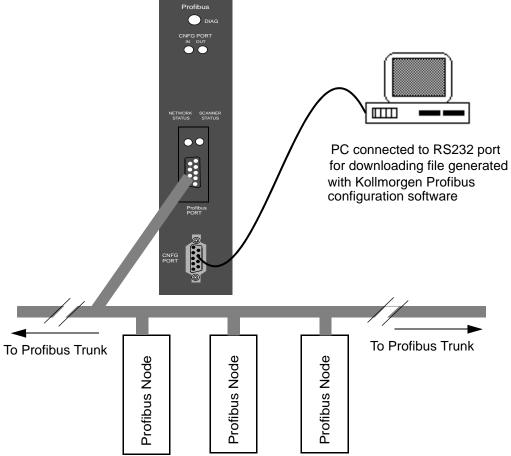

The MMC Profibus scanner module is an interface between any MMC Control and a Profibus network. The module contains an on-board processor, a Profibus compliant interface, and firmware that makes it act as the master to all other nodes on the network.

Prior to initial operation, a file is generated with specific configuration software in an external PC. This file must be downloaded via the RS232 configuration port to the Profibus module prior to initial operation. Two indicator LEDs (IN/OUT) are connected to this configuration port.

Directly above the Profibus port are two LEDs that provide operation information: Network Status and Profibus Scanner Status.

The DIAG LED goes on briefly while the diagnostic tests are running.

Figure 9-1: MMC Profibus Module



9.2 Connections

Profibus connections are illustrated in Figure 9-2 on page 172. Up to 31 Profibus nodes, without repeaters, may be attached to the Profibus scanner. Up to 125 other Profibus Nodes, using repeaters, may be attached to the Profibus scanner module.

Figure 9-2: Profibus Connections

MMC Profibus

9.2.1 The Profibus Port

The Profibus port is on the front of the module near the center as shown in Figure 9-1 on page 171. The pinout for the Profibus port is shown below.

Table 9-1: Pinout for Profibus Port				
Pin #	Signal Name			
1	Chassis ground			
2	reserved	Notes		
3	data +	Note: It is strongly recommended that you use Profibu Sub-D connectors with switchable (ON/OFF) termination, such as Siemens		
4	Tx enable			
5	Isolated ground	6ES7 972-0BA11-0XA0 or 6ES7 972-0BB11-0XA0. Only use Profibus type A cable, such as Belde 3079A or Siemens 6XV1 830-0AH10.		
6	voltage plus			
7	reserved			
8	data -			
9	reserved			

9.2.2 The Configuration (RS232) Port

There is an RS232 port on the lower front of the module as shown in Figure 9-1 on page 171. This is used to connect to a PC in order to download a file representing your Profibus network.

Table 9-2: Pinout for RS232 Configuration Port		
Pin #	Signal Name	In/Out
2	Receive Data	In
3	Transmit Data	Out
5	Ground	In/Out

9.3 LEDs

The two configuration port LEDs and the two Profibus port LEDs are described below.

	Table 9-3: Description of Profibus Port LEDs			
Port	LED	Color	State	Definition
	Network status	Green	OFF	Off-line
			ON	On-line, no physical layer or data layer errors (or Profibus cable not connected)
		Red	ON	On-line, bus error (baud rate or wiring problem)
Profibus Port	Scanner status	Green	OFF	No power or else reset asserted, interface closed
			ON	Scanner communicating, data exchanging, no slave device errors
			Flashing	Scanner in start-up
		Red	ON	At least one slave faulted
		Orange	ON	Configuration (download) mode
Configu- ration Port	IN	Red	Flickering	Data is being passed to the module
			OFF	No data to the module
	OUT	Red	Flickering	Data is being passed from the module
			OFF	No data from the module

9.4 Theory of Operation

The Profibus scanner module provides a memory image of the nodes (slaves) connected to a Profibus network. It is this memory image that is controlled by your LDO created in PiCPro. The module's on-board processor continually transfers data between this memory image and the actual Profibus nodes.

Communication between the Profibus module and the nodes can be set between 9600 baud (1200m max.) and 12M baud (100m max.). The baud rate, the relationship between the memory image and specific data in each node, and other parameters are established with configuration software run in an external PC.

This configuration software generates two files. One file is downloaded to the Profibus module through its RS232 serial port. The other file is used by PiCPro to establish the relationship between the memory image and the declared variables in the LDO. To ensure that a given location in the memory image is connected to a variable in the

LDO and to the corresponding data in the Profibus node, the same tag name or label must be used.

For example, when running the configuration software, PROX_SW1 could be used as the name for a boolean bit of a Profibus Block I/O. It would correspond to the wiring location of a proximity switch. The name PROX_SW1 must also be used for the corresponding variable in your LDO.

The Profibus scanner module provides DP master Class 1 functionality only. This includes DP multi-master support (token) passing and cyclic slave communications. It does not support DP master Class 2, sync and freeze modes, nor extended DP functions.

NOTE

The Kollmorgen Profibus configuration software (Kollmorgen Part No. M.1300.7794) is required to configure the Profibus scanner (within the Profibus module) for the devices on the associated network.

NOTE

Additional information about Profibus can be obtained at www.profibus.com

9.5 Specifications for Profibus Module

Characteristics	Profibus Module Specifications
Function	Interfaces (acts as DP Master - Class 1), to a Profibus network with up to 125 other nodes, using repeaters
Part number	M.1300.7167
Profibus Port	9-pin female D-sub connector
Configuration Port	RS232 interface
24 V DC Power from the MMC	100 mA
Operating temperature range	7° C to 55° C (45° F to 131° F)
Storage temperature range	-40° C to 85° C (-40° F to 185° F)
Humidity	5 to 95%, non-condensing
CE Marked	Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards: EN 50081-2:1993EMC Generic Industrial Emissions EN 50082-2:1995EMC Generic Industrial Immunity EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers Operates with emissions below EN55011/CISPR 11 Class A limits Immune to: • Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2 • RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204 • Electrical fast transients per EN61000-4-4 • Magnetic fields per EN61000-4-8 Refer to the EMC Guidelines for more information.
UL and C/UL Listed	File No. E126417 NRAQ Programmable Controllers
Physical size	1.28" wide x 9.6" high x 5.3" deep 52.51 mm x 243.84 mm x 134.62 mm
Vibration (per IEC 68-2-6)	10-57 Hz (constant amplitude = .15 mm) 57 - 2000 Hz (acceleration = 2 g)
Shock (per IEC 68-2-27)	Four shocks per axis (15g/11 msec)

10 MMC Axis I/O Option Module

The MMC Axis I/O Module can be used with any MMC control except the Sercos versions of the Standalone MMC Control (MMC-S8, -S16).

The MMC Axis I/O Option Module may be used in one of two ways:

- to provide conventional analog/digital interfacing to four analog drives (the Axis is declared in Servo Setup). This mode of operation is only available when used with the Analog versions of the Standalone MMC Control (MMC-A2, MMC-A4).
- to provide the following individual functions accessed from the user program (the Axis is not declared in Servo Setup):
 - D/A converter
 - feedback channels
 - on-board DC I/O

When a channel is declared as an Axis in Servo Setup, the typical signals needed to interface to an analog drive are provided by the MMC Axis I/O Option Module. The drive command is in the form of an analog voltage (±10V). Feedback is accepted from quadrature type encoders with differential outputs. Digital I/O (+24 Vdc) is used for drive signals such as enable, reset, and fault. Fast inputs are provided for each encoder input and can be configured to latch encoder position under various conditions.

The MMC Axis I/O Option Module is identical to the Analog Motion Control section of the Standalone MMC Control. See section 4.6 on page 63, **Analog Motion Control Connectors & Operation**, for connections and operation of the MMC Axis I/O Option Module.

15-pin Axis Connectors

1 Analog Output
1 Encoder Input
2 DC Outputs
1 DC input

12 DC Inputs
5 Fast DC Inputs
1 Encoder Input
1 Analog Input

Figure 10-1: Locations of Input, Output, Encoder Pins

10.1 Specifications

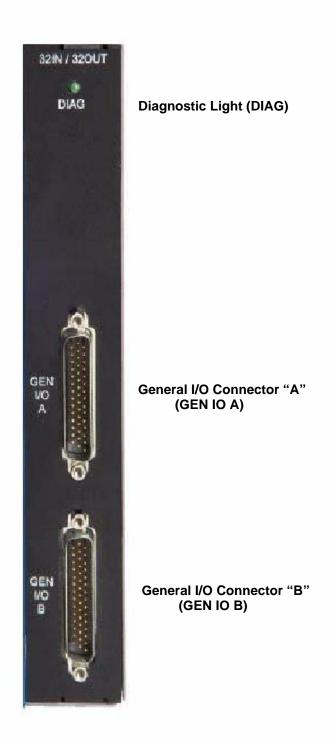
General	
Function	Provide the MMC with conventional analog/digital interfacing to four analog drives or analog/digital I/O. depending on MMC Control type.
Part Number	M.1302.6178
Operating temperature range	5°C to 55°C (41°F to 131°F)
Storage temperature range	-40°C to 85°C (-40°F to 185°F)
Humidity	5 to 95%, non-condensing
CE Marked	Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards: EN 50081-2:1993EMC Generic Industrial Emissions EN 50082-2:1995EMC Generic Industrial Immunity EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers Operates with emissions below EN55011/ CISPR 11 Class A limits Immune to: • Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2 • RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204 • Electrical fast transients per EN61000-4-4 • Magnetic fields per EN61000-4-8 Refer to the EMC Guidelines for more information.
UL and C/UL Listed	E126417
Physical size	1.28" wide x 9.6" high x 5.3" deep 52.51 mm x 243.84 mm x 134.62 mm
Vibration (per IEC 68-2-6)	10-57 Hz (constant amplitude = .15 mm) 57 - 2000 Hz (acceleration = 2 g)
Shock (per IEC 68-2-27)	Four shocks per axis (15g/11 msec)

Axis Port Analog Output	
Output channels	2 or 4
Resolution	16 bits
Output voltage range	±10 VDC
Maximum output current (1K Ω load)	±10 mA
Power on output voltage	0 V ±100 mV
Scan loss output voltage	0V ±100 mV
Accuracy	±0.375% of FSR Drift ± 50ppm/°C
Update rate	68 µsec
Aux Port Analog Input	
Input channel	1
Resolution	12 bits
Input voltage range	±10 V
Accuracy	±0.2% of FSR
Sample rate	100 µsec
Common mode filter	3 dB @ 10 K Hz
Differential mode filter	3 dB @ 475 Hz

Axis Port & Aux Port Encode	r Input
Input channels	3 or 5
Input receiver	26632 differential RS422 receiver
Recommended Encoder Drivers	7272, 75183, 8830, 75114, 9614, 26LS31 (or equivalent)
Encoder signals	Differential quadrature
Input threshold	±750 mV
Input termination	120 ohm, provided on board
Maximum input voltage	5 V
Maximum A or B input frequency	250 K Hz (1 M feedback unit count rate)
Fast input voltage	Nominal 24 VDC, maximum 30 VDC
Guaranteed on voltage	15 VDC
Guaranteed off voltage	5 VDC
Turn on/off time	1 ms
Axis Port & Aux Port DC Inpu	ıts
Configuration	The auxiliary inputs are divided into two groups of six inputs. Each group can be configured for sourcing or sinking. The axis inputs have one input per axis. Each input can be configured for sourcing or sinking. Operates with IEC Type 1 inputs (per IEC 1131=2).
Input voltage	Nominal 24 VDC, maximum 30 VDC
Guaranteed on voltage	15 VDC
Guaranteed off voltage	5 VDC
Turn on/off time	1 ms
Fast inputs	50 μsec
Axis Port DC Outputs	
Number of outputs	2 outputs per axis
Configuration	Each set of axis outputs can be configured as sourcing or sinking.
Maximum current	100 mA per output
Voltage range	24 VDC nominal, 5 to 30 VDC range
Scan loss response	Outputs turn off

Standalone MMC Hardware Manual - MMC AXIS I/O OPTION MODULE

Aux Port +5 Vdc Output	
+5 VDC	150 mA maximum current available. Connections to this point should be over short distances and away from electric noise signals.


11 MMC 32In/32Out Option Module

11.1 Introduction

The MMC 32In/32 Out Option Module (shown in Figure 11-1) can be used with any MMC control. It contains two 44-pin HD male D-sub connectors, labeled "GEN I/O A", and "GEN I/O B". Each connector provides 16 sink or source (user selectable, in groups of 8) 24 Vdc inputs. In addition, the first input of each group of 8 can be programmed to provide a processor interrupt on either a low-to-high or high-to-low input transition. Each connector also provides 16 source-only 24 Vdc outputs. Each output is capable of sourcing 250 ma, and is protected from both short circuits as well as overloads.

The Diagnostic light at the top of the module (labeled "DIAG"), turns on briefly when power is first applied, and then turns off indicating that the module has passed it's diagnostic tests. If the light stays on after power up, it is defective and should be replaced.

Figure 11-1: MMC 32 In/32 Out Option Module

11.2 Connections & Operation

The two 44-pin HD male D-sub I/O connectors (labeled "GEN I/O A" and "GEN I/O B" on the front of the Module) provides connection between the user I/O devices the

Control. This port provides 16 source-only outputs (described in detail in section 11.2.1 on page 188), and 16 sink or source inputs (described in detail in section 11.2.2 on page 191).

- Pin descriptions are provided in Table 11-1
- Pin assignments are provided in Table 11-2
- The available Flying Lead cable is described in Table 11-3.
- Available Breakout Boxes and Cables are described in Table 11-4.
- Breakout Box dimensions are shown in Figure 11-2

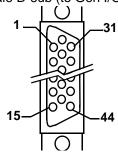
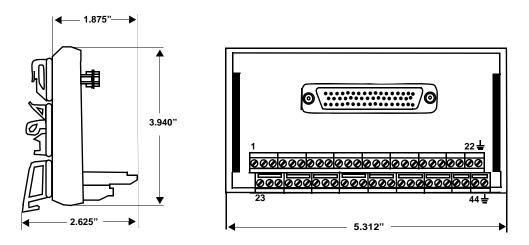

Table 11-1: General I/O Port Pin Descriptions			
Function	Notes	Pin	
DC Outputs 1-16	Nominal 24 Vdc Outputs capable of sourcing up to 250 ma.	1-16	
24 Vdc Output Power for Outputs 1-8	User-supplied 24 Vdc power (nominal) that supplies the necessary current to power DC Outputs 1-8.	17,31	
24 Vdc Output Power for Outputs 9-16	User-supplied 24 Vdc power (nominal) that supplies the necessary current to power DC Outputs 9-16.	18,32	
24 Vdc Common for Outputs 1-16	User-supplied 24 Vdc Common that supplies the return path for the DC Output logic current.	33	
DC Inputs 1-8	Nominal 24 Vdc Inputs (Sink or Source) Inputs 1-8	23-30	
Sink/Source select pin for DC Inputs 1-8	To make DC Inputs 1-8 "sourcing" inputs (24 Vdc applied to the DC Input turns the input "on"), connect 24 Vdc Common to this pin. To make DC Inputs 1-8 "sinking" inputs (24 Vdc Common applied to the DC Input turns the input "on"), connect 24 Vdc (nominal) to this pin.	21	
DC Inputs 9-16	24 Vdc (nominal) Inputs (Sink or Source) 9- 16.	37-44	
Sink/Source select pin for DC Inputs 9-16	To make DC Inputs 9-16 "sourcing" inputs (24 Vdc applied to the DC Input turns the input "on"), connect 24 Vdc Common to this pin. To make DC Inputs 9-16 "sinking" inputs (24 Vdc Common applied to the DC Input turns the input "on"), connect 24 Vdc (nominal) to this pin.	35	
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell	

Table 11-2: General I/O Port Pin Assignments					
Pin	Signal	In/Out	Connec	tor Pinout	
1	DCOUT1	Out			
2	DCOUT2	Out			
3	DCOUT3	Out			
4	DCOUT4	Out			
5	DCOUT5	Out	,	44-pin HD male [O-sub
6	DCOUT6	Out			
7	DCOUT7	Out		31	
8	DCOUT8	Out			
9	DCOUT9	Out			
10	DCOUT10	Out		44	
11	DCOUT11	Out		15	
12	DCOUT12	Out			
13	DCOUT13	Out			
14	DCOUT14	Out			
15	DCOUT15	Out			
16	DCOUT16	Out			
17	DCOUTPWR1	In	Pin	Signal	In/Out
18	DCOUTPWR2	In	33	DCOUTC	In
19, 20	N/C	N/A	34	N/C	N/A
21	DCSS1	In	35	DCSS2	In
22	N/C	N/A	36	N/C	N/A
23	DCIN1	In	37	DCIN9	In
24	DCIN2	In	38	DCIN10	In
25	DCIN3	In	39	DCIN11	In
26	DCIN4	In	40	DCIN12	In
27	DCIN5	In	41	DCIN13	In
28	DCIN6	In	42	DCIN14	In
29	DCIN7	In	43	DCIN15	In
30	DCIN8	In	44	DCIN16	In
31	DCOUTPWR1	In	Shell	Drain	In
32	DCOUTPWR2	In			

Table 11-3: General I/O Port to Flying Lead Cable

Part Number: M.1016.2567 Length: 3 M (10 ft) Cable type: 28 AWG, shielded, twisted pair, 44 conductor.

44-Pin HD female D-sub (to Gen I/O Port, face view)



Pin	Signal	Color	Notes	Pin	Signal	Color	Notes
1	DCOUT1	Black	Twisted	22	None	Red	Twisted
2	DCOUT2	Red	Pair	23	DCIN1	Brown	Pair
3	DCOUT3	Black	Twisted	24	DCIN2	Red	Twisted
4	DCOUT4	White	Pair	27	DCIN5	Orange	Pair
5	DCOUT5	Black	Twisted	25	DCIN3	Green	Twisted
6	DCOUT6	Green	Pair	26	DCIN4	White	Pair
7	DCOUT7	Black	Twisted	28	DCIN6	Green	Twisted
8	DCOUT8	Blue	Pair	29	DCIN7	Blue	Pair
9	DCOUT9	Black	Twisted	31	DCOUTPWR1	Green	Twisted
10	DCOUT10	Yellow	Pair	32	DCOUTPWR2	Yellow	Pair
11	DCOUT11	Black	Twisted	33	DCOUTC	Green	Twisted
12	DCOUT12	Brown	Pair	34	None	Brown	Pair
13	DCOUT13	Black	Twisted	35	DCSS2	Green	Twisted
14	DCOUT14	Orange	Pair	36	None	Orange	Pair
15	DCOUT15	Red	Twisted	37	DCIN9	White	Twisted
30	DCIN8	White	Pair	38	DCIN10	Blue	Pair
16	DCOUT16	Red	Twisted	39	DCIN11	White	Twisted
17	DCOUTPWR1	Green	Pair	40	DCIN12	Yellow	Pair
18	DCOUTPWR2	Red	Twisted	41	DCIN13	White	Twisted
21	DCSS1	Blue	Pair	42	DCIN14	Brown	Pair
19	None	Red	Twisted	43	DCIN15	White	Twisted
20	None	Yellow	Pair	44	DCIN16	Orange	Pair
Shell	Drain	N/A					

Table 11-4: General I/O Port Breakout Box and Cables ^a			
Description	Length	Part Number	
MMC Gen I/O Breakout Box	N/A	M.1016.2532	
MMC Gen I/O & Aux I/O Connector to Breakout Box Cable	.3 M (1 ft)	M.1016.2539	
MMC Gen I/O & Aux I/O Connector to Breakout Box Cable	.6 M (2 ft)	M.1016.2540	
MMC Gen I/O & Aux I/O Connector to Breakout Box Cable	.9 M (3 ft)	M.1016.2541	

a. The Breakout Box (see Figure 11-2 on page 188) is DIN-rail mounted, and provides screw terminal wire termination. It can be attached to the "GEN I/O" port on the MMC Control, and on the "GEN I/O A" and "GEN I/O B" ports on the MMC 32 In/32 Out Expansion module. The pinouts on the terminal strip interface provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block. The connector pins marked with the "ground" symbol on the screw connector are connected to the "D" connector shell for shield grounding purposes.

Figure 11-2: General I/O Port Breakout Box Dimensions

11.2.1 DC Output Operation

Each General I/O Port provides 16 source-only 24 Vdc outputs. Each of the 16 outputs on the general I/O connector is a solid state switch rated at 250 ma. An example of connecting the DC Outputs to loads is shown in Figure 11-3.

Each port contains two groups of eight outputs: group A = output 1 through output 8, group B = output 9 through output 16. Each group is capable of detecting a short circuit or over-current condition. When a short circuit or over-current condition is sensed, all outputs in the group are turned off and remain off for approximately 100 ms regardless of ladder activity. After 100 ms, the ladder again controls the outputs. In addition, each output is protected with internal clamping diodes. Without clamping, high voltage transients (kickback) from inductive loads might damage the module.

For safety reasons, all outputs turn off (no current flow) when a scan loss condition occurs.

For more information on DC output operation, refer to Section 13.3 on page 208 of Appendix A.

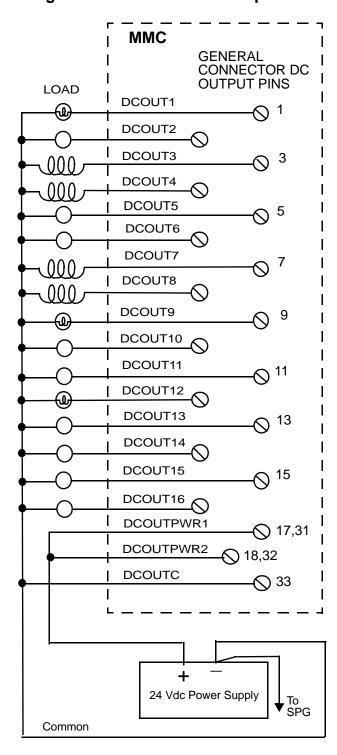


Figure 11-3: Gen I/O Port Output Connections

11.2.2 DC Input Operation

Each General I/O Port provides sixteen 24 Vdc inputs. Each Port contains two groups of eight inputs: group A = input 1 through output 8, group B = input 9 through output 16. Each group can be configured as sourcing or sinking. Connect the DCSS pin (DCSS1 for Group A, DCSS2 for Group B) to IO24C for a sourcing configuration. Connect the DCSS pin (DCSS1 for Group A, DCSS2 for Group B) to +24 Vdc for a sinking configuration. An example of connecting input devices in both a sink and source configuration is shown in Figure 11-4.

In addition, the first input of each Group (Input 1 of Group A, and input 9 of Group B), can be programmed to provide a processor interrupt on either a low-to-high or high-to-low transition.

For more information on DC input operation, refer to Section 13.2 on page 207 of Appendix A.

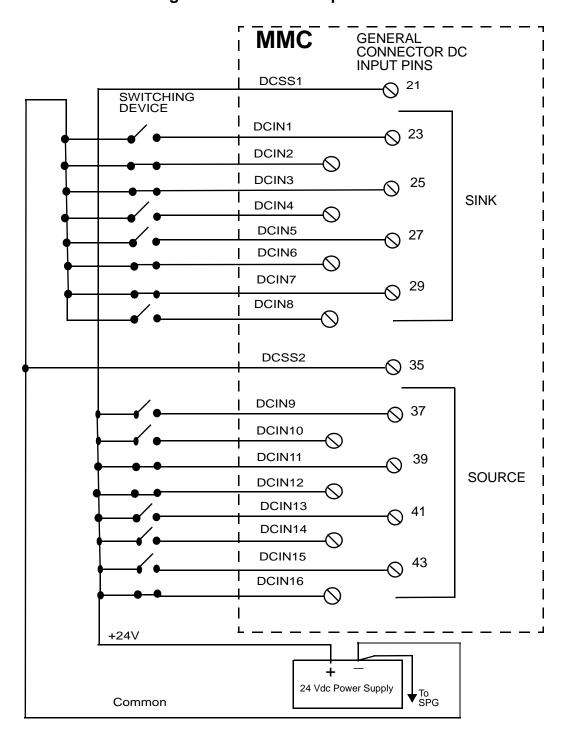


Figure 11-4: General Input Connections

11.3 Specifications

Table 11-5: Specifications		
Part Number	M.3000.0043	
Physical size	1.28" wide x 9.6" high x 5.3" deep 52.51 mm x 243.84 mm x 134.62 mm	
DC Inputs		
Number of Inputs	32 Inputs (16 on each connector)	
Configuration	On each of two connectors, the General Inputs are divided into two groups of eight. Each group can be configured for sourcing or sinking. Operates with IEC Type 1 inputs (per IEC 1131=2).	
Input voltage	Nominal 24 VDC, maximum 30 VDC	
Guaranteed on voltage	15 VDC	
Guaranteed off voltage	5 VDC	
Turn on/off time	1 ms	
DC Outputs		
Number of Outputs	32 outputs (16 on each connector)	
Input voltage	Nominal 24 VDC, 30 VDC maximum	
Configuration	On each of two connectors, there are two groups of eight solid-state switches.	
Protection of logic circuits	Optical isolation between the logic and field side, diode transient suppression protection provided.	
Maximum current	250 ma per output	
Voltage range	24 VDC nominal, 5 to 30 VDC	
Switch characteristics	Solid-state switches	
Time delay on for resistive loads	50 μsec max	
Time delay off for resistive loads	50 μsec max	
Leakage current in off state	0.5 mA max	
Switch voltage, maximum ON	1 VDC max	

Short circuit protection for each group (per Group of eight, and entire Group turns off)	15 A (max) pulses for 130 µsec (nominal) every 100 msec until short is removed
Overload circuit protection trip point (each Output, and entire Group of eight turn off)	4 A for 5ms
Scan loss response	Outputs turn off
Environmental	
Operating temperature range	5°C to 55°C (41°F to 131°F)
Storage temperature range	-40°C to 85°C (-40°F to 185°F)
Humidity	5 to 95%, non-condensing
Vibration (per IEC 68-2-6)	10-57 Hz (constant amplitude = .15 mm) 57 - 2000 Hz (acceleration = 2 g)
Shock (per IEC 68-2-27)	Four shocks per axis (15g/11 msec)
CE Marked	Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards: EN 50081-2:1993EMC Generic Industrial Emissions EN 50082-2:1995EMC Generic Industrial Immunity EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers Operates with emissions below EN55011/ CISPR 11 Class A limits Immune to: • Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2 • RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204 • Electrical fast transients per EN61000-4-4 • Magnetic fields per EN61000-4-8 Refer to the EMC Guidelines for more information.
UL and C/UL Listed	E126417

12 CE and EMC Guidelines

NOTE

The CE mark on PiC products assures compliance with both the EMC and low voltage European directives. Prior to this CE mark, EMC on the product label only assured compliance with the EMC directives.

12.1 Background on EMC (Electromagnetic Compatibility) Compliance

In order to market products in the European Union after January 1, 1996, an electromagnetic compatibility directive (EU Directive 89/336/ECC) must be met. All products must be designed and manufactured in such a way that:

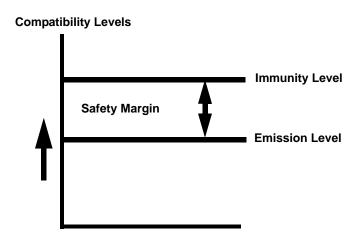
- Electromagnetic disturbances generated by the products do not cause interference to other systems.
- The performance of the product is not affected by electromagnetic disturbances within the environment in which the product is intended to operate.

The directive refers to relevant harmonized European EMC standards against which product conformity can be assessed, although other methods of assessment, notably the preparation of a Technical File, are permissible. The equipment manufacturer or the manufacturer's agent in the Community must make a Declaration of Conformity and can place the CE mark on the product. Failure to conform with the requirements of the directive can result in a total ban on sales throughout the Single Market and legal action could be taken against the signatory of a false declaration of conformity.

12.2 Background on Low Voltage Compliance

In order to market products in the European Union after January 1, 1997, the low voltage directive (EU Directive 73/23/EEC) must be met.

The intention of the directive is to assure user safety under normal operating and fault conditions. The directive includes the use of certain warning labels and user instructions. It establishes limits to prevent electrical shock hazard, overheating and fire


12.3 RFI Emission and Immunity

The EMC product characteristics are classified by the emission and immunity performance.

Emissions not only include radiated noise from the product enclosure and cabling, but also that which is conducted away from the product along the cables connected to it. This may be subsequently radiated from the cable or conducted directly into another product which shares this cable e.g. the main AC supply.

Immunity is how susceptible a product is (e.g. to the radiated and conducted emissions from the product mounted next to it). To ensure compatibility, the immunity of a product must always exceed the expected emissions in the environment in which it operates as is shown in the diagram below. This is to ensure a margin of safety.

Figure 12-1: Safety Margin

In addition to conducted and radiated immunity, products must also be capable of withstanding:

- Electrostatic discharges (ESD)
- Conducted fast transient voltages

The discharge spark generated from ESD can easily damage electronic components. The conducted fast transient voltages are induced in cables laid in close proximity to other cables in which large inductive loads are switched (such as relays, contactors, and AC motor starters). This is a good example of what can happen to sensitive control and signal cabling connected to drives when poorly installed in enclosures on industrial sites.

12.4 Classes of EMC Operating Environments

Before the correct level of EMC can be designed into equipment, the EMC operating environment must be defined. For example in industrial locations where high power equipment is in use, high levels of background electrical noise would be expected when compared to a household or office environment. Since it is more expensive to reduce the emissions from higher power equipment than to increase the immunity, the emission limits allowed in industrial environments are higher than for household or office environments. Vice versa for immunity because of the higher emission limits in industrial environments, the immunity requirements are more strict than for the household or office environment. Hence in order to achieve EMC between different equipment, it is essential to know what EMC operating environment it is to be installed in, and to compare the installation environment to the environment for which it was designed.

Today using generic EMC standards, two environments are defined:

- 1. Industrial
- 2. Residential, commercial, and light industrial

The environments are locations defined on the basis of whether the AC supply is shared with other locations or is buffered from them with a distribution transformer. If your location is buffered via a distribution transformer, then you are in an industrial environment. If you share your AC supply with a neighboring location, then you are in

a residential, commercial, or light industrial environment. For example, an industrial unit which shares its AC supply with a neighboring unit is defined as a residential, commercial, and light industrial location. If it is supplied from its own distribution transformer, then it is an industrial location.

12.5 Conformance with the EMC Directive

Kollmorgen will be complying to the Directive by self-certification to the following generic EMC standards:

- EN50081-2 for industrial emissions using EN55011 (based upon CISPR 11A)
- EN50082-2 for industrial immunity using:
 - IEC 61000-4-2 (ESD- 4KV contact mode, 8 KV air discharge)
 - IEC 61000-4-3 (Radiated susceptibility)
 - IEC 61000-4-4 (Electrical fast transient)
 - IEC 6100-4-8 (Magnetic fields)

A statement of compliance will be made with the letters "EMC" or "CE" on the product, but will be valid only if the product is installed properly.

12.6 Conformance With the Low Voltage Directive

Kollmorgen will comply with the Directive by self certification to the following standard:

EN 61131-2:1994/A11:1996 Low Voltage Requirements for Programmable Controllers

A statement of compliance will be made with the letters "CE" on the product but will be valid only if the equipment is properly installed.

12.7 Changes to the PiC Products

Kollmorgen PiC products had originally been designed with a high level of noise immunity and tested according to standards such as NEMA showering arc and the original version of IEC 801-2. However, the EU directive for immunity requires testing to standards that have more variables and are more repeatable. The directive also requires control of emissions, something that is not regulated in U. S. industrial environments.

As a result, changes have been made to the hardware modules within the PiC product line. The changes have included the addition of filtering, re-routing of foils and/or the addition of ground planes to printed circuit boards, use of some conductive enclosures, provision for shielded wires (see Note below) for peer-to-peer communication, and internal connection of SPG to field side connectors.

NOTE

A recommended shielded wire is Belden, 24 AWG (7X32), 9729

12.7.1 Changes Affecting the User

Many of the changes Kollmorgen has implemented are transparent to the user. However, there are some changes affecting user installation.

Kollmorgen continues to recommend separation of low level signals (encoder, analog, communications, fast DC inputs) from high voltage or high current lines from any of

the above. More specifically, maintain *at least* one inch of separation around encoder signals and around communication signals.

It is no longer necessary to connect a wire from a module to SPG. This user-installed wire had been a source of emissions and thus the connection should not be made. Analog modules typically had this requirement in the past.

To prevent excessive conducted emissions from a DC power source (typically 24V) used for digital I/O, a 1000 picofarad capacitor should be used. Connect the capacitor from the +24V DC to COMMON at the distribution terminals. The same applies to any other external DC power source used with the PiC product.

The figure on the left below illustrates the connection method *before* EMC compliant products were available. The figure on the right illustrates the recommended connections when using EMC compliant products. On the right, note that the SPG connection has been eliminated and that a capacitor is connected to the 24V DC supply.

Figure 12-2: Connections for EMC Compliance

Recommended Connections before **EMC Compliant Products EMC Compliant Connections** COMMUNICATIONS COMMUNICATIONS **MMC MMC ENCODER, ANALOG ENCODER, ANALOG SYSTEM SYSTEM AC INPUT/OUTPUT AC INPUT/OUTPUT** DC INPUT/OUTPUT DC INPUT/OUTPUT to DC I/O capacito to AC I/O to DC I/O to AC I/O AC INPU AC INPU DC POWER DC POWER POWER SUPPLY SUPPLY GND GND SINGLE-POINT GROUND SINGLE-POINT GROUND

There is now a provision for shield termination to the CPU modules for peer-to-peer communication. Shielded cable must be used to reduce emissions.

Inside a control cabinet, the practice of connecting the shields of shielded cables at the modules should be continued. For an example of a shielded cable entering/leaving the cabinet see Figure 12-3 on page 199.

MMC Module

Cabinet Enclosure

Figure 12-3: Connecting Shielded Cable

The two different methods of terminating shields are used to accommodate two different immunity requirements. Immunity required inside an enclosure is considered lower because cables are typically less than 3 meters in length and/or can be separated from each other and from noise sources.

Immunity required external to an enclosure is considered higher because the user may have less control over the noise environment. Low level signal cables that can be external to an enclosure and AC/DC digital I/O cables have been tested at a 2 KV level for electrical fast transients (EFTs). Low level signals that can be less than 3 meters in length or can be separated from noise sources are tested at a 1 KV level.

Under the stated conditions, there will be no disturbance of digital I/O, encoder, or stepper operation. For analog signals, there may be momentary disturbances but there will be self-recovery when the noise subsides.

In order to meet the EU directive requirement for emissions and immunity, fiber optics must be used for I/O expansion.

Although the control will pass the electrical fast transient test on incoming power lines, users may still want to use a power line conditioner.

As a general precaution, do not operate transmitters, arc welding equipment, or other high noise radiators within one meter of a PiC enclosure that has the door open. Continue to equip inductive devices, if they are in series with a mechanical contact or switch, with arc suppression circuits. These devices include contactors, solenoids and motors. Shield all cables that carry heavy current near the system, using continuous foil wrap or conduit grounded at both ends. Such cables include power leads for high-frequency welders and for pulse-width-modulated motor drives.

NOTE

Shields for signal wires are grounded at only one end, to provide immunity to outside noise sources. However, the shields for "noise sources" are grounded at both ends, to reduce emissions and "contain" the noise.

Worst case tests with analog I/O modules have caused momentary disturbances no greater than .5V in a +10V to -10V range and .5 mA in a 4 to 20 mA range. Worst case tests with an RTD module have caused momentary disturbances no greater that + or -

4°C in a range of -200° to 266°C. Worst case tests with a JK thermocouple module have caused momentary disturbances no greater than + or - 1 mV over a 100 to 1.

NOTE

To assure compliance with the low voltage directive, it is necessary to follow installation instructions in the controller Hardware Manual. Also refer to any instructions specific to individual control modules.

12.8 Using CE/EMC and Non-CE/EMC Modules

IMPORTANT

Failure to follow these guidelines may result in undesired system performance.

NOTE

CE indicates compliance to both the EMC and low voltage directives. EMC indicates compliance to the EMC directive.

There are several issues that must be considered when using CE/EMC compliant and Non-CE/EMC compliant Modules. This document addresses these issues.

<u>Module Identification</u> - To determine whether a module is CE/EMC or Non-CE/EMC, look at the gray Unit Tag located on the side of the plastic module case. CE/EMC modules will have "CE" or "EMC" printed near the "MAX. AMBIENT TEMP." specification. Non-CE/EMC will not have "CE" or "EMC" printed in this location.

<u>Grounding</u> - Due to differences in shielding requirements, it is extremely important to follow proper shielding guidelines for a given module. Failure to do so may result in intermittent operation in noisy environments.

For modules that have an SPG terminal and/or one or more SHIELD terminal, perform the following:

- For CE/EMC modules, <u>do not</u> connect the SPG terminal or SHIELD terminals to the system's Single Point Ground
- For Non-CE/EMC modules, connect the SPG terminal, or a SHIELD terminal, to the system's Single Point Ground

CE/EMC CSM and RSM Modules - Using a CE/EMC CSM, RSM, or CSM/CPU (PiC90) with certain Non-CE/EMC analog modules may cause intermittent operation. Follow these guidelines for determining the type of CSM, RSM, or CSM/CPU that should be used in a particular rack:

- If your rack contains one or more Non-CE/EMC modules that perform D/A conversion or provide an Encoder interface, you must use a non-CE/EMC CSM, RSM, or CSM/CPU (PiC90).
- If your rack contains one or more Non-CE/EMC modules that perform D/A conversion or provide an Encoder interface, you must use a non-CE/EMC CSM, RSM, or CSM/CPU (PiC90).

 If your rack does not contain one or more Non-CE/EMC modules that perform D/A conversion or provide an Encoder interface, you may use either a CE/EMC or Non-CE/EMC CSM, RSM, or CSM/CPU (PiC90).

NOTE

For a system to be CE/EMC compliant, all modules and backplanes must be CE/EMC compliant

12.9 **Declarations of Conformity**

The undersigned, representing the supplier

G & L Motion Control Inc. 672 South Military Road Fond du Lac, Wisconsin 54936-1960

herewith declares that all PiC900TM/PiC90TM/PiC9TM/MMC and Block I/O modules, labeled with the CE mark, are in conformity with the provisions of the following EC Directives when installed in accordance with the installation instructions contained in the product documentation:

> Low Voltage Directive 73/23/EEC as amended by 93/68/EEC EMC Directive 89/336/EEC as amended by 92/31/EEC and 93/68/EEC

Conformity of the specified product is based upon application of the following standards and/or technical specifications referenced below:

EN 50081-2:1993 EMC Generic Industrial Emissions EN 50082-2:1995 EMC Generic Industrial Immunity

EN 61131-2:1994/A11:1996 Low voltage requirements for programmable controllers EN61326:1997

Electrical Equipment for measurement, control and

Laboratory use - EMC requirements

Year of Marking: 2002

Signature	Robert O Kolln
Full Name	Robert J. Kollmeyer
Position	Director of Engineering
Place	G & L Motion Control Inc.
Date	05-APR-05

EC DECLARATION OF CONFORMITY

The undersigned, representing the supplier

G & L Motion Control Inc. 672 South Military Road Fond du Lac, Wisconsin 54936-1960

herewith declares that all **three-phase current synchronous motors, type MSM** are in conformity with the provisions of the following EC Directive when installed in accordance with the installation instructions contained in the product documentation:

Low Voltage Directive 73/23 EWG

Conformity of the specified product with the guidelines of this directive will be proved by the total compliance with the following harmonic European standards:

EN 60034-1: November 1995

Rotating Electrical Machines

EN 60034-5: April 1998

EN 60034-9: May 1996

Year of Marking: 1999

Signature	Robert V Kellin
Full Name	Robert J. Kollmeyer
Position	Director of Engineering
Place	G & L Motion Control Inc.
Date	05-APR-05

EC DECLARATION OF CONFORMITY

The undersigned, representing the supplier

G & L Motion Control Inc. 672 South Military Road Fond du Lac, Wisconsin 54936-1960

herewith declares that all **three-phase current synchronous motors**, **type LSM** are in conformity with the provisions of the following EC Directive when installed in accordance with the installation instructions contained in the product documentation:

Low Voltage Directive 73/23 EWG

Conformity of the specified product with the guidelines of this directive will be proved by the total compliance with the following harmonic European standards:

EN 60034-1: September 2000

Rotating Electrical Machines

+A11 May 2002

EN 60034-5: December 2001 EN 60034-9: June 1998

Year of Marking: 2002

Signature	Robert & Kollmeyen
Full Name	Robert J. Kollmeyer
Position	Director of Engineering
Place	G & L Motion Control Inc.
Date	05-APR-05

EC DECLARATION OF CONFORMITY

The undersigned, representing the supplier

G & L Motion Control Inc. 672 South Military Road Fond du Lac, Wisconsin 54936-1960

herewith declares that all MMC Smart Drives (MMC-SD-XXX-230-XXX, MMC-SD-XXX-460-XXX) and accessories are in conformity with the provisions of the following EC Directive(s) when installed in accordance with the installation instructions contained in the product documentation:

73/23/EEC

Low Voltage Directive as amended by 93/68/EEC

89/336/EEC

EMC Directive as amended by 92/31/EEC and 93/68/EEC

and that the standards and/or technical specifications referenced below have been applied:

EN 50178:1998

Electronic equipment for use in power installations

EN 61800-3:1996

Adjustable speed electrical power drive systems - EMC

/A11:2000

product standard including specific test methods

Year of Marking: 2003

Signature Robert J. Kollmeyer

Full Name Robert J. Kollmeyer

Position Director of Engineering

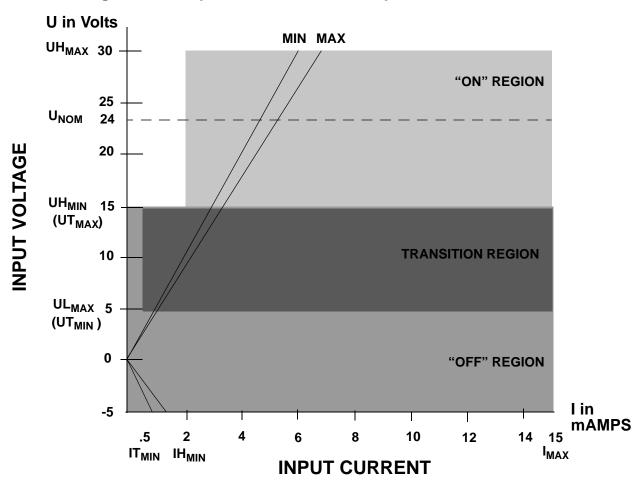
Place G&L Motion Control Inc.

Date 05-APC-05

Standalone MMC Hardware Manual - CE AND EMC GUIDELINES

Appendix A - Operation Details

13.1 Introduction


This appendix describes in detail the operation of many of the sub-systems found within the MMC Control and Option Modules.

13.2 DC Inputs

Each input is guaranteed "on" at 14 to 30 VDC and guaranteed "off" at 0 to 5 VDC (polarity doesn't matter). Its on/off state is converted to a corresponding logic 1 or 0. This logic state is transmitted through the system bus to the application program, which uses these logic states to control program flow. The logic side of the input is optically isolated from the field side.

The shaded blocks in Figure 13-1 below show the limits specified by the IEC. The lines show the maximum and minimum V/I of the inputs in this module. The voltage/current curve in this graph shows that the input module is well within the IEC Type 1 limits.

Figure 13-1: Input Characteristics Compared to IEC Standards

IMPORTANT

Switching devices can sometimes have a leakage current that exceeds the IT_{min} (current allowed when off) of an input module. In order to use such a device, an impedance (typically, a resistor) needs to be used in parallel with the input.

For example, some of the newer proximity switches use two wires instead of three. The third wire was used for a power or ground line. Without the third wire, the switch is easier to install. However, it requires more leakage current in the off state to power its internal circuitry.

As a conservative estimate, use the following formula to calculate an external resistance value. It keeps the input voltage at or below 2.4V when the switching device is in the "off" state.

$$\frac{2.4V}{\text{Switch Leakage} - 0.75 \, mA} \ge R$$

If the switch leakage specification is ≤ 1.7 mA, then:

$$\frac{2.4V}{1.7 - 0.75mA} \ge 2.5K\Omega$$

Use a resistor less than or equal to 2.5 K Ω . Be sure that the wattage is adequate for the resistor when the switching device is in the "on" state remembering that:

$$P = \frac{V_{ON}^2}{R}$$

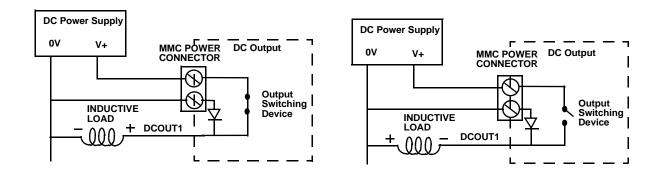
13.3 DC Outputs

A DC Output consists of a solid state switch. It turns on or off according to the logic state sent to it by the application program. If the application program sends it a logic 1, the switch closes and the device is powered. If the application program sends a logic 0, the switch opens and power to the device is cut off. The application program updates the logic state for each switch every time it scans the program.

The logic side of the switch is optically isolated from the field side. If you need to know whether voltage is actually present at the field side, use a voltmeter.

13.3.1 Inductive Loads

Resistive and inductive loads can be connected to DC outputs and controlled by the system with no precautions other than making sure they have a connection to the common of the DC power supply.


Inductive loads have an electrical "kickback" when current is stopped. This can damage or destroy the output switching device. Each output has a diode through which reverse current can be safely routed.

The internal diode works with an inductive load. When an output is energized, represented by a closed switch, current passes through the load into the common line. When the output is de-energized, represented by an open switch, current stops and the inductive field collapses. The state of the outputs is controlled by the CPU. This creates a reverse voltage across the load called "kickback" which tries to continue the

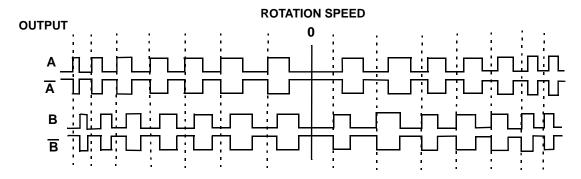
current. The voltage is in series with the DC power supply. The combined voltage appears across the output switching device in the module.

If this were the only path available, voltage across the device would peak at several hundred volts. The internal diode provides another path for current. This limits the peak reverse voltage across the load to less than 1 V. Every DC output has this protection so an inductive load can be connected safely.

Figure 13-2: Diagram of Internal Protection for Inductive Loads

a) Output Energized

b) Output De-energized


13.4 Encoder Inputs

The encoder inputs use differential type inputs to interface with incremental encoders. These inputs accept RS422 level quadrature signals. Recommended encoder drivers include 7272, 75183, 8830, 75114, 9614, 26LS31 (or equivalent).

A *quadrature encoder* sends square wave type signals. When the shaft rotates at a constant velocity, the A and B outputs are square waves and are at the same frequency. However they are out of phase with each other by 90°. When the encoder shaft rotates in one direction, each A pulse leads the corresponding B pulse by 90°. When it rotates the other direction each A pulse lags its B pulse by 90°.

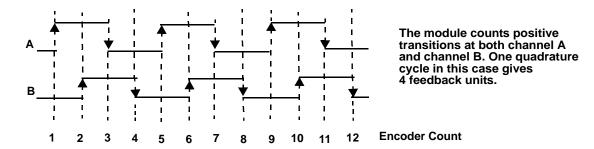

The signals illustrated in Figure 13-3 below indicate that the encoder shaft rotates in one direction at first. Its speed of rotation decreases to 0 and then it starts rotating the other direction. The signals are shown as differential. \overline{A} is the inverse of the signal A and \overline{B} is the inverse of signal B.

Figure 13-3: Signals Transmitted by a Quadrature Encoder with Differential Outputs

The maximum input frequency is 250,000 lines per second, which results in 1,000,000 Feedback Units (FUs) per second.

Figure 13-4: Counting Quadrature Pulses

There is a 24-bit up/down counter for each channel. It is incremented or decremented on each A, B edge. There is also a 24-bit latch associated with each encoder channel.

The module can be programmed so that the counter value is "latched" or stored under one of these conditions:

- an index pulse from the encoder
- a positive or negative transition of the fast input
- the next index pulse after the required transition of the fast input

Each of the five 24-bit latches has a *fast 24 VDC input* associated with it. Each input is optically isolated. This input is intended to receive a signal from a device other than an encoder. It is typically used for referencing or synchronization purposes.

Fast input characteristics include:

- the detection of a signal occurs faster than it does for the DC inputs in other modules, due to less filtering. Because of this there is also less noise immunity.
- the response to a fast input signal is independent of ladder scan time. The module can be programmed to latch a position count as soon as this input is detected.

Index	breakout box isolated encoder 78	
Numerics	С	
32In/32Out module 183 DC input operation 191 DC output operation 188 front view 184 general I/O port 184 introduction 183 specifications 193	CE guidelines 195 codes diagnostic error 30 com ports Ethernet module 157 Compliance to low voltage directive 195	
A	configuration port	
analog input aux I/O port 84 analog motion 63 analog motion connections Standalone MMC Control 63 analog motion operation Standalone MMC Control 63 analog output axis I/O port 71 analog servo board Standalone MMC Control 36 application starting 26 wiring 24 aux I/O port analog input 84 DC inputs 82	DeviceNet module 167 Profibus module 173 conformance EMC directive 197 low voltage directive 197 conformity declaration of 202 connections DeviceNet module 166 Ethernet module 153 for EMC compliance 198 MMC-DSAXX Control 122 Profibus module 172 SERCOS motion 84 Standalone Digital MMC Control 98 contents manual 7 control cabinet	
encoder inputs 83 fast inputs 80 Standalone MMC Control 73	specifications 20 D	
Axis I/O module 177 front view 178 specifications 179	DC inputs aux I/O port 82 axis I/O port 70	
axis I/O port analog output 71 DC input 70 DC outputs 68 encoder input 72 axis I/O ports Standalone MMC Control 63	operation 32In/32Out module 191 general 207 MMC-DSAXX Control 146 Standalone MMC Control 61 DC outputs axis I/o port 68	
В	general operation 208 inductive loads 208	
battery status light 29 battery replacement in Standalone MMC Control 27 block I/O port MMC-DSAXX Control 127 Standalone Digital MMC Control 99 Standalone MMC Control 44	operation 32In/32Out module 188 MMC-DSAXX Control 144 Standalone MMC Control 58 declaration of conformity 202 DeviceNet module 165 configuration port 167 connections 166	

DeviceNet port 167	Ethernet port	
front view 165	MMC-DSAXX Control 125	
introduction 165	Standalone Digital MMC Control 111	
lights 168	-	
operation 168	F	
specifications 170	fast inputs	
DeviceNet port	aux I/O port 80	
DeviceNet module 167	fast transient voltage 196	
diagnostics	features	
error codes 30	MMC DSAXX Control 119	
power-up 29	Standalone Digital MMC Control 95	
run-time 30	Standalone MMC Control 33	
status light (D) 29		
differential signals	firmware update	
advantages of 26	Ethernet module 160	
analog & encoder 25	front view	
	32In/32Out module 184	
digital link ports MMC-DSAXX Control 137	Axis I/O module 178	
	DeviceNet module 165	
Standalone Digital MMC Control 113	Ethernet module 153	
dimensions	MMC-DSAXX Control 121	
MMC option module 18	Profibus module 171	
E	Standalone Digital MMC Control 96	
	Standalone MMC Control 35	
electrical service & maintenance safety 12	G	
electro-static discharge 196	9	
EMC	general I/O port	
modules 200	32In/32Out module 184	
operating environments 196	MMC-DSAXX Control 139	
PiC products 197	Standalone MMC Control 54	
wiring guidelines for 24	ground	
EMC directive	single point 22	
conformance 197	grounding	
EMC guidelines 195	protective earth 10	
encoder input	system 21	
aux I/O port 83	guidelines	
axis I/O port 72	CE 195	
encoder inputs	EMC 195	
general operation 209	LIVIO 193	
environmental requirements	Н	
general 19	Las III a constante 00	
error codes 30	handling components 23	
ESD 196	heat	
Ethernet module 153	controlling in system 22	
	1	
com ports 157 connections 153	•	
	inductive loads	
Ethernet port	DC outputs 208	
specifications 154	inspection	
firmware update 160	safety 11	
front view 153	installation	
introduction 153	MMC Control 15	
lights 159	introduction	
operations 160	32In/32Out module 183	
specifications 162	DeviceNet module 165	
useful Internet links 163	DOTION TOUR HIDDANIO TOU	

Ethernet module 153 MMC-DSAXX Control 119 Profibus module 171 Standalone Digital MMC Control 95	operation 122 overview 119 PiCPro port 123 power connector 148
Standalone MMC Control 7 isolated encoder breakout box 78	power supply requirements 122 specifications
L	MMC-DSAXX Control 149
lights	user port 131 motion control board
lights battery status 29	Standalone MMC Control 36
DeviceNet module 168	mounting
diagnostic status (D) 29	MMC option module 16
Ethernet module 159	MMC-DSAXX 15
power status (P) 29	Standalone MMC Control 15
Profibus module 174	Standalone MMC Digital Control 15
scan status (S) 29	0
system status 29	O
loader port	operation
SERCOS motion board 86	DC inputs 207
low voltage directive	DC outputs 208
conformance 197	DeviceNet module 168
M	encoder inputs 209
	Ethernet module 160
machine control board	MMC Control 15
Standalone MMC Control 36	MMC-DSAXX Control 122
machine control operation	Profibus module 174
Standalone MMC Control 41	safety 12 SERCOS motion 84
maintenance	
MMC Control 15	Standalone Digital MMC Control 98 overview
procedure 26 manual	MMC-DSAXX Control 119
contents 7	Standalone Digital MMC Control 95
manual cleaning procedure 13	Standalone MMC Control 33
manuals	
required 7	Р
suggested 8	part numbers
MMC DSA-XX Control	Standalone Digital MMC Control 117
features 119	Standalone MMC Control 89
MMC option module	PiCPro port
dimensions 18	MMC-DSAXX Control 123
mounting 16	Standalone Digital MMC Control 109
MMC-DSAXX	Standalone MMC Control 41
mounting 15	power connector
MMC-DSAXX Control	MMC-DSAXX Control 148
block I/O port 127	Standalone Digital MMC Control 115
connections 122	Standalone MMC Control 63
DC input operation 146	power distribution diagram 20
DC outputs operation 144	power light (P) 29
digital link ports 137	power requirements
Ethernet port 125	general 19
front view 121	power supply requirements
general I/O port 139	MMC-DSAXX Control 122 Standalone Digital MMC Control 96
nationalianoi (IM	STANDAIGHE LUCHALIVIIVIC, CONTROL MA

Standalone MMC Control 37	single point ground (SPG)
power-up diagnostics 29	checklist 22
procedure	software
maintenance 26	required 7
manual cleaning 13	specifications 193
Profibus module 171	32In/32Out module 193
configuration port 173	Axis I/O module 179
connections 172	control cabinet 20
front view 171	DeviceNet module 170
introduction 171	Ethernet module 162
lights 174	Ethernet module Ethernet port 154
operation 174	Profibus module 176
Profibus port 173	Standalone Digital MMC Control 117
specifications 176	Standalone MMC Control 89
Profibus port	Standalone Digital MMC Control 95
Profibus module 173	block I/O port 99
protective earth	connections 98
grounding 10	digital link ports 113
_	Ethernet port 111
R	features 95
RFI	front view 96
emission 195	introduction 95
immunity 195	mounting 15
run-time diagnostics 30	operation 98
· ·	overview 95
S	part numbers 117
safety	PiCPro port 109
after shutdown 11	power connector 115
cleaning 13	power supply requirements 96
electrical service & maintenance 12	specifications 117
inspection 11	user port 103
operating safely 12	Standalone MMC Control 33
operation 12	analog motion
signs 10	connections 63
system 9	operation 63
warning labels 10	analog servo board 36
Sales and Service 216	aux I/O port 73
scan status light (S) 29	analog input 84
separation	DC inputs 82
signal 24	encoder input 83
SERCOS	fast inputs 80
loader port 86	axis I/O port 63
SERCOS board	analog output 71
Standalone MMC Control 37	DC inputs 70
Service 216	DC outputs 68
signals	encoder input 72
analog 25	battery replacement 27
differential 25	block I/O port 44
encoder 25	DC input operation 61
separation 24	DC output operation 58
signs	features 33
safety 10	front view 35
single point ground 21	general I/O port 54
onigio ponti ground 21	introduction 7

machine control board 36	Т
connectionsI 41	technical support contacts 8
operation 41	teenineal support contacts o
motion control board 36	U
mounting 15	
overview 33	user port
part numbers 89	MMC-DSAXX Control 131
PiCPro port 41	Standalone Digital MMC Control 103
power connector 63	Standalone MMC Control 48
power supply requirements 37	V
SERCOS board 37	•
SERCOS loader port 86	voltage
SERCOS motion	fast transient 196
connections 84	147
operation 84	W
specifications 89	warning label
user port 48	danger, warning, caution 11
starting	hazard 10
an application 26	Web Address 216
status lights 29	wiring
system	application 24
controlling heat 22	EMC compliant 24
grounding 21	for EMC compliance 198
5 · · · · · · · · · · · · · · · · · · ·	guidelines 24
	guidelliles 27

Sales and Service

We are committed to quality customer service. In order to serve in the most effective way, please contact your local sales representative for assistance.

If you are unaware of your local sales representative, please contact us.

North America

Kollmorgen Customer Support North America

E-mail: glmotion.support@kollmorgen.com

Phone: In the United States, telephone (800) 558-4808

Outside the United States, telephone (920) 921-7100

Fax: (920) 906-7669

Web site: www.glcontrols.com

Europe

Kollmorgen Customer Support Europe

E-mail: glmotion.support@kollmorgen.com

Phone: +44 (0)1525 243-243

Fax: +44 (0)1525 243-244

Web site: www.glcontrols.com

KOLLMORGEN