
INSTALLATION
AND

PROGRAMMING
INSTRUCTIONS

for the
SLO-SYN®

TDC SERIES
SERVO DRIVE/CONTROL

PRICE: $25.00

ENGINEERING CHANGES

Superior Electric reserves the right to make engineering refinements on all its products. Such refinements
may affect information given in instructions, Therefore, USE ONLY THE INSTRUCTIONS THAT ARE
PACKED WITH THE PRODUCT.

© Superior Electric 2000

Revision Date Description

A 6/3/97 Original Issue

B 11/20/97 Revise ISO Logo, Corporate ID, and Switch SW1 default positions.

C 4/3/98 Add Appendix A for CE compliance

D 10/01/98 Revise Sections 5 and 6 to reflect the MCPI sofware configuration and add
Daisy chaining information.

E 04/22/99 Revise Appendix A, remove "pr" prefix from standard EN50178

F 08/06/99 Add information on NVR and Electronic Gearing (new section).

G 1/25/2000 Revise Corporate ID

Table of Contents i

Table of Contents

SECTIONS & TITLE PAGE

1.0 - Introduction 1
1.1 - How to Use This Manual 2
1.2 - What You Need to Know First 2
1.3 - Conventions Used in This Manual 2
1.4 - How to Contact the Us 2

2.0 - Safety 3

3.0 - Quick Start Installation Guide 7
3.1 - Step-by-Step Start-Up Procedure 8

3.1.1 - Switch and Jumper Settings 9
3.1.2 - Baud Rate and Unit ID Switch 9
3.1.3 - Controller Board Jumpers 10
3.1.4 - Drive Current Switch 10

3.2 - Mechanically Mounting the Unit 13
3.4 - Hardware Connection Descriptions 14

Inputs 1-10 16
Outputs 1 & 2 16
Fault Output 16
OPTO Connections 16
Serial Port 1 Connections 16
Serial Port 2 Connections 16
Encoder 1 Connections 16
Encoder 2 Connections 17
Servo Monitor Outputs 17
Analog Input Connections 17
Device ID number 17
Baud Rate Switch 17
BCD Port Connections 17
LED's 18
Hall Effect Sensor Connections 18
CMD+,CMD- 18
Enable & Ready Signals 18
24 VDC Power Supply Connections 18
External Regen Resistor 18
Motor Wiring 18
AC Connections 19

Chassis Ground 19
Current Settings 19

3.5 - Wiring Diagrams 20
3.5.1 - Motor Connections to the amplifier 20
3.5.2 - Hall Sensors/Commutator connections 21
3.5.3 - Servo Motor Encoder Connections 22
3.5.4 - Input Connections (optional) 23
3.5.5 - Output Connections (optional) 24
3.5.6 - Analog Input Connections (optional) 27
3.5.7 - RS232/RS485 Communication connections 28
3.5.8 - RS485 Auxiliary Communication connections 30
3.5.9 - AC Power Connections to the Unit 31
3.5.10 - Regenerative Resistor Connections 32

ii Table of Contents

SECTIONS & TITLE PAGE

4.0 - Hardware Specifications 33
4.1 - Mechanical and Environmental Specifications 34
4.2 - Electrical Specifications 34

4.2.1 - Isolated Digital I/O 34
4.2.2 - TTL I/O or BCD Interface, non-isolated 35
4.2.3 - Serial Communication 35
4.2.4 - Encoder Connections 35
4.2.5 - Analog Input 35
4.2.6 - Analog +10V Reference 35
4.2.7 - Servo Monitor Output 36
4.2.8 - Internal Jumper Settings 36
4.2.9 - Hall Effect Inputs 36
4.2.10 - Enable Input 37
4.2.11 - Ready Output 37
4.2.12 - Motor Specifications 37

4.3 - Hardware Equivalent Circuits 37
I/O Equivalent Circuits 38
Communication Equivalent Circuits 39
Encoder Equivalent Circuits 40

5.0 -Programming Environment 41
5.1 - Programming 42

5.1.1 - General Description of Programming 42
5.1.1.1 - What is Programming? 42
5.1.1.2 - What's in a Program? 42
5.1.1.3 - How is the Controller Programmed? 42

5.1.2 - What are Host Commands? 42
5.1.3 - Memory Types and Usage 42
5.1.4 - How to organize your Project 42

5.1.4.1 - Initialization section of the program 42
5.1.4.2 - Main Program section 43
5.1.4.3 - Interrupt Routines 43
5.1.4.4 - Subroutines 43
5.1.4.5 - Error Handler 43

5.2 - MCPI Programming Environment 45
5.2.1 - Software Installation 45
5.2.2 - Starting the programming environment 45

5.2.2.1 - The MCPI Program opening screen 45
5.2.3 - Setting communication parameters 45
5.2.4 - Creating a new project 46
5.2.5 - The Task Editor 46
5.2.6 - Terminal Emulation 48
5.2.7 - Configuration & Setup Folders 49

5.2.7.1 - System Folder 49
5.2.7.2 - Profile Folder 49
5.2.7.3 - Encoder Folder 50
5.2.7.4 - Servo Drive Folder 50
5.2.7.5 - Mechanical Home & Mark Registration Folder 51
5.2.7.6 - I/O Folder 51

Table of Contents iii

SECTIONS & TITLE PAGE

5.2.8 - Preparing User Project for Execution 52
5.2.8.1 - Project Source code 52
5.2.8.2 - Setting Project Debugging 52
5.2.8.3 - Compiling a Project 52
5.2.8.4 - Downloading a Project 52
5.2.8.5 - Uploading Source Code 52

5.2.9 - Downloading an Operating System 53
5.2.10 - Other Menus 53

5.2.10.1 - Project Menu 53
5.2.10.2 - Utility Menu 54
5.2.10.3 - Window Menu 54
5.2.10.4 - Help Menu 54

5.2.11 - Project Command Buttons 54
5.2.12 - DEBUG Environment 55

5.2.12.1 - Debug program execution 55
5.2.12.2 - Breakpoint Setting/Clearing 55
5.2.12.3 - Watch variables 56
5.2.12.4 - Terminal Window 56
5.2.12.5 - Exit Debug Environment 56

5.2.13 - Servo Control 56
5.2.14 - Servo Tuning 57

5.2.14.1 - Auto Tuning 58
5.2.14.2 - Manual Tuning Adjustment 62
5.2.14.3 - Full Manual Tuning Adjustment 65

 Tuning Response Examples 66-71
5.2.15 - Excessive Duty Cycle Shutdown 72

6.0 - Software Reference Guide 73
6.1.1 - Programming Commands Grouped by Functions 74
6.1.2 - Programming Commands Summary (alphabetical list) 77
6.1.3 - SEBASIC Conventions 80

6.1.3.1 - Arithmetic Operators 80
6.1.3.2 - Logical Operators 80
6.1.3.3 - Relationship Operators 80
6.1.3.4 - Basic Data Types 81
6.1.3.5 - Case Sensitivity in Statements & Commands 82
6.1.3.6 - Calculations Using Trajectory Parameters and Variables 82
6.1.3.7 - Program Comments 82

6.1.4 - Programming Commands - Alphabetical Listing 83

A
ABSPOS 83
ACCEL 84

ANALOG 84
AND 85
ASC 85

B
BCD 86
BUSY 86

C
CHR$ 87
CMDPOS 87

iv Table of Contents

SECTIONS & TITLE PAGE

6.1.4 - Programming Commands - Alphabetical Listing (continued)

D
DECEL 87
#DEFINE 88
DIST 89
DO...EXIT DO...LOOP...UNTIL...WHILE 90

E
ENCPOS 91
ENCPOS2 91
ENCSPD 92
ENCSPD2 92
END 93
ERR 93
EVENT1 95
EVENT2 96

F
FOLERR 97
FOR...TO...EXIT FOR...NEXT 98

G
GEAREXT 98
GEARINT 99
GEARON 99
GEAROFF 99
GEARRATIO 99
GEARVEL 99
GETCHAR 100
GOSUB...RETURN 101
GOTO 102
H
HARDLIMOFF 102
HARDLIMON 103
HEX$ 104
HVAL 104

I
IF...THEN...ELSE...END IF 105
IN 106
INCHAR 107
#INCLUDE 107
INPUT 108
INSTR 108
INTLIM 109
INTROFFn 110
INTRONn 110

J
JOG 111

Table of Contents v

SECTIONS & TITLE PAGE

6.1.4 - Programming Commands - Alphabetical Listing (continued)

K
KD 111
KI 112
KP 113
KVFF 114

L
LCASE$ 114
LEFT$ 115
LEN 115

M
MID$ 115
MOTTRIG 116
MOVEA 116
MOVEHOME 117
MOVEI 118
MOVEREG 119

N
NOT 120
NVR 120

O
ON...INTRn 121
OR 123
OUT 124
OUTLIMIT 125

P
PRINT 126
PRINT USING 127

R
REGLIMIT 130
RIGHT$ 130

S
SOFTLIMNEG 131
SOFTLIMOFF 132
SOFTLIMON 133
SOFTLIMPOS 134
SPEED 135
STOP 135
STR$ 136
STRING$ 136

T
TIMER 137

U
UCASE$ 137
UNITID 138

vi Table of Contents

SECTIONS & TITLE PAGE

6.1.4 - Programming Commands - Alphabetical Listing (continued)

V
VAL 138

W
WAIT 139
WAITDONE 139
WNDGS 140

6.2 - Host Command Reference Guide 141
6.2.0 - Host Commands 142
6.2.1 - Host Commands Grouped by Function 142
6.2.2 - Host Commands Summary (alphabetical list) 144
6.2.3 - Host Commands - Alphabetical Listing 146

<nn 146
A
ABSPOS (P) 147
ACCEL (AC) 147
ANALOG (AN) 147

B
BACKSPACE 148
BCD 148
BUSY (BS) 148

C
CLRNVR 149
CMDPOS 149
CTRL-A 150
CTRL-C 150

D
DECEL (DC) 151
DIR 151
DIST 152

E
ENCPOS (EP) 152
ENCPOS2 152
ENCSPD (ES) 153
ENCSPD2 153
ERR 154
ESCAPE 154
EVENT1 (E1) 155
EVENT2 (E2) 155

F
FEEDHOLD (FH) 156
FOLERR (FE) 156
FREEMEM 157

Table of Contents vii

SECTIONS & TITLE PAGE

6.2.3 - Host Commands - Alphabetical Listing (continued)

H
HARDLIMOFF (HL0) 158
HARDLIMON (HL1) 158

I
IN (I) 159
INTLIM (IL) 159

J
JOG (J) 160

K
KD 160
KI 160
KP 161
KVFF 161

M
MOVEA (MA) 162
MOVEHOME (MH) 162
MOVEI (MI) 163
MOVEREG (MR) 163

N
NVR 163

O
OUT (O) 164
OUTLIMIT (OL) 164

R
REGLIMIT (RL) 165
RESET 165
REVISION (REV) 166
RUN 166

S
SOFTLIMNEG (SLN) 167
SOFTLIMOFF (SL0) 167
SOFTLIMON (SL1) 168
SOFTLIMPOS (SLP) 168
SPEED (SPD) 169
STOP (S) 169

W
WNDGS (WN) 170

viii Table of Contents

SECTIONS & TITLE PAGE

7.0 - Programming Examples 171
Cut to Length Application 172
Rotary Table Application, Test Stations 173
Slitting Machine Application 174

8.0 - Electronic Gearing
8.1 - Gearing Description 175
8.2 - Gearing Features 176
8.3 - Enableing/Disabling Gearing 176
8.4 - Gearing Motion 176
8.5 - Velocity Rate Limit 176
8.6 - Gearing Anomalies 177
8.7 - Advance/Recede Motion 177
8.8 - Triggered Motion 177
8.9 - Gearing Command List 178
8.10 - Cut to Length Application 184
8.11 - Electronic gear Box Application 187
8.12 - Manual Control Motion Application 188

9.0 - Troubleshooting Guide 189

10.0 - Glossary 191
ASCII Table 196

Appendix A
CE Compliance Installation Requirements and Information 197

Introduction 1

Section 1

 Introduction

2 Introduction

1.1 - HOW TO USE THIS MANUAL

Congratulations on the purchase of your new Superior
Electric SLO-SYN® motion control product! Your pro-
grammable motion controller is a full-featured and
flexible product, yet it is fairly simple to apply it to your
machine control application. This manual is designed to
guide and assist you through the installation, program-
ming, and operation of the controller. If you=re reading
this, you understand the importance of familiarizing
yourself with how this product should be installed and
operated. We strongly recommend that you read
through this manual until you are comfortable with
electrical connections and operating concepts of the
unit. Also, for your safety, we strongly recommend that
you read ASection 2 - Important Safety Information@
first, then read the AQuick Start Installation Guide@
section. This will show you the basics on how to
properly wire and connect the unit into your system.
From there you can move on to the APC Programming@
and ASoftware Reference@ sections to learn how to
program your controller to suit your application. AThe
AGlossary @ section describes the terms most commonly
used in this manual. Detailed technical information is
provided in the AHardware Specifications@ section.

1.2 - WHAT YOU NEED TO KNOW
FIRST

This instruction manual is written in a simple and
easy-to-follow format that should be suitable for both
new and experienced motion control users. In order to
get the most out of your SLO-SYN Programmable
Motion Controller, we assume the user will be knowl-
edgeable in the following areas:

1. Basic electrical and electronic skills, including pre-
paring and following an equipment wiring diagram or
schematic.

2. The basics of motion control system applications,
such as torque, speed, move distances, and how to
structure a motion task into move segments and in-
put/output control.

3. Some familiarity with elementary computer program-
ming, including defining the problem to be solved and
coding it in a computer language.

1.3 - CONVENTIONS USED IN THIS
MANUAL

1. Motor rotation direction (CW and CCW) is properly
oriented when viewing the motor from the end opposite
the mounting flange.

2. Please refer to the AGlossary@ section for detailed
descriptions of terms such as "sink and source I/O",
various motion terms, etc.

1.4 - HOW TO CONTACT US

Although this manual represents a detailed compilation
of information regarding your Slo-Syn control product,
sometimes questions may arise which will require that
you contact us. You now have a few options available
to you when you need information regarding your
product or its application:

1. On the Internet. www.danahermotion.com Our multi-
media enabled web site offers you information such as:

- Free Software
- TechFax fax on demand documents
(1-800-234-3369)
- HTML Product Selector
- HTML Brand Selector
- Product News
- Links
- Sales and Distribution Information
- Product information and specifications
- Many more features

2. By Phone. You may reach us by phoning our Motion
Control Applications Engineering Department at tele-
phone (800) 787-3532 ext. 4751. Or call our main number
at (860) 585-4510. Both may be reached between the
hours of 8:00 am and 5:00 pm (Eastern Time), Monday
through Friday. Technical personnel are available to
assist you in getting your application up and running as
efficiently as possible.

Safety Information 3

Section 2

Important
Safety Information

4 Safety Information

Before installing and operating your Slo-Syn motion control product, it is extremely important both to you
and us here that you read this section very thoroughly and carefully. Your Slo-Syn
product will deliver years of reliable, trouble-free, and most importantly, safe operation if you heed the
cautions and warnings outlined in this section, and follow the subsequent instructions in the remainder of this
manual.

Throughout this manual two very important symbols will be used to identify hazardous and potentially
dangerous situations. The symbols are the electrical shock indicator and the exclamation point. Both are
always surrounded by a triangle as shown.

The electrical shock symbol shown to the left is used to indicate situations
where ELECTRICAL SHOCK hazards may exist. These warnings must be
followed to ensure that YOU avoid electrocution which could result in serious
injury or death.

The exclamation point symbol shown to the left is used to indicate situations
other than electrical hazards which may be potentially dangerous to either
YOU or to the product. Follow these warnings carefully to avoid injury to you
and damage to the product.

The following indicates a partial list of precautions which must be followed to ensure safe operation of the
unit. Other more specific precautions are indicated in the appropriate sections of this manual. As you read
through the manual, pay particularly close attention to these cautions and warnings as they could save your
life!

!
Caution

Warning

Safety Information 5

Dangerous voltages, currents, temperatures, and energy levels exist within
this unit, on certain accessible terminals, and at the servo motor. NEVER
operate the unit with its protective cover removed! Caution should be
exercised when installing and applying this product. Only qualified personnel
should attempt to install and/or operate this product. It is essential that
proper electrical practices, applicable electrical codes and the contents of this
manual be followed strictly.

Servo motors can develop high torque and speed. Use extreme caution during
 development of servo applications and integration into your system. Sudden
motor motion may occur during execution of software programs. All software
should be verified for proper operation before integration into your system.
The motor may continue to rotate upon removal of power to the unit. It is your
responsibility to ensure that no dangerous motion occurs due to gravity
loading or free-running motors upon unit shutdown. Fail-safe brakes may be
interfaced to the unit to prevent such dangerous conditions .

Servo motors can have temperatures of up to or exceeding 100EEC. Use
caution when handling the motors.

Dangerous high voltages exist in this product. Be certain the power has been
removed for a minimum of 5 minutes before any service work or circuit board
configuration changes are performed.

In order to provide the correct levels of protection in the unit, replacement
fuses must be the same exact style and ratings as those originally installed in
the unit.

Warning

Warning

!
Caution

!
Caution

!
Caution

6 Safety Information

Safety Information 7

Temperature of the heatsink or the unit could be hot to the touch. Caution
should be used when determining the temperature.

External regenerative resistors can be a shock and temperature hazard.
These resistors should be mounted and enclosed properly with safe
clearances around them. Proper ventilation must also be provided for cooling
 purposes.

Secure mounting and proper grounding of both the Slo-Syn controller and the
servo motor are essential for proper operation of the system.

It is your responsibility to follow the appropriate federal, state, and local
electrical and occupational safety codes in the application of this product.

NEVER wire the unit with the power on ! Serious injury as
well as damage to the unit may result.

NONE of the inputs to the unit are to be used as EMERGENCY STOP in
ANY application. Although activation of certain inputs will discontinue motion
or disable motor current, these are NOT designed as fail-safe E-STOP inputs.
Relying exclusively on inputs to the unit to cease motion which could cause
dangerous conditions is a violation of Machine Safety Codes (ref. IEC 204-
1). Other measures such as mechanical stops and fail-safe brakes must be

!
Caution

!
Caution

!
Caution

!
Caution

!
Caution

!
Caution Warning

8 Safety Information

used in these situations.

Quick Start Installation Guide 7

Section 3

 Quick Start
 Installation Guide

8 Quick Start Installation Guide

3.1 - Step-by-Step Start-Up Procedure
The TDC positioning system is a sophisticated and versatile
product. Setting up the system, however, can be simple and
straight-forward if the proper steps are followed. Please use
the step-by-step set up guide below.

Bench Set Up.

Before connecting the TDC controller and motor to your
mechanical system or machine, we recommend that you
"bench test" the system. This will allow you to become
familiar with the wiring, programming and operation of the
system before installing it into your machine. This may also
prevent inadvertent damage to your system if you make
programming errors which cause unexpected motion. The
bench set up can be used to perform simple motions with an
unloaded motor. To perform a bench test, do the following:

1) Wire it up. Read Section 3.5 Wiring Diagrams, and con-
nect the AC power, I/O and other required signals per the
wiring diagrams and instructions. BE SAFE!! Do not apply
AC power to the unit until you are sure of all connections.
Initially, there is no need to connect all of the wiring of your
system together. Wire the AC line input, motor and HOST
communication ports. This will be all you need to establish
communications to the unit and perform simple motion.

HINT: Don't forget to wire the User Enable signal to GND
through a switch so you can turn the unit on and off as
necessary.

2) Load Software. You will need to use a PC to program the
unit according to your requirements. First you must load the
MCPI software onto the PC from the floppy disks provided
with your unit. Simply insert disk #1 and run the file
SETUP.EXE. Once the software is loaded, run it by double
clicking on the MCPI icon. See Section 5 for more details on
the MCPI installation process.

3) Create your Project. You can now create your new Proj-
ect. Your Project will contain Configuration information for
your particular system, and also your program Task which
holds the user program written in BASIC-like language.
Read section 5 of this manual, and then step through the
Configuration folders and enter the appropriate data for your
system, saving the configuration when you are done. Note
that for this exercise, the original default settings should
work fine. Don't forget to set up the serial port for your PC to
the correct port number and baud rate.

HINT: Motion is commanded in User Units. The System
folder in the Configuration allows you to enter User Units
per motor revolution. Initially, it is easiest to set this to 1.
This will mean that move distances are in motor revolutions
(e.g. movei=1 moves one revolution), speeds will be in
revs/sec, and accelerations will be in revs/sec/sec. Later this
can be changed (e.g. to allow programming in inches on a

lead screw) to allow ease of programming once the motor is
installed into the mechanical system. See the System Folder
section of this manual for other examples. All move dis-
tances, speeds, and accelerations (or decelerations), and
encoder information are provided in User Units, so be sure
you understand this before continuing.

4) Compile and Download the project into the unit using the
command buttons of the MCPI. Note that initially, you can
leave the Task blank and command motion using the Host
Commands. Host commands are entered in Terminal Mode
from the MCPI. Enter the terminal mode using the appropri-
ate command button on you screen.

5) Tune the Servo. Before running the motor, the controller
compensation parameters (gains) must be set. To aid in this
task an automatic servo tuning procedure is available. To
enter the servo tuning screen click on the servo tuning
button. The default values for auto tuning procedure should
work fine for now. The motor may be tuned on the bench
with no load. Ensure that the motor is properly secured to
 your work surface (bench). Note: Do not clamp the motor
any where except at the mounting flange.

Begin the auto tuning process by clicking on the Auto Tune
button. A screen with the default values will appear. Click
OK to use these settings. Next, click the Measure System
Gain button. The motor should Abump @ then the System
Gain value should update on the screen. Now click on the
Calculate Servo Gains button and the calculated Servo Gain
value will be displayed on the screen. Click the Update
Gains button, the servo should now be locked in position.
 Verify this by manually trying to turn the motor shaft. The
servo should Afight@ to stay in position.

Itís now time to try a test move by entering profile parame-
ters. First click the Motion Setup button and enter the
desired Accel, Decel, Speed and Move distance in user units
(e.g. revolutions by default). When finished click Done.
Now make the motor move by clicking on the Move re-
sponse button. The motor should complete the programmed
profile and the position error plot should appear on the
screen. You may have to adjust the display time in order to
see the whole move. To save the gain settings, click on the
Quit button then the Yes to save. To complete the tuning
Compile and Download the project to the controller to save
these values. The servo gains are now set.

6) Make it move! Now that you have compiled and down-
loaded your project into the unit, and tuned the servo you
are ready to command the motor to move. First you must
enter the speed at which you wish the motor to turn, such as
1 rev/sec. Do this by typing speed=1 <CR> in terminal mode
(the <CR> means the Return or Enter key). Now enter the
acceleration, for example 50 revs/sec/sec by typing ac-

Quick Start Installation Guide 9

cel=50<CR>. Set the deceleration to match by typing de-
cel=50<CR>. After each entry, the controller should respond
with a ">" prompt indicating that it has accepted your
command. In addition set wndgs to 1<CR> With the motor
secured to the bench, you can now command a move. To
command an incremental move of 10 revolutions type
movei=10<CR>. The motor should now move 10 revolutions.
If it does not, check your wiring, particularly the User Enable
input. Also verify your configuration settings. In addition,
check the motor direction to insure it meets your require-
ments. The motor direction can be reversed in the System
folder if necessary.

7) Write a BASIC Program. Now that you have made a
simple move, you are ready to write your Task in the MCPI
BASIC-like language. Refer to section 6 for a complete
description of all of the Program Commands. You can start
by opening your Task and entering the commands. First,
let's enter the exact same commands that you used in the
Terminal HOST mode. Enter the speed, accel, decel, wndgs
and movei commands as you did in step e) above. You must
enter two more commands to tell the unit that the program is
done after it performs the move. Type waitdone<CR> and
End<CR> as the last lines of the program. Since your pro-
gram has changed, you must compile and download it into
the unit again for the changes to take effect. If you receive
compilation errors, check your spelling and syntax with the
information in section 6.

8) Execute the Program. From the Terminal screen, click on
the RUN button to make the motor move 10 revolutions. If
desired you can now add lines to the program to perform
more sophisticated motion. For example, try typing REAL x
<CR> as the first line of your program. This will declare x as
a REAL variable. See sections 5 and 6 for discussions re-
garding variables. On the next line, type x=10 <CR>. This
assigns the REAL variable x a value of 10. Change the
movei=10 line to movei=x. Now the motor will move whatever
distance has been assigned to x. Recompile and download
your program, then run it. It should operate the same as
before, but now the program is using x as the move distance
in place of 10 as before. Change the value of x to different
distance values to verify that it works correctly.

8) Expand the Program and Debug it. Now that you have
written a simple program, you can add more complexity by
adding more commands. You can do complex looping,
access I/O, and motion functions as required. It will be
helpful now to use the DEBUG feature of the MCPI. Again,
refer to section 5 for a detailed description of the debug
mode. If you compile your program in Debug Mode, you can
enter the debug screen as your program runs and step
through your code to verify proper operation. Once the code
is functioning correctly, you should re-compile in Release
Mode as this will speed up program execution.

Installation into Mechanical System

Once you have tested everything out in a controlled envi-
ronment, you may complete the installation into your sys-
tem. This will require making all the necessary wiring con-
nections for limit switches, additional I/O, analog inputs,
encoder, etc. Start simple!! Just as you started with a simple
move on the bench, you should start simple here as well,
slowly adding complexity as you debug your code and gain
more confidence in programming. You may use the Debug
Mode to help in this process. Once you have the program
running the way you want, you can disconnect the HOST
computer and use the RUN switch input or Program
Autostart feature in the Configuration to run your program
without a computer attached.

3.1.1 - Switch and Jumper Settings

Before mounting and wiring your Slo-Syn
Positioning system, the switches and jumpers
that govern various operating features should
be checked or set to their proper positions for
your application.

NEVER change the jumper or switch set-
tings with the unit powered on. Risk of
physical injury or damage to the unit. Be-
fore changing jumpers, place the unit on a
properly grounded antistatic workstation to
avoid static discharge damage to the board.

3.1.2 - Baud Rate and Unit ID Switch

The Baud Rate switch is accessible through the top of the
unit on the left side and has two positions, 9600 or User
Baud. According to the switch position, upon unit power up
or RESET, the baud rate is set to either 9600 or the User
Baud rate. If the switch is in the User position, the unit baud
rate is set to the baud rate parameter defined in the down-
loaded project. If the switch is in the 9600 position, the baud
rate will be forced to 9600 regardless of the project configu-
ration.

It is possible to communicate to multiple TDC units over the
same RS-485 transmission lines. To accomplish this, the TDC
supports daisy chain wiring of from 2 to 32 units. All units
MUST have their HOST communications port set to RS-485
mode for daisy chaining to function properly. Insure that
the power is off when changing the setting. To change the
Host port communications mode remove the 8 screws hold-
ing the cover on and place the jumpers on JP4 & JP7 to the
RS485 position, see Figure 3. Put the cover back on and
secure the 8 screws holding the cover in place. All units
must also be set to the same baud rate.

!
Caution

Warning

10 Quick Start Installation Guide

Further wiring details are included in Section 3.5 Wiring
Diagrams. Note that RS-232 daisy chaining is NOT sup-
ported, and RS-232 signals should NOT be connected to the
Host port when it is in RS-485 mode.

The host command <nn allows different modes for daisy
chain communications. Refer to Section 6.2 for a detailed
description of the daisy chain commands including syntax
and usage.

Each unit on the daisy chain must have a unique identifica-
tion number (ID) to eliminate transmitter conflicts on the
RS485 port. Five dip switches are provided for selecting the
unit ID (1 - 32). They are accessible through the top left of
the unit. One and only one unit MUST have ID 1. The switch
positions are only decoded at power-up. Do not change the
switches with the power on.

The unit ID 's are decoded as follows:
ID Num. SW-1 SW-2 SW-3 SW-4 SW-5

1 ON ON ON ON ON
2 ON ON ON ON OFF
3 ON ON ON OFF ON
4 ON ON ON OFF OFF
5 ON ON OFF ON ON
6 ON ON OFF ON OFF
7 ON ON OFF OFF ON
8 ON ON OFF OFF OFF
9 ON OFF ON ON ON

10 ON OFF ON ON OFF
11 ON OFF ON OFF ON
12 ON OFF ON OFF OFF
13 ON OFF OFF ON ON
14 ON OFF OFF ON ON
15 ON OFF OFF OFF ON
16 ON OFF OFF OFF OFF
17 OFF ON ON ON ON
18 OFF ON ON ON OFF
19 OFF ON ON OFF ON
20 OFF ON ON OFF OFF
21 OFF ON OFF ON ON
22 OFF ON OFF ON OFF
23 OFF ON OFF OFF ON
24 OFF ON OFF OFF OFF
25 OFF OFF ON ON ON
26 OFF OFF ON ON OFF
27 OFF OFF ON OFF ON
28 OFF OFF ON OFF OFF
29 OFF OFF OFF ON ON
30 OFF OFF OFF ON OFF
31 OFF OFF OFF OFF ON
32 OFF OFF OFF OFF OFF

3.1.3 Controller Board Jumpers

There are five jumper banks which must be set on the con-
troller board. BEFORE removing the unit cover, check to
see if the factory default jumper settings are acceptable for
your application. If changes must be made to the control
board jumpers, first you MUST insure that the unit is NOT
powered on. Next remove the sheet metal cover by unfas-
tening the screws from the cover and carefully sliding it free
of the unit. Lay the unit on its side to gain access to the
jumpers. Carefully set the jumpers according to the Table 3.1
below.

TABLE 3.1
Jumper Function Setting 1

(Factory Default)
Setting 2

JP1 Mode:
Output 2

Sink Mode
1-2, 3-4

Source Mode
2-3, 4-5

JP2 Mode:
Output 1

Sink Mode
1-2, 3-4

Source Mode
2-3, 4-5

JP3 Mode: All
OPTO Inputs

Sink
(See Board

Legend)

Source
(See Board

Legend)
JP4 &
JP7*

Mode: Host
Serial Port 1

RS232 RS485

* NOTE: Both Jumpers JP4 and JP7 must be set to the
same mode.

3.1.4 Drive Current Switch

The drive current selection switch is accessible through
the top center of the unit. The switches should normally
be set to reflect the continuous current capability of the
motor. The available peak current is twice the continuous
current setting.

The TDC-04 has a maximum continuous current of 4 amps
and a peak current of 8 amps. The TDC-08 has a maximum
continuous current of 8 amps with 16 amps peak current.
The highest DIP switch setting in the on position will be
the maximum CONTINUOUS current supplied by the
drive.

Quick Start Installation Guide 11

Figure 3.1
Control Board Jumpers

Quick Start Installation Guide 13

3.2 Mechanically Mounting the Unit

Mechanical outline drawings are shown on the previous
page. The unit should be solidly mounted within a control
enclosure approved for the particular application. It is impor-
tant to select a mounting location which will meet the envi-
ronmental specifications listed in the Mechanical Specifica-
tions section of this manual. Avoid locations that expose the
unit to extremes of temperature, humidity, dirt/dust, or
vibration.
At least 2 inches of space must be left on the sides, top, and
bottom of the unit to allow proper air flow for cooling of the
unit.

Care must also be taken to allow proper and safe access to
all wiring. It is best to avoid areas with high electrical noise.
As discussed in the following section on General Wiring
Guidelines, this will help prevent incorrect operation due to
electromagnetic interference.

3.3 General Wiring Guidelines

Dangerous voltages, currents, tempera-
tures, and energy levels exist within this
unit, on certain accessible terminals, and
at the servo motor. NEVER operate the unit
with its protective cover removed! Caution
should be exercised when installing and
applying this product. Only qualified
personnel should attempt to install and/or
operate this product. It is essential that
proper electrical practices, applicable
electrical codes and the contents of this
manual be followed strictly.
SLO SYN controls and drives use

modern solid-state digital electronics to provide the features
needed for advanced motion control applications. Although
care has been taken to ensure proper operation under a wide
range of conditions, some user equipment may produce
considerable electromagnetic interference (EMI) which can
cause inappropriate operation of the digital logic used in the
control, drive, or other computer-type equipment in the
user=s system.

In general, any equipment that causes arcs or sparks or that
switches voltage or current at high frequencies can cause
interference. In addition, ac utility lines are often Apolluted@
with electrical noise from sources outside a user=s control
(such as equipment in the factory next door). Some of the
more common causes of electrical interference are:

! power from the utility ac line
! relays, contactors and solenoids
! light dimmers
! arc welders
! motors and motor starters
! induction heaters
! radio controls or transmitters

! switch-mode power supplies
! computer-based equipment
! high frequency lighting equipment
! dc servo and stepper motors and drives

The following wiring practices should be used to reduce
noise interference.

Solid grounding of the system is essential. Be sure that
there is a solid connection to the ac system protective earth
ground (PE). Insure that there is a good electrical connection
through the drive case to the control system enclosure . A
separate grounding strap may be required to properly
ground the unit to the control system enclosure. This strap
should ideally be constructed using copper braid at least
0.5" in width. Use a single-point grounding system for all
related components of the system (a Ahub and spokes@ ar-
rangement). Keep the ground connection short and direct.
Grounding through both a mechanical connection to the
control enclosure and through a grounding strap is optimal.

Keep power and signal wiring separated. Power wiring
includes ac wiring, motor wires, etc. Signal wiring is inputs
and outputs (I/O), encoder wiring, serial communications
(RS232 lines), etc. If possible, use separate conduit or ducts
for each. If the wires must cross, they should do so at right
angles to minimize coupling.

Use separately bundled shielded, twisted-pair cables for the
drive to motor, encoder, serial communications, analog input,
and digital I/O wiring. For motor connections, BE SURE TO
GROUND THE SHIELD AT THE SLO-SYN DRIVE END. For
other connections it is recommended that the shields be
terminated at the Slo-Syn unit as well. Shield connections
are provided on the unit terminal connectors for this pur-
pose. All cable shielding should be terminated at ONE END
ONLY. Grounding the serial communications connections at
the opposite end of the controller may be necessary in some
systems. If the cable shield must be connected at the oppo-
site end from the Slo-Syn unit, it should NOT also be con-
nected at the unit as this may cause a Aground loop@ and
introduce electrical noise problems.

Suppress all relays as close to the coil as possible to pre-
vent noise generation. Typical suppressors are diodes,
capacitors or MOV=s. (See manufacturer=s literature for
complete information). Whenever possible, use solid-state
relays instead of mechanical contact types to minimize noise
generation.

In some extreme cases of interference, it may be necessary to
add external filtering to the ac line(s) feeding affected
equipment, or to use isolation transformers to supply their
ac power.

NOTE: We make a wide range of ac power line
conditioners that can help solve electrical interference
problems. Contact 1-800-SUP-ELEC for further assistance.

Warning

Quick Start Installation Guide 15

Figure 3.4 Figure 3.5
TDC Switches TDC Connections Front View

11

12

23

14

14

14

15

17

18

16

19

20

21

22

13

16 Quick Start Installation Guide

1 3

2

4

5

6

7

Inputs 1-10

EVENT 1/ IN1; EVENT 2 / IN 2

These inputs can be used as mark registration and/or home
inputs . If the inputs are not used for mark registration or
home then the inputs can be used as programmable inputs.
 These inputs can be configured in the Project Configura-
tion & Setup.

+LIMIT / IN3; -LIMIT / IN4

The +LIMIT or the -LIMIT may be used as inputs for limit
switches or sensors. If limit switches are not needed, the
inputs can be configured in the Project Configuration and
Setup as programmable inputs.

RUN / IN5

The run input will start execution of the program. If auto-
start is selected the program will start upon power up or
RESET. RUN will also re-start a program if a CLEAR has
been activated, or resume a program if a FEEDHOLD has
been activated. If the RUN input is not needed the input can
be used for a programmable input. This selection is done in
the Project Configuration & Setup.

CLEAR / IN6

If the CLEAR is open, the program or motion will stop. This
input must be closed to run the program or start motion. If
the CLEAR input is not needed the input can be used for a
programmable input. These inputs can be configured in the
Project Configuration & Setup.

FEEDHOLD / IN7

Activation of this input will cause motion to come to a
controlled stop. After release of the FEEDHOLD input,
activation of the RUN input will continue the program from
the point the FEEDHOLD was activated. If the FEEDHOLD
 input is not needed it can be used as a programmable input.
This input can be configured in the Project Configuration
& Setup.

IN 8, IN9, IN10

These inputs can be used as programmable inputs.

Outputs 1 & 2

OUT 1, OUT 2

These outputs can be used as programmable outputs.

Fault Output

FAULT

FAULT is an output that is active low when a fault is indi-
cated. The condition of the fault can be queried through the
software ERR command.

OPTO

+VOPTO; -VOPTO

A power supply for the optical isolators is REQUIRED for
proper I/O operation. This supply must be connected to the
+VOPTO and -VOPTO pins. The +24VDC and +24V COM
power supply is available from the drive connector on the
TDC unit, and should be connected to +Vopto and -Vopto
unless the user is to supply power for the I/O from a differ-
ent source.

Serial Port 1

Host Serial Communications: Port 1

GND: Ground for Serial Port 1
RX1+: Receive+ for Serial Port 1 (RS485)
RX1-: Receive- for Serial Port 1 (RS485/ RS232)
TX1+: Transmit+ for Serial Port 1 (RS485/ RS232)
TX1-: Transmit for Serial Port 1 (RS485)
Shield: Connection for Shield

Serial Port 2

Auxiliary Serial Communications: Port 2

GND: Ground for Serial Port 2
RX2+: Receive+ for Serial Port 2 (RS485)
RX2-: Receive- for Serial Port 2 (RS485)
TX2+: Transmit+ for Serial Port 2 (RS485)
TX2-: Transmit- for Serial Port 2 (RS485)
Shield: Connection for Shield

Encoder 1

ENCODER 1

Encoder inputs for the servo motor can be single-ended or
differential phase quadrature.

+5V: +5V supply for encoder.
GND: Ground for encoder.
A1+: Encoder Channel A+ input.
A1-: Encoder Channel A- input.
B1+: Encoder Channel B+ input
B1-: Encoder Channel B- input.
Z1+: Encoder INDEX Channel Z+ input.
Z1-: Encoder INDEX Channel Z- input.

Quick Start Installation Guide 17

8

9

10

11

12

13

Encoder 2

+5V: +5V supply for encoder.
GND: Ground for encoder.
A2+: Encoder Channel A+ input.
A2-: Encoder Channel A- input.
B2+: Encoder Channel B+ input.
B2-: Encoder Channel B- input.
Shield: Connection for Shield
Shield: Connection for Shield

Servo Monitor Outputs

SERVO MON OUTPUTS
The servo monitor output is an analog signal proportional to
the command to the drive or current amplifier. The monitor
signal is -10 VDC to +10 VDC. These signals are for connec-
tion to monitoring and measurement equipment ONLY. DO
NOT connect them as input signals to any other type of
equipment.

SERVO MON +: Analog monitoring signal representing the
current command from the controller.

SERVO MON -: Ground reference

Analog Input

ANALOG Input Connections
The analog input connections allow a voltage from -10 VDC
to +10VDC to be read into the unit. Resolution of the input
is 19.53 millivolts.

ANALOG IN+: Non-inverting analog input.
ANALOG IN-: Inverting analog input.
+10V REF: +10 VDC supply for precise referencing

of analog signals.
AGND: Ground for analog inputs.

Device ID Number Switch

The DIP switches will allow up to 32 devices to be daisy
chained together.

Baud Rate Switch

This switch is read only at power-up or after a reset com-
mand. In the off position the baud rate is forced to 9600. In
the on position the baud rate for the loaded project is used.
The User Baud is selected in the project Configuration and
Setup. If no user program is loaded the default 9600 baud
rate is used.

BCD Port

BCD Port / I/O
This port can be used as either a BCD port, consisting of 7
numbers and a sign,
or used for additional outputs and inputs *.

BCD0 / IN11: BCD switch data 0 or program input 11.

BCD1 / IN12: BCD switch data 1 or program input 12.

BCD2 / IN13: BCD switch data 2 or program input 13.

BCD3 / IN14: BCD switch data 3 or program input 14.

BCD4 / IN15: BCD switch data 4 or program input 15.

BCD5 / IN16: BCD switch data 5 or program input 16.

BCD6 / IN17: BCD switch data 6 or program input 17.

BCD7 / IN18: BCD switch data 7 or program input 18.

BCD_STR0 / OUT3: BCD switch Strobe 0 or output 3

BCD_STR1 / OUT4: BCD switch Strobe 1 or output 4

BCD_STR2 / OUT5: BCD switch Strobe 2 or output 5

BCD_STR3 / OUT6: BCD switch Strobe 3 or output 6
*Note: When the BCD port is used for additional I/O, all
inputs are non-isolated TTL level, and all outputs are open-
collector TTL level (7406) active low.

18 Quick Start Installation Guide

14

15

16

17

18

19

20

21

 LED's

These LED=s show conditions that may be occurring in the
amplifier

BUSY: Signifies that motion is occurring
on the motor.

FAULT: Indicates that an error has
occurred in the controller.

POWER: The power LED indicates that
there is AC power applied to the
drive and that the logic supply is
active.

OVER CURRENT: Shows that current above the
peak current is being drawn.
Could be a phase to phase or
phase to ground short. May also
be caused by a non-compatible
motor being used.

OVER TEMP: This LED shows that the tem-
perature of the heat sink is in ex-
cess of 70 EC or the ambient
temperature is greater than 50
EC.

OVER CURRENT & If the over current and the OVER
TEMP: over tempera-
ture LED=s are active this indi-
cates that an over voltage condi-
tion has occurred, bus voltage >
425VDC.

REGEN ON: Shows that the regenerative
energy circuitry is activated due
to energy.

 Hall Effect Sensors

These connections are used to power and connect the Hall
effect sensors to the amplifier, and are optically isolated
inputs for the commutation devices. The inputs are pulled
up to a +5 V supply through 1000 ohm resistor. Low level
current is < 4 milliamperes.

+5V: +5VDC to power the Hall effect sensors.
5V COM: 5VDC common.
HALL1: Hall Effect sensor input for phase one(1).
HALL2: Hall Effect sensor input for phase two(2).

HALL3: Hall Effect sensor input for phase three(3).
SHIELD: Shield connection.

 CMD+,CMD-

These signals should not be connected on TDC units.

 Enable and Ready signals

ENABLE: Sinking this input will enable the amplifier.
The amplifier will only enable if the con-
troller allows it and the user activates the
input by sinking current to 5VCOM with
a switch or open collector active device.

READY: The READY output is active when the amplifier is
ready to accept a servo command from
the controller. Both normally open and
normally closed relay contacts are avail-
able on the drive connector.

 24 VDC Power Supply

24 VDC to power other devices. It is recommended that this
power be connected to the +Vopto and -Vopto in puts on
the controller as the discrete I/O supply.

+24V: +24VDC output at 0.5 Amps.
24V COM: Common for the 24VDC output.

 External Regen Resistor

Allows for the connection of additional regeneration resis-
tors. External Regeneration resistor(s) may be required if the
system inertia and deceleration requirements exceed speci-
fied limits. Example energy and power calculations to aid in
sizing external regeneration resistors are given in Section 3.6.

 Motor Wiring

These connections are for connecting the three phases of
the motor.

Ma: Motor phase a.
Mb: Motor phase b.
Mc: Motor phase c.

 AC Power

Quick Start Installation Guide 19

22

AC CONNECTIONS
These inputs are for connection of single phase AC power.
 The input power range is from 94VAC to 264VAC

 Chassis Ground

Grounding locations for the motor and AC connections. It is
 critical that a solid connection from Protective Earth Ground
be connected to the chassis ground. The Ground wire must
 be at least as large as the AC supply power wiring.

 Current Settings

The current settings of the drive reflect the continuous
current capability of the motor. Peak current is twice the
continuous current setting. The TDC-04 has a maximum
continuous current of 4 amps and a peak current of 8 amps.
 The TDC-08 has a maximum continuous current of 8 amps
with 16 amps peak current. The highest DIP switch setting
in the on position will be the max. CONTINUOUS current
supplied by the drive.

20 Quick Start Installation Guide

Servo
Motor

Ma

Mb

Mc

AC IN

AC IN

120 VAC
or

230 VAC

Ground

Ma

Mb

Mc

Motor
Ground

External
Regen

External
Regen

3.5 Wiring Diagrams

This section provides diagrams for wiring each connection discussed above. Remember to follow the General Wiring Guidelines
outlined previously.

NEVER wire the unit with the power on ! Serious injury as well as damage to the unit may result.

3.5.1 Motor Connections to the amplifier.

A. Connect phase A of the motor to the terminal marked Ma.
B. Connect phase B of the motor to the terminal marked Mb.
C. Connect the motor phase C to the terminal marked Mc.
D. Connect the motor ground to the ground stud below the terminal strip.

!
Caution Warning

Quick Start Installation Guide 21

*Connection of the Servo CMD+ or CMD- depend on servo contoller used. If
used with the "TDC", CMD+, CMD- and ENABLE are monitoring points only.

+5V

5V COM

HALL 1

HALL 2

HALL 3

SHIELD

CMD +

CMD -

ENABLE

READY

READY

READY

+24V

24V COM

Servo
Motor

Motor Hall 1

Motor Hall 2

Motor Hall 3

Motor Cable
Shield

5V COM

+5V

To Servo Motor
Controller*Encoder

Motor & Hall Sensor Commutation Table
HALL 1 HALL 2 HALL 3 MOTOR VOLTAGE

+5 VDC 0V 0V Ma to Mb

0V +5VDC 0V Mb to Mc

0V 0V +5VDC Mc to Ma

The above table must be used to properly Aphase@ your motor=s windings to the three hall effect sensors or encoder commutation
tracks.

Note: A pullup resistor of 1Kohm to +5VDC is provided on the three HALL inputs internal to the drive unit. If an open-collector
hall sensor is used, the device must be off to yield a +5VDC signal at the drive HALL terminal.

3.5.2 Hall Sensors / Commutator connections

A. Connect the 5V and the 5V COM to the amplifier.
B. Next, connect the phase A hall sensor or commutator to Hall 1 on the amplifier.
C. Connect the phase B hall sensor or commutator to Hall 2 on the amplifier.
D. Connect the phase C hall sensor or commutator to Hall 3 on the amplifier.
E. Connect the shield of the cable to the Shield input on the amplifier.

The CMD+, CMD- inputs should NOT be connected on TDC units. These are connected internally. Connection to
these terminals will cause improper operation of the unit.

22 Quick Start Installation Guide

3.5.3 Servo Motor Encoder connections

3.5.3.1 Encoder 1
Connections for Encoder 1 should be made according to
figure 3. The Z-channel may also be known as the Index

channel or I-channel. Single ended TTL encoder channels
should be connected to the “+” inputs.

Figure 3.8a, Encoder 1 Connections

3.5.3.2 Encoder 2
The encoder 2 connector is used to connect an external
quadrature encoder source to the controller. Encoder 2 line
count in the configuration Encoder folder represents the
number of lines in one revolution of encoder 2. Position and
velocity of encoder 2 may be read using the ENCPOS2 and
ENCSPD2 commands. In electronic gearing mode encoder
2 may be selected as the master source by using the

GEAREXT and GEARON commands. The motor (slave) to
master ratio is set using GEARRATIO .The external quadra-
ture encoder connections are depicted in the Figure 3.8b.
Although differential encoder outputs are recommended,
single ended TTL encoder channels can be connected to the
A+, and B+ terminals.

Figure 3.8b, Encoder 2 Connections

Servo
Motor

+5V

GND

A2+

A2-

B2+

B2-
Z1+

Z1-

Encoder

SHIELD

SHIELD

+5V

GND

A1+

A1-

B1+

B1-

Encoder Shield

13

15

1

3

5

7

9

11

+5V

GND

A2+

A2-

B2+

B2-

SHIELD

SHIELD

2

4

6

8

10

12

14

16

+5V

GND

A2+

A2-

B2+

B2-

Encoder

Quick Start Installation Guide 23

I/O Connections
for TDC

-VOPTO

EVENT1/IN1

Sinking
Connection

Inputs

Sensor

-VOPTO

IN9

Sinking
Connection

+VOPTO

EVENT1/IN1

Sourcing
Connection

-VOPTO

+VOPTO

IN9

Sourcing
Connection

PLC
Outputs

(Sourcing)

O
ut

COM

PLC
Outputs
(Sinking)

COM O
ut

Sensor

3.5.4 Input Connections

Inputs can be sink or source using active devices or a switch
closure. Connections to the inputs can be seen in figure 4.
 Connections to other inputs are similar.

The factory setting for inputs 1-10 is current sinking.
Changing the setting to sourcing requires the removal of the
steel enclosure to expose the circuit card.

Refer to section 3.1.1 of this manual.

Note: The BCD port can be configured as TTL sink only
I/O. See figure 6 and the Electrical Specifications section
for more detailed information.

Figure 3.9
Digital Input
Connections

24 Quick Start Installation Guide

3.5.5 Output Connections

Outputs can be sink or source. Connections to the out-
puts is shown in figure 5. Connections to other outputs
is similar.

The factory setting for the outputs is current sinking.
Changing the setting to sourcing requires the removal of the
steel enclosure to expose the circuit card. Refer to Section
3.1.1 of this manual.

Note: The BCD port can be configured as TTL sink only I/O.
 See figure 6 and the Electrical Specifications section for
more detailed information.

Figure 3.10
Digital Output
Connections

+VOPTO

OUT1

Sinking
Connection

Outputs

+VOPTO

OUT1

Sinking
Connection

to PLC

-VOPTO

OUT1

Sourcing
Connection

-VOPTO

OUT1

Sourcing
Connection

R
elay

C
oil

PLC Inputs
(Sinking)

COM In

R
elay

C
oil

PLC Inputs
(Sourcing)

COM In

-VOPTO

OUT2

OUT2

Quick Start Installation Guide 25

TTL IN11
(Sinking)

Input Usage
TTL Input

GND

PLC

COM

OUTPUT
(TTL Sinking)

TTL OUT3
(Open Collector)

Output Usage
TTL Output

Encoder
GND

5V

Limit to
25 mA

TTL IN11
(Sinking)

GND

PLC

COM

OUTPUT
(TTL Sourcing)

7406

BCD / TTL
I/O

1

13 14

BCD Strobe
2

TTL Out 5

BCD Strobe
3

TTL Out 6

BCD Data 6
TTL IN 17

BCD Data 4
TTL IN 15

N.C.

BCD Data 3
TTL IN 14

BCD Data 1
TTL IN 12

BCD Data 2
TTL IN 13

3

5

7

11

9

BCD Stobe1
TTL Out 4

BCD Strobe
0

TTL Out 3

BCD Data 7
TTL IN 18

BCD Data 5
TTL IN 16

N.C.

BCD Data 0
TTL IN 11

2

4

6

12

10

8

Figure 3.11
BCD/TTL Digital
I/O Connections

26 Quick Start Installation Guide

Figure 3.12a
BCD Switch Connections

Figure 3.12b
Typical External BCD Connections

+ + + + + + + +

- - - - - - - -

+ 0 1 2 3 4 5 6

2211157-002
1 14

14 1

TDC Controller

BCD/TTL
 I/O

Quick Start Installation Guide 27

3.5.6 Analog Input Connections

The analog input can accept a -10 VDC to a + 10 VDC signal. This input can be single ended or differential. Examples of connec-
tion methods are shown in figure 8. A +10V REFerence supply capable of sourcing 10mA of current is also provided.

The user's ground must be referenced to the GND or AGND on the controller.

Figure 3.13
Examples of
Analog Input
Connections

ANALOG IN +

ANALOG IN -

+10V REF

AGND10K

ANALOG IN +

ANALOG IN -

+10V REF

AGND
10K

ANALOG IN +

ANALOG IN -

+10V REF

AGND

Users
Voltage
Source

-10 VDC
to

+10 VDC

ANALOG IN +

ANALOG IN -

+10V REF

AGND

Users
Voltage
Source

-10 VDC
to

+10 VDC

+

-

COM

+

Single Ended Analog Signal Differential Analog Signal

GND

28 Quick Start Installation Guide

GND

RX1+

RX1-

TX1+

TX1-

SHIELD

Host Transmit

Host Receive

Host Ground

Host Shield

RS485

GND

SHIELD

Host Ground

Host Shield

1

5

7

11

1

3

5

7

9

11

TX1+

TX1-

Host Receive +

Host Receive -

Host Transmit-

Host Transmit+

RX1-
*

*

3.5.7 RS232 / RS485 Host Serial Communication Connections

This serial port is for communication and programming of
the controller from a personal computer (PC). The port can
be configured for RS232 or RS485 operation. The factory
setting is for RS-232. The port may be configured by re-
moving the unit cover as described in section 3.1.1. The
wiring connection diagram is shown below. Note that when
wired for RS-485 operation, a cable with individual twisted
pair wires must be used. The termination resistors indi-
cated with the * must have a value of 120 ohms. The resis-
tor across the RX1+ and

 RX1- lines must be added external to the TDC unit. The
termination resistor across the TX1+ and TX1- signals at
the opposite end from the TDC may also be required if the
terminal device to which the TDC is communicating does
not provide the termination resistor internally. If the termi-
nal device does provide the resistor internally, the resistor
across TX1+ and TX1- is not required. Check with the
manufacturer of the terminal device and review its specifica-
tions to insure proper serial communications operation.

Figure 3.14
Host Serial Connections

RS232

Quick Start Installation Guide 29

3.5.7.1 - RS485 Host Daisy Chaining Connections

Connection in a daisy chain configuration requires that the
Host port of all units be wired as RS-485. Each unit must
also be set to RS485 Host communications mode. To
change the Host port communications mode remove the 8
screws holding the cover on and place the jumpers on JP4
& JP7 to the RS485 position, see Figure 3.1. Put the cover
back on and secure the 8 screws holding the cover in place.
 Be sure that the unit is off when changing the switch posi-
tion.

Important!! Connection to a PC that has an RS-232 port
only can be accomplished by using an RS-232 to RS-485
four wire adapter such
as shown. If your PC has an RS-485 port, the
adapter is not required.

Figure 3.15
Daisy Chaining Wiring Diagram

3

Rx1+

5

Rx1-

7

Tx1+

9

Tx1-

1

GND

TDC

RS485

ID=32

3

Rx1+

5

Rx1-

7

Tx1+

9

Tx1-

1

GND

TDC

RS485

ID=nn

3

Rx1+

5

Rx1-

7

Tx1+

9

Tx1-

TDC

RS485

ID=2

1

GND

3

Tx1-

5

Tx1+

7

Rx1-

9

Rx1+

1

GND

TDC

RS485

ID=1

Rx-

Rx+

Tx-

Tx+

PC
RS232

Port

Rx

Tx

GND

Adapter

30 Quick Start Installation Guide

3.5.8 RS485 Auxiliary Communication Connections

The auxiliary serial port is used for serial communication to
and from other devices, such as PLC=s or operator interface
panels. This serial port is RS485 only. The wiring connec-
tion diagram is shown below. Note that a cable with indi-
vidual twisted pair wires must be used. The termination
resistors indicated with the * must have a value of 120
ohms. The resistor across the RX2+ and RX2- lines must
be added external to the TDC unit.

The termination resistor across the TX2+ and TX2- signals
at the opposite end from the TDC may also be required if the
terminal device to which the TDC is communicating does
not provide the termination resistor internally. If the termi-
nal device does provide the resistor internally, the resistor
across TX2+ and TX2- is not required. Check with the
manufacturer of the terminal device and review its specifica-
tions to insure proper serial communications operation.

Figure 3.16
Auxiliary

Serial Connections

RS485

GND

RX2+

RX2-

TX2+

TX2-

SHIELD

Aux. Ground

Aux. Shield

Aux. Receive +

Aux. Receive -

Aux. Transmit -

Aux. Transmit +
*

*

2

4

6

8

10

12

Quick Start Installation Guide 31

3.5.9 AC Power Connections to the Unit

Connect the two (2) AC IN terminals to the line voltage. The voltage input can be from 95 VAC to 264 VAC 50/60 hertz. The
voltage in will determine the DC bus voltage. The DC bus voltage can be approximated by using the following equation:

Do not exceed the voltage rating of the drive and motor. Damage may occur if the ratings are not observed.

Figure 3.17
AC Power Connection

Ground

Ma

Mb

Mc

AC IN

AC IN

External
Regen

External
Regen

Typical
115VAC or

230VAC
Nominal

VDCOUT=VACIN x 2

VDCOUT=VACIN x 1.4142

32 Quick Start Installation Guide

3.5.10 Regenerative Resistor Connections

An external regenerative resistor can be connected to the
7 position terminal strip connection points marked external
regen . Refer to Figure 3.5 item 18 and Figure 3.17. See the
following example to determine if an external regenerative
resistor is required.

For determining if the internal regenerative resistor is suffi-
cient use the following formula:

Jrotor = Inertia of the rotor in lb-in-sec2

Jload = Inertia of the load in lb-in-sec2

P = Power of regen resistor in watts
N = Speed of the motor in RPM
Tfrict = Frictional torque in lb-in
tdecel = Deceleration time
tcyc = Cycle time
E = energy in motor in joules

where: P = Power of the internal resistor = 50 W

The internal resistor is sufficient if the calculated energy is
200 Joules and the cycle time is greater than the calcu-
lated cycle time.

Example:
Jrotor =.0026 lb in sec2

Jload = 0.130 lb in sec2

P = 50 W
N = 4000
Tfrict = 5 lb. in.
tdecel = .25 sec

Since the energy is less than 200 joules and if the cycle time
is greater than 1.9 seconds no external regen is required. If
the energy is greater than 200 joules or the cycle time is less
than the calculated cycle time consult the factory for the
proper external regen resistor.

E= * (Jrotor+Jload) * N 2 - * Tfrict * N * tdecel

tcyc =

1
1616

1
85

E
P

E= * (.0026 +.0130) * (4000) 2 - * 5 * 4000 * .25 = 95.63

tcyc > > 1.9

1
1616

1
85

95.63
50

Specifications 33

Section 4

Hardware
 Specifications

34 Specifications

4.1 Mechanical and Environmental Specifications

Size: 3.76W x 10.63H x 8.07D (See Figure 3.2)
Operating temperature: +321 F to +1221 F (01 C to +501 C)
Storage temperature: -401 F to +1671 F (-401 C to +751 C)
Humidity: 95% maximum, non-condensing
Altitude: 10,000 feet (3048 meters) maximum

4.2 Electrical Specifications

Input Voltage: Single Phase 95 to 264 Vac, 50/60 Hz
Input Current: TD330/04, 7 amps, internal fuse rating: 8 amp 3AB Fast Acting

TD330/08, 14 amps, internal fuse rating 15 amp 3AB Fast Acting
Internal Bus Voltage: 130 to 375 Vdc depending on AC Input Voltage
Motor Current: TD330/04, 4 amps continuous, 8 amps peak
 TD330/08, 8 amps continuous, 16 amps peak

(maximum value of a 6-step waveform)
Regenerative Energy Circuit: Internal: 50 ohm, 50 watt resistor

External: Connections available (Must be externally fused)
See example for size selection in Section 3.5 or consult factory

Regenerative Energy Circuit Fusing: Internal fuse, 1 amp 3AG Slo-Blo

4.2.1 Isolated Digital I/O

Inputs (IN1 - IN10): Sink or Source mode selectable via jumper JP3.

Sink mode:

On state voltage range (V_IL) with -Vopto = 0V: 0V to (+Vopto - 4.5V)
 Input Current; (V_IL = 0V), +Vopto=24V, -Vopto=0V: 11.5mA
 Input Current; (V_IL = 19.5V), +Vopto=24V, -Vopto=0V: 1.7mA
 Maximum Input differential voltage, (+Vopto - V_IL): 26V

Source mode:

 On state voltage range (V_IH) with -Vopto = 0V: 4.5V to 26V
 Input Current; (V_IH = 4.5V) with -Vopto=0V : 1.7mA
 Input Current; (V_IH = 26V) with -Vopto=0V : 11.5mA

 Maximum Input differential voltage, V_IH-(-Vopto): 26V

Response time (sink or source):

Opto turn on delay: 10uS typical
Opto turn off delay: 75uS typical

 Programmable Outputs (OUT1,OUT2): Sink or source selectable via jumpers JP1 and JP2.

Sink mode:

Current rating: 50mA continuous.
Maximum collector voltage with -Vopto = 0V: 26V max
On state voltage @ 50mA: 2.0V max

Source mode:

Current rating: 50mA continuous.
Maximum emitter voltage with -Vopto=0V: 26V max
On state voltage @ 50mA: +Vopto - 2.0V

Specifications 35

4.2.2 TTL I/O or BCD Interface, non-isolated:

IN 11- IN18:

Logic high input level:
(Open circuit or sourcing voltage) 5V > Vsource > 4.5V
Logic low input level: 1.5V max

OUT 3 - OUT6:

 These are open-collector, sink only TTL outputs which are NOT isolated from the unit =s +5 V logic supply.
Proper care must be exercised to insure noise is not injected onto these signals.

Active output voltage: .6V max @ 20mA
Permissible output current: 20mA

FAULT Output:

The FAULT output is SINK ONLY, active low. The specifications are identical to OUT1 and OUT2 in sink
mode as listed above.

4.2.3 Serial Communications:

Port 1:
Configurable for RS-232C or RS-485 specifications via jumpers JP4 and JP7. For RS-232 mode RX1- is used
for receive data into the unit, and TX1+ is used as the transmit data out. Port 1 is designated as the HOST
communications port.

Port 2:
Serial channel 2 is for RS-485 USER communications.

Serial Port Data Format:

Baud Rate: 9600 – 38.4K
Data Bits: 8
Stop Bits: 1
Parity: None

4.2.4 Encoder 1 and 2 Connections:

Encoder channel 1 provides power and inputs for a digital encoder interface to provide servo motor position
to the controller.

Encoder channel 2 provides power and input for an external encoder interface which can be used as an
external master source for electronic gearing, or as a digital position input to a user program when gearing is
not used.

Encoder +5Vdc power supply output: +5VDC (+/- 5%) @ 100mA current.
Encoder signal inputs: TTL level single ended or differential channels A and B in

phase quadrature. Single ended TTL signals, use A+, B+, and
Z+ inputs. (Z+ applies to encoder 1 only)

 Input current A+,A-,B+,B-: +/- 5mA min
Maximum Frequency: 500 Khz per channel @ 2 ms sample time

250 Khz per channel @ 1 ms sample time

4.2.5 Analog Input:

Voltage Range: +10V(max) to -10V (min) referenced to AGND
Resolution: 10 bits or 19.5mV
Absolute Accuracy: +/- .3V worst case
Sample Rate: 500 Hz min
Bandwidth: 100 Hz max

4.2.6 Analog +10V Reference:

Voltage: +10.00 (+/- 20mV)
 Output current source rating: 10mA max

36 Specifications

4.2.7 Servo Monitor Output:

Voltage Range: +10V to -10V referenced to AGND
Output Impedance: 200 ohm max
Output Current: 5mA max, recommended sourcing to impedance > 20Kohm

4.2.8 Internal Jumper Settings:

Also see section 3.1.1.

Serial Port 1 Select (JP4 and JP7s):

Serial port 1 may be configured for RS-232 or RS-485 differential mode operation. Power must be disconnected and
the unit cover removed to access the jumpers located on the controller circuit board. Jumpers JP4 and JP7 must be
set to either the RS232 or RS485 positions as indicated on the circuit board. BOTH jumpers MUST be installed in the
same mode for proper operation of serial port 1.

Inputs Sink/Source Select (JP3):

Jumper JP3 selects whether the discrete user inputs operate in either sink or source mode. In sink mode the opto
couplers are internally tied to +Vopto, and the user must provide a sinking connection to -Vopto to activate the input
(note reverse polarity of the CLEAR input). In source mode the opto couplers are internally tied to -Vopto, and the
user must source voltage and current, preferably from +Vopto, to activate the input.

OUT1 Sink/Source Select (JP2):

Jumper JP2 selects whether user programmable output OUT1 is a sinking or sourcing output. With JP2 jumpered
between 1-2 and 3-4, the output operates as a sinking NPN transistor with its emitter tied to -Vopto, and its collector
available at the output pin. See the circuit diagram below. A shunt diode is provided from the collector to +Vopto to
prevent overvoltage conditions from damaging the transistor due to switching of inductive loads.

With JP2 jumpered from 2-3 and 4-5, the output operates as a sourcing NPN transistor with its collector tied to
+Vopto and its emitter available at the output pin. See the circuit diagram below. A shunt diode is provided from the
emitter to -Vopto to prevent undervoltage conditions from damaging the transistor due to switching inductive loads.

OUT2 Sink/Source Select (JP1):

Jumper JP1 selects whether user programmable output OUT2 is a sinking or sourcing output. With JP1 jumpered
between 1-2 and 3-4, the output operates as a sinking NPN transistor with its emitter tied to -Vopto, and its collector
available at the output pin. See the circuit diagram below. A shunt diode is provided from the collector to +Vopto to
prevent overvoltage conditions from occurring due to switching of inductive loads.

4.2.9 - Hall Effect Inputs

These are optically isolated inputs for the commutation devices. The inputs are pulled up to the +5 Vdc supply.

Impedance to +5Vdc supply: 1K ohm pullup resistor
Low level current: 4 mA maximum
Low level voltage: 1V maximum

Specifications 37

4.2.10 - Enable Input

This input Must be connected (sunk) to 5Vcom and the controller Must set WNDGS = 1 to enable the drive.

Low level current: 7 mA maximum

4.2.11 - Ready Output

This is a relay output with NO and NC contacts which activates when the drive is ready to be enabled.

Contact rating: 0.5A @ 24VDC resistive load

4.2.12 – Motor Specifications

Type: 3 Phase Brushless motor with Hall commutation or an
encoder with commutation tracks. A 5V quadrature encoder
is required for servo position feedback.

Voltage: Cabable of withstanding bus voltages of 350 Volts.

Current: TDC330/04 1 to 4 Amps continuous, 2 to 8 Amps peak
TDC330/08 2 to 8 Amps continuous, 4 to 16 Amps peak

Recommended Inductance: 4 mH minimum

4.3 - Hardware Equivalent Circuits

The following pages contain equivalent circuit diagrams which represent the physical interface hardware internal to
the TDC unit. These circuits may be used as a reference if questions arise during detailed system design and
integration. These diagrams are intended to represent the TDC interface circuitry as accurately as possible, however we
reserve the right to make minor improvements which may change the exact nature of the circuitry
while not degrading functionality.

38 Specifications

I/O Equivalent Circuits

Specifications 39

Communication Equivalent Circuits

40 Specifications

Encoder Equivalent Circuits

PC Programming Environment 41

Section 5

Programming
Environment

42 PC Programming Environment

5.1 - PROGRAMMING
5.1.1 - GENERAL DESCRIPTION OF

PROGRAMMING
Programming of any sort requires planning and forethought.
Programming your Controller is no exception. This section
provides aids to facilitate your planning process.

5.1.1.1 - What is Programming?
A program is a list of discrete lines or command strings that,
taken together in sequence, provide the information needed
to get a machine to perform your predetermined sequence of
instructions. These instructions can, in the case of Pro-
grammable Motion Controllers, cause the motor to move at
certain speeds and for given distances, read various inputs
or set outputs, all used to accomplish different machine-
related tasks.

5.1.1.2 - What's in a Program?
A program consists of many individual lines organized in a
prescribed sequence. The TDC system uses an English
language, BASIC-type computer programming language
(SEBASIC).
This makes it easy and intuitive to write and read machine
control programs. SEBASIC supports many higher level
language features, such as statement labels, subroutines,
for-next and do-while loops for program flow control. This
makes it easy to write concise, well organized, easily de-
bugged programs. Also, there are built in mathematics,
Boolean functions and two dimensional array capability.
Finally, the motion, I/O, and timing commands are easy to
understand, remember and apply.

In addition to lines of program, the controller uses and
saves a series of set-up parameters. These parameters are set
by the user in the Configuration & Setup section of the
project.

5.1.1.3 - How is the Controller
 Programmed?

The programming environment called MCPI is supplied on
a diskette. This software provides an easy to use environ-
ment for developing a user project. Detailed instructions on
how to install this software on your PC are provided in this
manual.

5.1.2 -What are Host Commands?
These commands go straight from your input device (PC or
terminal) to the controller. These commands allow parame-
ters to be set or interrogated, motion to be started or
stopped, and program execution to be started or stopped,
etc. .

5.1.3 - Memory Types and Usage
A program is stored in memory. There are two kinds of
memory. RAM (Random Access Memory) is called Volatile
Memory because when power is removed from the control-
ler, all of the information in that memory are lost. The Con-
troller stores the program variables in RAM.

The second kind of memory is Non-Volatile Memory, such
as FLASH memory, EEPROM or BBRAM memory. The
information stored in this type of memory is not lost when
power is removed. FLASH memory is used by the controller
for storing the Operating System as well as the User Pro-
gram. Battery-backed ram (BBRAM) is used for NVR stor-
age.

Up to 400 REAL and/or INTEGER data locations are avail-
able for storage. These locations can be accessed from either
host or basic programming commands. A checksum is
developed and stored for each stored NVR location. Thus,
data integrity is checked each time an NVR location is read.
If the data checksum does not match during an NVR read an
NVR data corrupt error (138) is generated.

A Controller program can have hundreds of lines of code.
Code is simply an organized listing of program commands.
 Because of the wide variety of program commands it is
impossible to state how many lines can be stored in the
controller. The amount of free memory remaining can be
obtained with the FREEMEM host command.

5.1.4 - How to organize your Project
A project consists of a Configuration & Setup section and
the user program. The Configuration & Setup section allows
access to project related parameters and conditions via
folders. The user program performs your predetermined
sequence of instructions.

A good program will consist of an initialization, main pro-
gram, Interrupt routines, Subroutines and an Error Handler
sections. The Interrupt routines, Subroutines and Error
Handler sections are optional. A Program Development
Block Diagram is depicted on the following page.

5.1.4.1 - Initialization Section
The variable names and data types(Integer, Integer Array,
Real and Real Array) are defined. Also the condition's which
will trigger the individual Interrupts (INTR1-INTR4) may be
 defined. These commands apply to the TDC controller only.

The ACCEL, DECEL, SPEED, FOLERR and WNDGS values
should be set in this section also. Comments may be added
to make the program easier to follow and understand. The
apostrophe, must be used at the beginning of the comment
so that it will not be confused with the program statements.

PC Programming Environment 43

Example Initialization Section:

 INTEGER a,b(100),c(10,3)
 REAL d,e(50),f(5,4)
 STRING x$, y$, z$

 > a Integer variable
 > b Integer array single dimension
 > c Integer array two dimension
 > d Real variable
 > e Real array single dimension
 > f Real array two dimension

ON in(1)=1 INTR1

 > End of Initialization example

Examples of Integer values are: 1, 2, 5, 100
Examples of Real values are: 2.45, 3.1415, 10.735
Examples of String values are: Any ASCII character

Note: all arrays are zero based. That is, the first element of
the array has an index of zero,, b(0) for example. The chart
below shows two arrays: Array b is a single dimensional
array of 101 elements. Array c is a two dimensional array of
44 elements in an
11 x 4 arrangement.

 range element size
 b(0) - b(100) 101
 c(0,0) - c(10,3) 44

The ON in(1)..... line tells the controller to Goto label INTR1
when in(1) is active. This condition is only checked after an
INTRON1 command activates the interrupt checking.

This is only a simple example of an Initialization Section. The
Programming Reference should be studied and understood
before you write your own application.

5.1.4.2 - Main Program Section
The main program section should be placed just below the
initialization section of the program. This section can use
labels and any programming commands which may not be
listed in the initialization section. Labels, however, cannot
have the same name as programming commands. This sec-
tion must be ended with an END command .

5.1.4.3 - Interrupt Routines
The Interrupt routine section is optional. Interrupt com-
mands are powerful tools which instruct the program to
check specified conditions after executing every program
line. If the conditions are true, the program automatically
jumps to a special interrupt routine which performs a desired
program function. This section is only required when the
ON INTRn command and INTRONn commands are used.
This routine starts with a specific interrupt label (INTR1,
INTR2, INTR3 or INTR4) and ends with a RETURN com-

mand. These commands apply to the TDC controller only.

Interrupt conditions are only checked when the given inter-
rupt is enabled. Each of the four possible interrupts is
enabled using the associated INTRONn command. If the
interrupt condition is true while the interrupt is enabled, then
the routine INTRn will be executed. The INTROFFn com-
mand will disable checking of the interrupt condition.

note: n is a value 1-4.

5.1.4.4 - Subroutines
The Subroutine section is optional. This section is only
required if subroutine calls (GOSUB commands) are used by
the project. Subroutines start with a label which is the sub-
routine name and ends with a RETURN command. The
program statements in between can be any programming
command.

5.1.4.5 Error Handler
The Controller will handle error conditions during program
execution in one of two ways:

1) The program jumps to a special routine labeled
ERROR_HANDLER which must be written by the user
specifically for the application. The ERROR_HANDLER
label must be located at the start of the routine and the
routine must terminate with an END or a GOTO statement.
Any valid programming command with the exception of the
ON..INTRn commands may be placed within the
ERROR_HANDLER routine.

2) If no user ERROR_HANDLER routine exists, the program
will terminate when an error condition occurs.

44 PC Programming Environment

Program Development Block Diagram

 Main Initialization

optional
optional

 INTEGER varname, ... ,varname
 REAL varname, ... ,varname
 STRING stringname$, ... , Stringname$
 ON [condition] INTR1
 ON [condition] INTR2
 ACCEL=
 DECEL=
 SPEED=
 FOLERR=
 WNDGS=1

Configuration & Setup

 Main Program

optional LABEL_NAME:
 GOSUB SUBNAME1
 GOSUB SUBNAME2
 Other Program statements
 END

 optional Interrupt Routines

 INTR1:
 Program statements
 RETURN
 INTR2:
 Program statements
 RETURN

 optional Subroutines

 SUBNAME1:
 Program statements
 RETURN

 SUBNAME2:
 Program statements
 RETURN

 optional Error Handler

optional

ERROR_HANDLER:
 Program statements
 GOTO LABEL_NAME
 END

48 PC Programming Environment

5.2.6 - Terminal Emulation
Before entering the Terminal Emulation environment, set up
the communication port parameters by clicking on the Sys-
tem menu and then the Terminal settings item. Choose the
appropriate Com port, baud rate, terminal emulation, and
echo mode from the Com Port Screen by clicking on one of
the circles in each section.

Com Port Screen

To program the buttons on the Terminal Emulation screen,
Click on the System Menu and then on the Terminal set-
tings item.

System Menu

Click on the Buttons item. Click on drop list arrow and select
button number. Click on Caption text box and enter the
button caption text. Click on Text box and enter the com-
mand line text. If motion and program execution is to be
stopped after the button=s command is executed, click on the
Cntrl C or Cntrl A check box. See the Host Command
section of this manual for a more detailed description of
Cntrl A and Cntrl C. If command is to be allowed during
program execution click on Add ESC check box. Click on Add
CR check box if not Cntrl C or Cntrl A command.

Buttons Screen

To select the Font and Colors for the Terminal Emulation
screen Click on the System Menu and then on the Terminal
settings item. Click on the Fonts and colors item. Select the
desired Font, Style, Font size, Background color and Fore-
ground color for the Terminal Emulation environment. When
finished, click on the O.K. button.

Fonts and Colors

To Enter the Terminal Emulation environment click on the
Terminal command button.

Terminal Emulation Screen

PC Programming Environment 49

5.2.7 - Configuration & Setup Folders
The folders for the Configuration & Setup are accessed by
clicking on the Configuration command button. These
folders allow project setup conditions to be programmed. A
folder can be accessed by clicking on the folder tab.

Note: Clicking on the Save changes command button saves
the current folder data.

Clicking on the Exit Configuration & setup command
button can be used on any folder to exit the Configuration &
setup. If any of the items in the folder have been changed, a
query will occur which will give the user the option of
saving the folder data.

Clicking on another folder tab, will allow entry into that
folder.

5.2.7.1 - System Folder
This folder specifies the Task assignment for each motor,
Drive type, motor direction for a + move and defines the
units per motor revolution.

System Folder TDC Controller

The Motor direction sets the motor direction for a + move.
The choices are: + for cw motor direction or + for ccw motor
direction as viewed from the non-mounting flange end of the
motor.

The desired Units per motor revolution value should be
entered. A unit is the method of measurement to be used, i.e.
inches, mm, degrees, etc.. This sets the number of user units
for one motor revolution. Move distances and position
values are in units, Speeds are in units/second and Ac-
cel/Decel values are in units/second2.

Example:

If a motor is directly coupled to a lead screw which has a 0.8"
pitch, the units per motor revolution should be set to 0.8.
The user may now write his program with distances in
inches.

5.2.7.2 - Profile Folder
This folder selects the motion profile, default speed, accel-
eration rate, deceleration rate, maximum acceleration rate,
maximum speed, and minimum time between motions.

Motion Profile determines how the motor's speed changes.
 Speed changes require a period of accel/decel to in-
crease/decrease the motor's speed. The "Motion Profile"
determines how the accel is applied. The MX controller has
two choices: trapezoidal or "S" Curve. The TDC controller
has 32 choices. In the TDC, a profile setting of 1 results in
a "Trapezoidal" profile. This profile yields the minimum
move time. Settings 2 - 32 yield "S-curve" profiles with
varying degrees of "S". The higher the profile setting, the
more "S" like the profile. Move times with profile settings
2 - 32 are from 2 to 62 ms longer respectively than those with
 a setting of 1. The "S-curve" profiles usually results in
smoother motion at the expense of longer move times.

Profile Folder

Max Acceleration sets the maximum allowed acceleration or
deceleration in units/sec2. This value is also used to decel-
erate motion to a stop when a fault such as a travel limit
occurs.

Max Speed sets the maximum allowed target speed in
units/sec. Speed, Accel, and Decel can be reset within a
program as long as the value used is less than or equal to
the max speed and max accel respectively.

Delay after motion parameter sets the minimum time, in
seconds, between two moves.

50 PC Programming Environment

5.2.7.3 - Encoder Folder
This folder allows the Encoder type, Encoder direction,
Encoder resolution, and pulse count to be modified.

Encoder direction determines how the encoder rotation
direction is interpreted. If the motor AA runs away@@ it is often
due to the wrong setting for this parameter.

Encoder line count defines the encoder resolution in lines.
Encoder 2 line count defines the external encoder resolution
in lines per encoder revolution. For a quadrature encoder the
counts per revolution are 4 times the number of lines. An
Encoder with 1000 lines will provide 4000 counts/revolution,
or quadrature counts. Set this value to the encoder line
count of the motor. Note: In electronic gearing mode the
mechanical ratio of the slave motor to the master encoder 2
is specified using the GEARRATIO command.

Encoder Folder

5.2.7.4 - Servo Drive Folder
This folder allows the following to be modified: the PID loop
gains, acceleration feed forward gain, velocity feed forward
gain, integral limit, following error, sample time, and en-
able/disable integration during motion.

Proportional gain determines the size of the proportional
term for a given position error. The units for KP is millivolts
per encoder count.

Integral gain determines how fast the integral term grows
with non-zero position error. The units for KI are millisec-
onds. The growth rate is inversely related to the value of KI.
 For example the integral term grows 5 times faster with KI =
10 than with KI = 50. A special case is KI = 0, which disables
the integral action and sets the integral term to zero. When
the drive is disabled, the integral term is set to zero. Setting
KI only affects the gain for the integral term.

Derivative gain determines the derivative gain and affects
the gains for the velocity and feed forward terms. This gain
is specified in milliseconds.

Velocity Feed Forward can be used to reduce the position
error during motion and is specified in percent. It does not
affect system stability. The minimum error occurs with KVFF
near 100%. Setting KVFF only affects the gain for the feed
forward term.

Integral limit limits the contribution of the integral term to
the servo loop's output. The limit can be set between 0 and
319 volts inclusive.

Following error defines the maximum error allowed during
motion in units. Following error for the TDC must be set in
the user program.

Sample time determines how often the servo loop output is
updated. The possible settings are 1 or 2 ms. Use 1 ms. if the
encoder count rate is above 1,000,000 counts/sec.

Integration during motion determines whether the integral
term contributes to the servo output during motion. If
enabled, the integral term is always active. If disabled, the
integral term is active only when motion is not commanded.

Servo Drive Folder

Servo Drive Folder (Cont.)

PC Programming Environment 51

5.2.7.5 - Mechanical Home & Mark
 Registration Folder

This folder specifies the trigger for the mechanical home
(MOVEHOME), the trigger for the mark registration
(MOVEREG) cycles, and the mark registration cycle travel
limit.

Mechanical Home trigger & Mark Registration trigger
specifies the trigger for the cycle. There are two trigger
inputs EVENT 1 and EVENT 2 which can be used as a trig-
ger.
The trigger combinations for mechanical home and mark
registration are:
Event 1 active (rising edge of Event 1 input)
Event 1 inactive (falling edge of Event 1 input)
Event 1 active & encoder marker (Event1 =1 and enc. marker
=1)
Event 1 inactive & encoder marker (Event1 =0 and
enc. marker =1)
Encoder marker active (rising edge of enc. marker
input)
Encoder marker inactive (falling edge of enc. marker input)
Event 2 active (rising edge of Event 2 input)
Event 2 inactive (falling edge of Event 2 input)

In the above selections the & signifies that BOTH condi-
tions must exist for the trigger to occur.

Mechanical Home & Mark Registration Folder

5.2.7.6 - I/O Folder
This folder is used by the TDC controller only.
Inputs 3-7 can be assigned as general purpose inputs or as
dedicated functions. Also, the auto program start can be
enabled or disabled, and the host baud rate for the User
position on the TDC can be programmed.

Input 3 (+limit) and Input 4 (-limit) can be configured as hard
limit inputs or as general purpose inputs. As limits, the
active signal level can also be configured as either active on
switch closing or active on switch opening.

Inputs 5, 6 & 7 can be collectively configured as general
purpose inputs or as Run, Clear and Feedhold functions
respectively.

Run - Program execution is started using the run input or
the host "RUN" command. At power up an active
run input will start program execution unless the
clear input is inactive. Following the initial power
up, an inactive to active transition on the run input
does the following:
If the Feedhold state is set, and the Feedhold input
is inactive then Run clears the Feedhold state, oth-
erwise Run simply starts the user program.

I/O Folder

I/O Folder (Cont.)

Clear- An inactive clear input will stop program execution.
 The Clear input has the opposite polarity from
other inputs, and the Clear function is enabled if
the pin is left floating. If motion is occurring, the
motor is decelerated to a stop using the maximum
accel/decel value, and the Feedhold state is
cleared. Run and Feedhold commands are ignored
as long as the clear input is inactive.

Feedhold- An active Feedhold input sets the Feedhold
state. When the Feedhold state is set, motion is decelerated
to a stop using the programmed DECEL. When the Feed-
hold state is cleared by a Run command the motion is
resumed. The Feedhold state remains cleared if the Clear
input is inactive.

52 PC Programming Environment

The Program auto start feature may be enabled for a power-
on condition or reset command. The user may enable this
feature to allow the program to start executing upon a power
up or reset condition automatically. The Host baud rate may
be set to 9600, 19200, or 38400. Once the corresponding
Project is downloaded into the TDC controller, this rate will
be used for serial communications to the Host (usually a PC)
if and only if the Baud Rate Switch on the TDC unit is set to
the User Baud position. After downloading, the new baud
rate will take effect upon power up or reset. If the baud rate
switch is in the 9600 position, all communications will occur
at 9600 Baud.

5.2.8 - Preparing User Project
 for Execution

In order to execute a project program it must first be com-
piled and Downloaded to the controller. The project source
code can be recovered from the controller as well.

5.2.8.1 - Project Source code
The Project Source Code is the English version of the user=s
program. If the user=s program needs to be uploaded from
the controller at any time, ASave Source Code@ must be
enabled. The Source code of a project can be saved in the
controller. However, the source code uses up program
memory in the controller. The selection for source code
saving is accessed by clicking on the System menu. The
Save source code setting can be toggled by clicking on the
Save source code item.

Note: Saving source code in the controller requires a lot of
program memory. If the user=s program is extremely long it
may not be possible to save the source code. See the
FREEMEM command for more information.

Project Source Selection

5.2.8.2 - Setting Project Debugging
To select the task to be debugged click on the Compile
menu and then on the Debug mode item. Then select the task
by clicking on the task name. The project must now be
compiled and downloaded before task debugging can begin.
 To cancel the debugging mode selection click on the Com-
pile menu and then the Release mode item. To complete this
cancellation the project must now be re-compiled and then
downloaded.

Compile Menu

Debug Task Selection

5.2.8.3 - Compiling a Project
A project can be compiled by clicking on the Compile Com-
mand button or on the Compile menu and then the Compile
project item.

5.2.8.4 - Downloading a Project
A project can be downloaded with or without its source
code by clicking on the Download command button or
clicking on the Download menu and then the Download
project item.

5.2.8.5 - Uploading Source Code
A projects source code can be uploaded from the
controller to the PC by selecting the Upload Source
item from the Download menu. A project can be
uploaded from the controller ONLY if it had previ-
ously been saved in the controller. See section
5.2.8.1.

Download & Upload Project

PC Programming Environment 53

5.2.9 - Downloading an Operating
 System

New operating system software which runs the controller
can be downloaded by clicking on the Download menu and
then the Download Operating System item.

The operating system file, with extension .bin, can be se-
lected by clicking on the desired file name. To start the
operating system download procedure click on the OK
command button.

Note: The file names for the different controllers start with
the following letters: mx for the MX2000 controller, dcs for
the DCS controller and tdc for the TDC controller.

Download Operating System Selection

Operating System File Selection

5.2.10 - Other Menus
The MCPI menus are pull down menus. Clicking on a menu
shows an itemized list of operations allowed for that menu.
The menus are: Project, Task, Edit, Compile, Download,
Utility, System, Window and Help.

5.2.10.1 - Project Menu
This menu allows you to create a new project, open an
existing project, save a current project, add or remove a task
from a project, open the configuration & setup environment,
print a current project, or exit the MX2000 - TDC program-
ming environment.

New is used to create a new project.

Open is used to open up an existing Project.

Save is used to save the current project.

Save as is used to save the current project under a new
name.

Remove task is used to remove a task file from an open
project.

Add task is used to add a file to a current project.

Configuration & setup is used to edit the Configuration &
setup folders.

Print project is used to print a current project=s information.

Export project is used to export a current project to another
drive or directory.

Import project is used to import a selected project from
another drive or directory into the MCPI Environment.

Exit is used to exit the MCPI programming Environment.

Project Menu Items

58 PC Programming Environment

Update Gains sends the current servo gains to the controller.

Move Response creates a logged move cycle.

Shutdown disables the servo output voltage.

Drop List
Display Drop list selects the logged item to be displayed.

Text Boxes
Kp displays the current value of the proportional gain.

Ki displays the current value of integral gain.

Kd displays the current value of derivative gain.

Kvff displays the current value of the velocity feed forward
gain.

IntLim displays the current value of integral limit.

5.2.14.1 - Auto Tuning
Before a servo can run properly, the servo gains Kp, Ki, Kd,
and Kvff must be set up to yield the appropriate move
response. The controller has the ability to automatically set
the servo gains using an automatic tuning procedure The
auto tuning environment is accessed by clicking on the Auto
tune command button.

There are several steps to the automatic servo tuning proc-
ess:

1) Measure System Gain.
The system gain is a measure of the overall responsiveness
of the system. Higher inertia and/or lower torque yields
lower system gain. Lower inertia and/or higher torque yields
higher system gain. The system gain number is used when
the software calculates the servo gains. In order for the
motor to track a given profile response, the lower the system
gain, the higher the calculated overall controller gain will be
to compensate and vice versa.

Clicking Measure System Gain instructs the controller to
provide a “bump” of torque to the motor. Three parameters,
Output, Speed, and Distance Limit are used to measure
system gain.

When the Measure System Gain
button is clicked, the motor will
move quickly and abruptly for a
short distance.

The Output text box is used to select the amount of voltage
that the controller will use to bump the motor. The range of
the Output is 0 to 10 volts where 10 volts represents peak
torque. Typically the default parameter of 2 volts is ade-
quate, although some large inertia systems may require the
Output be set to 3 or 4 volts.

The Speed text box is used to select the target velocity for
the gain measurement. During gain measurement, the output
torque will be applied to the motor until the speed set here is
reached. The default speed is usually sufficient.

The value in the Distance Limit text box limits the distance
that the motor will turn during the gain measurement. If the
distance limit is reached before the motor reaches the speed
indicated, or if the speed cannot be reached with the voltage
entered, an error message will appear. If an error appears, try
increasing the distance limit or raising the voltage output
slightly.

Generally, the default parameters for these three parameters
should be used during the gain measurement.

If the gain measurement is unsuccessful, verify that the
motor moves properly with a constant torque command
applied. This may be done by using the Apply Voltage
button in the manual motion area of the auto tune screen.
Clicking the Apply Voltage button will output a constant
torque to the motor proportional to the command voltage.
Start with zero and click on the up or down arrows to apply
positive or negative torque respectively. Unless the system
has high friction, the motor should begin to move with less
than one volt applied. Check that the motor torque is smooth
and continuous in both directions by applying small
amounts of positive and negative voltage.

!
Caution

PC Programming Environment 59

 -------manual motion

gain measurement-------
 |

 |
gain calculation

2) Set the Bandwidth
The system bandwidth is essentially the maximum frequency
of excitation the system will respond to. Generally, higher
bandwidth systems are “stiffer” or “tighter”. Lower band-
width systems are “soft” or “sluggish”. Generally band-
widths range from 10 to 60 Hz (cycles per second). The auto
tuning procedure uses the bandwidth setting along with the
measured system gain to calculate the appropriate servo
gains for the system. The default bandwidth of 30 Hz is
usually a good starting point, although sometimes the it
must be lowered to achieve a stable system, or raised to
achieve a fast enough response.

3) Calculate Servo Gains
Clicking the Calculate Servo Gains button will use the band-
width and measured system gain to calculate the Kp, Ki, Kd,
Intlim (and Kaff if applicable) parameters. These fields will
be updated after the calculation is complete. Click Done to
return to the main servo tuning screen.

4) Update Gains
Clicking Update Gains updates the gains to the controller
immediately. Caution! Updating the gains may change the
dynamics of the system such that it becomes unstable and
oscillatory. If a loud buzzing or vibration occurs after up-
dating gains, the Shutdown button should be clicked. It’s
also possible that a fault will occur if the oscillation over-
taxes the servo drive. In this case you will have to enter the
terminal screen and clear the error by typing ERR or ERRM.
If necessary, re-enter the auto tuning screen and lower the
bandwidth and re-calculate the servo gains. Now update the
gains again. Repeat this process until the system is stable
and will smoothly resist loading in both directions.

5) Motion Setup
Clicking Motion Setup allows test motion profile parameters
to be entered so that the proper motion response may be

verified. Accel, Decel, Speed and Move Distance parameters
describe the move that the motor will try to follow during the
test. Units of measure are used form the system folder
located in the Configuration screen. The display time is
adjustable so that shorter or longer moves may be fully
displayed. Click Done to leave the motion setup screen.

6) Move Response
Once the motion setup is complete, the system is ready to
attempt to execute the move. Clicking Move Response will
command the motor to execute the move profile as described
in the motion setup screen. The controller will log the
response of the motor and display the results on the screen
graphically. The position error, torque command, encoder
velocity, etc. may be viewed by clicking on the drop down
list at the top of the window. The displayed graph of the
position error is the error based on quadrature signal feed-
back from the encoder (for example there are 4000 counts or
pulses per revolution on a 1000 line encoder).The response
may be observed to verify proper performance for the pro-
grammed profile. If the response is acceptable, Quit the
servo screen and Save the configuration. You will now have
to Compile and Download the project for the new servo
information to permanently take effect.

7) Integrate During Motion
This feature allows you to select whether the integration
gain is used during the profile motion. Enabling the integra-
tor during motion will reduce your position error at speed,
but may cause some unacceptable overshoot in the re-
sponse. Some controllers allow you to set this parameter in
the servo tuning screen, while others require that you
change it in the Servo folder in the program configuration
(be sure to compile and download the project each time you
change the configuration or the change will not take effect).

60 PC Programming Environment

The figure below shows a stable response with and without
integration during motion enabled.

Note, your screen may look slightly different, but the re-
sponse display will be identical.

Stable response with integration during motion disabled.

Stable response with integration during motion enabled.

PC Programming Environment 61

8) Velocity Feedforward
This term reduces the error during motion. It should typically
be set between 50% and 100%. The figures below show a

response with Kvff set to 0%, 50% and 100%. In all three
cases the integration during motion was disabled.

Response with Kvff = 0%.

Same profile as above with Kvff = 50%. Note reduction in error.

PC Programming Environment 63

Stable response profile.

Unstable response (due to Ki to low).

64 PC Programming Environment

Shows unstable response (due to Kp and/or Kd too high). Note “fuzz” from motor “buzzing”.

Kp:
Proportional gain. This gain is multiplied by the position error
and thus contributes proportionally to the output torque. Gener-
ally, the higher Kp, the lower the error at any time during the
move. However, if Kp is too high, the system can overshoot
severely or “buzz” loudly. This type of buzzing instability may be
seen as “grass” on the error response curve in the move re-
sponse screen. In this case, Kp should be lowered. Kd may also
be lowered, but to a lesser extent.

Generally the range for Kp is 10 to 150. Kp less than 10 will
usually produce a soft or sluggish system. Kp over 175 produces
a stiff system, but one that may be approaching instability. Note
these are general ranges, not absolute requirements.

Ki:
Integral gain. The reciprocal (1/Ki) of this term is multiplied by the
sum of the position error over time. The effect of Ki is thus time
related, and affects the steady state error. The higher Ki, the
longer it will take for the controller to “integrate out” any steady
state error. The effect of Ki is seen mostly at constant speed
(including standstill). Ki is NOT required for stability, and gener-
ally has a de-stabilizing effect on the system, especially if it is too
low. If Ki is TOO LOW the system may oscillate slowly and
wildly back and forth like a washing machine. Ki is required,
though, if the system must achieve a very low steady state error
(within a few counts).

The general range for Ki is 10 to 70. Ki less than 10 may lead to
wild, low frequency oscillations. If steady state error is not a
consideration, Ki may be set to zero. Ki is often disabled during
motion to reduce overshoot at the end of the move.

Kd:
Derivative gain. This term is multiplied by the encoder velocity at
any point in time. Generally, raising Kd will reduce overshoot in
the move response, however, Kd is the term most susceptible to
“digital instability”. This is where the quantization effects of the
digital encoder feedback in conjunction with too high a Kd cause
the system to “buzz”.

The general range for Kd is 5 to 20. Kd less than 5 usually leads
to an unstable system, Kd >20 usually leads to “buzzing”.

Kvff:
Feedforward velocity gain. This term is multiplied by the com-
manded velocity to contribute to the output torque command. It
has no effect on general stability, and may be set as high as 100%
to reduce position error during motion. Too high a Kvff causes
undue motor heating.

Generally, Kvff should be set between 50 and 100.

Kaff:
Some controllers have a Kaff term. This term is multiplied by the
commanded acceleration to contribute to the output torque
command. This term only takes effect to reduce the error during
acceleration and deceleration. Generally Kaff is less than 4. Most
applications will run fine with Kaff set at zero.

Adjustment based on auto tune calculation:
It is usually desirable to use the auto tuning gains as a starting
point for further adjustment. If the system is unstable at a given
bandwidth, the bandwidth may be lowered, and the auto tuning
run again. If the move response at this lower bandwidth is unac-
ceptable, the following procedure may be attempted.

PC Programming Environment 65

Set bandwidth to 25 Hz and calculate gains. Then

1) Update gains and energize system .
2) If the system “buzzes”, lower Kp by 50%, and Kd by 25%.
3) If the system no longer buzzes, check your move response.
4) If the move response over shoots too much, or the system

buzzes sometimes, then lower Kp until the buzz goes away
and the overshoot is acceptable.

5) Check your move response, and set Kvff between 50-100%.
This should reduce the error during the move, and may also
improve the overshoot.

6) If the response is well behaved, but sluggish, raise Kp in
increments of 2 until acceptable response is achieved. If the
system ever “buzzes” Kp must be lowered again.

7) Verify proper response.
8) The system should now be stable and well behaved.

5.2.14.3 - Full Manual Tuning Adjustment

Although it is much more involved, the servo can be tuned “from
scratch”. The trick here is to be very patient and methodical.
Make sure to record each change and its resultant effect on the
response. To set up the move, use the Motion Setup as previ-
ously described (make sure the motor is sized properly to handle
the accelerations and speeds you enter). The bandwidth, measure
gain, and system gain are not used in this procedure. Instead you
will enter the gains directly into their appropriate fields. Make
sure to Update Gains after each adjustment so they take effect.
You can use the example response screens at the end of this
procedure as a guide.

Motor instability can cause severe vibration
or sudden movements. Insure that appropriate
safety measures such as mechanical limits
are employed to prevent dangerous move-
ments of the motor and load.

Manual Tuning Procedure

1) Enter the auto tune screen and select measure system gain.

Caution! the motor will move suddenly
during this process.

This will verify that the encoder direction is correct for the
servo to run properly.

2) If the encoder direction is found to be reversed, then quit the
auto tune screen immediately and enter the Configuration.
Select the encoder folder and change the encoder direction
to the opposite of the present setting. Save the configura-
tion information, compile and download the modified project.

3) Re-enter the servo tuning screen and set Ki, Kvff, and Kaff
to zero.

4) Together, set Kp to a low number, say 5, and Kd to a mid-
range number, say 10.

5) Update the gains and see if the motor is stable by performing
a short move using Move Response. Be ready to shutdown
if the motor oscillates.

6) If the motor is stable and does not vibrate, raise Kp by 2.

7) If not, lower Kp by 1. Repeat until the motor is stable.

8) Once Kp is as high as it will go and still be stable, reduce Kp
by 50% to provide some stability margin.

9) Now try your move response.

10) If the move is stable but overshoots severely, lower Kp
slightly. Slight overshoot is o.k. at this point.

11) Continue lowering Kp until the overshoot is close to accept-
able.

12) Now we can try to reduce the error during the motion.

13) Set Kvff to 50 and check the response.

14) If the error is not acceptable increase Kvff by 10 and check
the response, repeat until the response is acceptable.

15) Now let’s try to use Ki to reduce the error at rest.

16) Set Ki to a high number, say 75 and check the move re-
sponse.

17) If the response is smooth takes a long time to settle at the
end, then decrease Ki by 10. If the motor goes unstable,
raise Ki back up again.

18) Verify the proper response to your profiles.

19) If the response still exhibits oscillation or overshoot, you
may need to dampen the system response by raising Kd and
repeating the process from step number 5. See the effect of
lower Kp and higher Kd in the response graphs below.

20) If the motor will not respond as required, check the torque
command response to verify that the controller is not satu-
rating at 10 volts during accel/decel. This would indicate too
high an acceleration for this motor and load. Lower the accel
or decrease the load inertia.

21) THAT’S IT!

The following screens show examples of tuning responses. Each
has a description of what caused the response shown.

!
Caution

!
Caution

66 PC Programming Environment

“Sluggish” response due to low Kp and high Kd.

“Stiff” response with high Kp and low Kd .

PC Programming Environment 67

Above response with high Ki and integration enabled during motion. Note very long settling time.

Response with low Ki and integrator enabled during motion. Note excessive ringing.

68 PC Programming Environment

Response with low Ki and integrator disabled during motion. Note excessive
 ringing at end of move only. The integrator is engaged when the profile stops.

Response with high Kp. Note instability can be seen as
 vibration. Kp should be lowered to eliminate instability.

PC Programming Environment 69

Response with low Kp. Note oscillation. If Kp can not be raised,
 Kd may be raised to reduce the ringing as shown below.

Previous profile with Kd raised to dampen out oscillation.

70 PC Programming Environment

Response with low Kd. Note oscillation at end of profile.

Response if Intlim is too low and integrator enabled during motion. Note that the
integrator cannot bring the error to zero during the flat top part of the profile.

PC Programming Environment 71

Response if the programmed speed is too high for the motor. This also
can be caused by the drive running at too low a bus voltage.

Response of the torque command for the previous profile with the speed set too high. Note that
the torque command saturates at 10 volts. Any time the command goes to + or – 10V, the motor
is not producing the required torque to bring the error down.

72 PC Programming Environment

5.2.14 - Excessive Duty Cycle Shutdown

As the TDC controller responds to shaft displacement due to
move commands or reaction torques, the amplifier section of the
TDC produces current to drive the motor. A feature has been
added that prevents the unit from generating too much current
and/or motor heating due to an excessive duty cycle situation.
Here, duty cycle refers to the percentage of time that the system
is required to generate a current (and therefore resultant torque)
above its continuous rating.

The continuous current that the drive produces is set using the
current setting switches on top of the unit. The peak current
available is twice the continuous setting. For example a switch
setting of 4 amps continuous would result in an available peak
current of 8 amps. The continuous current can be maintained
indefinitely. However, currents above the continuous switch
setting (up to the peak current) can only be generated for a

limited length of time before damage to the TDC unit and/or the
motor will result. If the unit and motor are allowed to cool (i.e. the
motor rests for a short period) as a result of the current dropping
below the continuous rating, then repetitive occurrences of
currents above the continuous rating may be acceptable.

If an excessive duty cycle situation occurs, the amplifier will be
disabled, and a fault condition will be generated. If this happens
the motor shaft will spin freely unless it is held by an external
brake. Error code 136 will be generated. DO NOT continuously
re-enable the drive if this error persists.

PEAK CURRENT vs. TIMEOUT

0

5

10

15

20

25

30

35

50 60 70 80 90 100

Peak Current (%)

T
im

eo
u

t
(s

ec
s)

Programming Commands 73

Section 6.0

Software Reference
Guide

74 Programming Commands

6.1 Programming Commands
6.1.1 Programming Commands Grouped By Function
Motion Page

BUSY Returns the motion status of the axis. 86
CMDPOS Returns the commanded position of the motor in units. 87
EVENT1 Sets Enable/disable and trigger state of event1. 95
EVENT2 Sets Enable/disable and trigger state of event2. 96
JOG Run continuously in the specified direction. 111
MOTTRIG Sets or returns the hardware trigger level for a MOVEI, MOVEA,

MOVEHOME, JOG and MOVEREG cycle.
MOVEA Initiates an absolute indexed move. 116
MOVEHOME Run until the home input is activated. 117
MOVEI Initiates an incremental indexed move. 118
MOVEREG Run until the registration input is activated, 119

then move the specified distance.
STOP Brings any motion to a controlled stop. 135
WAITDONE Waits for motion to be done. 139
WNDGS Enable/Disable servo drive. 140

TRAJECTORY PARAMETERS

ABSPOS Sets or returns the absolute position. 83
ACCEL Sets or returns the acceleration rate in units/sec/sec. 84
DECEL Sets or returns the deceleration rate in units/sec/sec. 87
DIST Returns the distance moved from the start of the last 89

commanded motion or changes the move distance during
indexed (MOVEA, MOVEI) motion.

ENCPOS Returns the encoder absolute position. 91
ENCSPD Returns the current speed. 92
SPEED Sets or returns the commanded target speed. 135

SERVO PARAMETERS

FOLERR Sets or returns the following error. 97
INTLIM Sets or returns the servo axis integral limit. 109
KD Sets or returns the servo axis derivative gain. 111
KI Sets or returns the servo axis integral gain. 112
KP Sets or returns the servo axis proportional gain. 113
KVFF Sets or returns the velocity feed forward gain value for a servo axis. 114
OUTLIMIT sets or returns the torque output voltage limit. 125

I/O

ANALOG Returns the analog input voltage. 84
BCD Returns the BCD switch value. 86
IN Returns the discrete input state of the defined input. 106
OUT Sets or returns the discrete output state of the defined output. 124

Programming Commands 75

OVER TRAVEL LIMIT Page

HARDLIMOFF Disables hard limits. 102
HARDLIMON Enables hard limits. 103
REGLIMIT Sets or returns the movereg limit distance. 130
SOFTLIMNEG Sets or returns the absolute negative travel limit position. 131
SOFTLIMOFF Disables soft limits. 132
SOFTLIMON Enables soft limits. 133
SOFTLIMPOS Sets or returns the absolute positive travel limit position. 134

TIME FUNCTIONS

TIMER Sets or returns timer value. 137
WAIT Wait for the period of time to expire. 139

PROGRAM FLOW CONTROL

DO...EXIT DO...LOOP... Begin a repeatable a block of statements. 90
LOOP...UNTIL...WHILE
END End of program. 93
FOR...TO...EXIT Begin a repeatable block of statements. 98
FOR...NEXT
GOSUB...RETURN Branch to a subroutine and return. 101
GOTO Branch unconditionally to the specified label. 102
IF..THEN..ELSE..END IF Begin a conditional block of statements. 105

INTERRUPT

INTROFFn Disable interrupt n, where n is 1-4. 110
INTRONn Enable interrupt n, where n is 1-4. 110
ON...INTRn On condition go to interrupt n, where n is 1-4. 121

MISCELLANEOUS

#DEFINE Defines a symbolic name to be a particular string of characters 88
ERR Return error code number. 93
#INCLUDE Includes a file name with define statements in a user task. 107
NVR Returns or stores a REAL or INTEGER value to NVR memory. 120

BOOLEAN EXPRESSION OPERATORS

AND Logical conjunction operator. 85
NOT Logical complement operator. 120
OR Logical inclusive OR operator. 123

DAISY CHAINING

UNITID Returns the current Unit ID. 138

STRING MANIPULATION
ASC Returns the ASCII code of character. 85
CHR$ Returns a one character string for the given ASCII code. 87
GETCHAR Waits for a character to be received via the serial port. 100
HEX$ Returns the hex string of an integer. 104
HVAL Returns the hex value of a string. 104

76 Programming Commands

INCHAR Returns a character from the serial port. 107
Page

INPUT Reads a line of data from the serial port. 108
INSTR Returns the first occurrence of a character in a string. 108
LCASE$ Converts a string to lower case letters. 114
LEFT$ Returns the leftmost characters of a string. 115
LEN Returns the number of characters in a string. 115
MID$ Returns the designated middle number of characters of a string. 115
PRINT Transmit data via the serial port. 126
PRINT USING Print string characters or formatted numbers. 127
RIGHT$ Returns the rightmost characters of a string. 130
STR$ Returns a string representation of a numeric expression. 136
STRING$ Returns a string of characters. 136
UCASE$ Converts a string to upper case letters. 137
VAL Returns the value of a string. 138

RELATIONAL OPERATORS

= equal to 80
< less than 80
<= or =< less than or equal to 80
<> not equal to 80
> greater than 80
=> or >= greater than or equal to 80

ARITHMETIC OPERATORS

+ addition 80
- subtraction or unary minus 80
* multiplication 80
/ division 80

ELECTRONIC GEARING

ENCPOS2 Returns the Encoder 2 position in units. 91
ENCSPD2 Returns the current Encoder 2 velocity in units/second. 92
GEAREXT Selects the external master velocity source for gearing. 98
GEARINT Selects the GEARVEL as the master source for gearing. 99
GEARON Enables the master velocity source for gearing. 99
GEAROFF Disables the master velocity source for gearing. 99
GEARRATIO Sets or returns the external master velocity gearing ratio. 99
GEARVEL Sets or returns the internal master velocity for gearing. 99

VARIABLE DEFINITIONS

INTEGER var, ... , var 81
REAL var, ... , var 81
INTEGER var(x), ... , var(x,y) 81
REAL var(x), ... , var(x,y) 81

Note: Arrays up to two dimensions are supported. Values for x and y must be greater than zero.

Programming Commands 77

6.1.2 Programming Commands Summary (alphabetical list)
Page

= equal to 80
< less than 80
<= or =< less than or equal to 80
<> not equal to 80
> greater than 80
=> or >= greater than or equal to 80
+ addition 80
- subtraction or unary minus 80
* multiplication 80
/ division 80
 ' Remark 82
INTEGER var,...,var Defines integer variable 81
REAL var, ... , var Defines real variables. 81

A
ABSPOS Sets or returns the absolute position. 83
ACCEL Sets or returns the acceleration rate in units/sec/sec. 84
ANALOG Returns the analog input voltage. 84
AND Logical conjunction operator. 84
ASC Returns the ASCII code of character. 85

B
BCD Returns the BCD switch value. 86
BUSY Returns the motion status of the axis. 86

C
CHR$ Returns a one character string for the given ASCII code. 87
CMDPOS Returns the commanded position of the motor in units.

D
DECEL Sets or returns the deceleration rate in units/sec/sec. 87
#DEFINE Defines a symbolic name to be a particular string of characters 88
DIST Returns the distance moved from the start of the last commanded 89

motion or changes the move distance during indexed motion.
DO...EXIT DO...
 LOOP...UNTIL...
 WHILE Begin a repeatable a block of statements. 90

E
ENCPOS Returns the encoder absolute position. 91
ENCPOS2 Returns the Encoder 2 position in units. 91
ENCSPD Returns the current speed. 92
ENCSPD2 Returns the current Encoder 2 velocity in units/second. 92
END End of program. 93
ERR Return error code number. 93
EVENT1 Sets enable/disable and trigger state of event1. 95
EVENT2 Sets enable/disable and trigger state of event2. 96

78 Programming Commands

F
FOLERR Sets or returns the following error. 97
FOR...TO...EXIT
 FOR...NEXT Begin a repeatable block of statements. 98

G
GEAREXT Selects the external master velocity source for gearing. ??
GEARINT Selects the GEARVEL as the master source for gearing. 99
GEARON Enables the master velocity source for gearing. 99
GEAROFF Disables the master velocity source for gearing. 99
GEARRATIO Sets or returns the external master velocity gearing ratio. 99
GEARVEL Sets or returns the internal master velocity for gearing. 99
GETCHAR Waits for a character to be received via the serial port. 100
GOSUB...RETURN Branch to a subroutine and returns. 101
GOTO Branch unconditionally to the specified label. 102

H
HARDLIMOFF Disables hard limits. 102
HARDLIMON Enables hard limits. 103
HEX$ Returns the hex string of an integer. 104
HVAL Returns the hex value of a string. 104

I
IF..THEN..
 ELSE..END IF Begin a conditional block of statements. 105
IN Returns the discrete input state of the defined input. 106
INCHAR Returns a character from the serial port. 107
#INCLUDE Includes a file name with define statements in a user task. 107
INPUT Reads a line of data from the serial port. 108
INSTR Returns the first occurrence of a character in a string. 108
INTLIM Sets or returns the servo axis integral limit. 109
INTROFFn Disable interrupt n. 110
INTRONn Enable interrupt n. 110

J
JOG Run continuously in the specified direction. 111

K
KD Sets or returns the servo axis derivative gain. 111
KI Sets or returns the servo axis integral gain. 112
KP Sets or returns the servo axis proportional gain. 113
KVFF Sets or returns the velocity feed forward gain value for a servo axis. 114

L
LCASE$ Converts a string to lower case letters. 114
LEFT$ Returns the leftmost characters of a string. 115
LEN Returns the number of characters in a string. 115

M
MID$ Returns the designated middle number of characters of a string. 115

Programming Commands 79

MOTTRIG Sets or returns the hardware trigger level for a MOVEI, MOVEA,
MOVEHOME, JOG and MOVEREG cycle. 116

MOVEA Initiates an absolute indexed move. 116
MOVEHOME Run until the home input is activated. 117
MOVEI Initiates an incremental indexed move. 118
MOVEREG Run until the registration input is activated,

then move the specified distance. 119

N
NOT Logical complement operator. 120
NVR Returns or stores a REAL or INTEGER value to NVR memory. 120

O
ON...INTRn On condition go to interrupt n. 121
OR Logical inclusive or operator. 123
OUT Sets or returns the discrete output state of the defined output. 124
OUTLIMIT Sets or returns the torque output voltage limit. 125

P
PRINT Transmit data via the serial port. 126
PRINT USING Print string characters or formatted numbers. 127

R
REGLIMIT Sets or returns the movereg travel limit. 130
RIGHT$ Returns the rightmost characters of a string. 130

S
SOFTLIMNEG Sets or returns the absolute negative travel limit position. 131
SOFTLIMOFF Disables soft limits. 132
SOFTLIMON Enables soft limits. 133
SOFTLIMPOS Sets or returns the absolute positive travel limit position. 134
SPEED Sets or returns the commanded target speed. 135
STOP Control stop continuous run. 135
STR$ Returns a string representation of a numeric expression. 136
STRING$ Returns a string of characters. 136

T
TIMER Sets or returns timer value. 137

U
UCASE$ Converts a string to upper case letters. 137
UNITID Returns the current Unit ID. 138

V
VAL Returns the value of a string. 138

W

80 Programming Commands

WAIT Wait for the period of time to expire. 139
WAITDONE Waits for motion to be done. 139
WNDGS Enable/disable servo drive. 140

Programming Commands 81

6.1.3 SEBASIC Conventions
A BASIC-like language ("SEBASIC") conforms to most of the rules and conventions of modern implementations of the BASIC
programming language, such as "QuickBasic", etc. Following is a summary of the considerations to be used in writing your
programs.

6.1.3.1 ARITHMETIC OPERATORS

The SEBASIC arithmetic operators are listed in order of precedence:

Operator Function
 - Negation
 *, / Multiplication and division. See BASIC DATA TYPES section for notes on division.
 +, - Addition and subtraction

Parentheses change the order in which arithmetic operations are performed. Operations within
parentheses are performed first. Inside parentheses, the usual order of operation is maintained.

NOTE: Squaring and exponentiation are not supported; use multiplication to perform these operations.

Example: to calculate X
3
, use X*X*X.

6.1.3.2 LOGICAL OPERATORS

These operators are used in boolean expressions. The logical operators in SEBASIC, listed in order of precedence, are as follows:

 Operator Use
 NOT NOT<term> a false term, results in the boolean expression being true.
 AND <term> AND <term> both terms must be true, results in the boolean expression being true.
 OR <term> OR <term> either term being true results in the boolean expression being true.

Logical operators perform tests on multiple relations, bit manipulations, or Boolean operations,
and return a true (one) or false (zero) value to be used in making a decision.

6.1.3.3 RELATIONAL OPERATORS

Relational operators are used to compare two values. The result of the comparison is either
"true" (one) or "false" (zero). This result can then be used to make a decision regarding program flow.

 Operator Relation Expression
= Equality * X = Y
<> Inequality X <> Y
< Less than X < Y
> Greater than X > Y
<= Less than or equal to X <= Y
>= Greater than or equal to X >= Y

 * The equal sign (=) is also used to assign a value to a variable.

82 Programming Commands

6.1.3.4 BASIC DATA TYPES

Three basic data types exist: REAL, INTEGER and STRING values.

The following are examples of some REAL values:

+1.524 -100.1 2.1e-4

Note that >e= or >E= may be used as the exponential operator, i.e. power of 10. For example 5004.1 may also be represented as
50.041E2. In this case 50.041 is the mantissa and the exponent is 2. The mantissa of a real number is limited to a 15 digit
representation. If the + is omitted, the value defaults to a positive number.

 The range for REAL numbers is +/- 1.7 E +/- 308 (15 digits).

The following are examples of some INTEGER values:

+1 -100 -3487

If the + is omitted, the value defaults to a positive number.

The range for INTEGER numbers is "" 2,147,483,647.

STRING values can be any ASCII character. A list of ASCII characters is provided in Section 9, Glossary.

RULES FOR INTEGER DIVISION:

When the division operator, =/=, is used to divide integer numbers, some rules must be followed to achieve expected results from
the calculation. If it is desired that fractional information be included in the result of the division of two numbers, at least one of
them MUST be a REAL number. If both numbers are INTEGER, the division operation will produce an INTEGER result. Some
programming examples are shown below.

INTEGER num1,denom1 >declare INTEGER variables
REAL answer1,answer2,denom2 >declare REAL variables

begin: > begin program

num1 = 10 > set INTEGER num1 equal to 10
denom1 = 4 > set INTEGER denom1 equal to 4
denom2 = 4 >set REAL denom2 equal to 4

answer1 = num1/denom1 > use division operator to divide num1 by denom1
answer2= num1/denom2 >use division on num1 by denom2

end >end program

In this case the value of answer1 will be 2. This is because num1 and denom1 were declared as INTEGER numbers. The value of
answer2 will be 2.5, as expected. This is because denom2 was declared as a REAL variable. When assigning a variable to a number
which is represented in the code by a fraction, the numerator or denominator MUST use a decimal point if the result requires
fractional information. For example:

REAL x >declare x as a REAL variable

x = 10/4 >x will be equal to 2 since 10 and 4 without a decimal point are integers

x = 10.0/4 >x will be equal to 2.5 because of the decimal point in 10.0

Note: All variable names and program labels must begin with a letter A-Z.

Programming Commands 83

6.1.3.5 CASE SENSITIVITY IN STATEMENTS & COMMANDS

Some programming statements and commands are case-sensitive; others are not. The following table defines case sensitivity in
SEBASIC:

BASIC LANGUAGE ELEMENT CASE SENSITIVE? MAX. LENGTH(characters)
Label No 80
Variable name (symbolic constant) No 80
BASIC keyword No N/A

The Host commands are not case sensitive; that is, upper and lower case letters can be used interchangeably.

6.1.3.6 CALCULATIONS USING TRAJECTORY PARAMETERS AND VARIABLES

Caution must be used when performing calculations based on the Trajectory Parameters, ABSPOS, ACCEL, DECEL, DIST,
ENCPOS, ENCSPD, and SPEED. Comparisons of values returned directly from reading these parameters or values of variables
calculated from these parameters may not always yield the expected results. The reason for this is that digital systems have
inherent resolution limitations. In the case of digital servos, the actual position of the motor shaft at any time can only be
represented within one encoder count. If the user is programming in units, the actual position is calculated based on the number
of encoder count per user unit. Following example illustrates the need to use caution when using these parameters.

Let us say that the system has an encoder resolution of 4000 counts per motor revolution (typical of a 1000 line encoder with 4X
phase quadrature decoding). Let us also assert that the user wishes to program his system in revolutions. In this case, the
Configuration and Setup parameter units per motor revolution would be set to 1, and the encoder line count would be set to 1000
lines/rev.

Let=s assume that the user wishes to perform a move of 1.5238 revolutions, the system will move the servo to the nearest encoder
count to this position. In this case,

(4000 counts/rev) x (1.5238 revs) = 6095.2 counts

and since the system can only resolve to 1 count, the fractional portion is dropped, yielding an actual position of 6095 counts .
If the ENCPOS command is now used to read back the motor=s actual position, the result will be

(6095 counts)/ (4000 counts/rev) = 1.52375.

It is important to note that the programmed move, 1.5238 is NOT exactly the same as 1.52375. Also, any variable based on the
ENCPOS, for example if the program sets a REAL variable

x = 15 * ENCPOS

then the result will not be the expected. This is NORMAL and is inherent to the nature of digital servo systems. If the user
program must compare a calculated value to any of the trajectory parameters (such as ENCPOS above), or to variables which
have been derived from them (such as x above), then the use of the equals operator is NOT RECOMMENDED. Using greater than,
> , less than, <, greater than or equal to, >=, or less than or equal to, <= is therefore recommended for proper operation of the
program. In fact, ANY calculated variables may have a very small fractional portion which may cause problems when comparing
them to be exactly equal to either another variable or a number entered in the code.

6.1.3.7 PROGRAM COMMENTS

An apostrophe (') in a program line prevents a line from executing and allows program comments/documentation. All text to the
right of the ' to the end of line is not considered part of the command during execution.

EXAMPLES: 'MOVEI=10 >The program will not execute this line
MOVEI=100 >The program will execute this line

84 Programming Commands

6.1.4 Programming Commands - Alphabetical Listing

Sets or returns the commanded absolute position of the motor.

ABSPOS=expression
ABSPOS - used in an expression

ABSPOS=expression
Sets the absolute position in units.

ABSPOS - used in an expression
Evaluates and returns the current absolute position.

ABSPOS represents the commanded motor position, and can only be set while
no motion is occurring. Setting ABSPOS during motion, causes the program to
be trapped at the ABSPOS instruction until the motion completes. When
ABSPOS is set or read, the internal representation is limited to " 2,147,483,647
encoder counts. Setting ABSPOS also sets ENCPOS (encoder position) to the
same value. ABSPOS and ENCPOS are initialized to 0 at power up. ABSPOS
is set equal to ENCPOS when the servo drive is enabled by the WNDGS
command. ABSPOS is also set at the end of a MOVEHOME command.

Reading ABSPOS returns the actual commanded position in user units.

ABSPOS=2
sets absolute position to 2 units.

a=ABSPOS
returns the ABSPOS position value to variable "a".

Trajectory ParametersABSPOS
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 85

Sets or returns the acceleration value of the motor.

ACCEL=expression
ACCEL - used in an expression

ACCEL=expression
Sets the acceleration rate in units/sec2.

ACCEL - used in an expression
Evaluates and returns the present acceleration value.

The rate at which the motor speed is increased. Specifying a 0 or negative
value will result in error code 6. Specifying a value greater than "Max Accel" set
in the system Configuration and Setup will result in ACCEL being set to "Max
Accel". At power up ACCEL is initialized to 50% of "Max Accel". ACCEL can
be set during motion, but the new setting will not be used until the next move.

Reading ACCEL returns the most recent setting.

ACCEL=2
Sets acceleration rate to 2 units/sec2.

a=ACCEL
returns the acceleration value to variable "a".

Returns the analog input value in volts.

ANALOG - used in an expression

ANALOG
Evaluates and returns the present analog input voltage in volts. This value may vary
for successive reads, but will stay within the accuracy listed in the Hardware

specification section of this manual.

x=ANALOG 'Sets variable x to the analog input voltage.

Trajectory ParametersACCEL
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

I/O FunctionsANALOG
ACTION:

PROGRAM SYNTAX:

REMARKS

EXAMPLES:

86 Programming Commands

The logical AND operator is used in
boolean expressions.

expression1 AND expression2

The AND operator uses this "truth table":

expression1 expression2 Condition result

True True True

True False False

False True False

False False False

The result is true if both expressions are true.

if (x >2 AND y < 3) then goto INDEX
>The controller checks to see if x > 2 and y < 3. If both conditions are true the
program goes to a label called INDEX.

Returns the ASCII code for the first character in a string.

ASC(n$)

The ASCII code returned is for the first character in the string variable n$. If the
string is a null string then a 0 will be returned.

INTEGER x
STRING a$
a$="part#"
x=ASC(a$) ' sets x=112 'p'

Boolean OperatorAND
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

ASC
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

Programming Commands 87

88 Programming Commands

Returns the value on the BCD switches.

BCD - used in an expression

BCD
Evaluates and returns the BCD switches as a signed Integer value. The BCD
switches are restricted to seven digits with a sign.

Note: The use of the BCD command takes precedent over the OUT command
and will toggle OUT3-OUT6 when called to strobe the BCD switch bank.
Subsequent to a BCD call, an OUT(3)-OUT(6) command will also set the
output to the appropriate state. If OUT3-OUT6 are used as general purpose
outputs, care must be taken not to invoke a BCD command or the state of the

outputs will be disturbed.

a=BCD 'returns the BCD switches value to variable "a".

Returns the motion status.

BUSY - used in an expression

If the commanded motion is incomplete, BUSY returns a true (+1) otherwise
BUSY returns a false (0).

DO WHILE BUSY >prints system absolute position
PRINT#1,ABSPOS >while motion is still occurring

LOOP

I/O OperatorBCD
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

MotionBUSY
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 89

Returns a one character string whose ASCII code is the argument.

CHR$(code)

CHR$ is commonly used to send a special character to the serial port.

PRINT#1,"Input Accel",CHR$(27) ' transmits "Input Accel" <ESC> to the host
serial port.

Returns the commanded position of the motor in units.

CMDPOS – used in an expression

This command is defined in more details in the Gearing section of the manual.

Sets or returns the deceleration value of the axis.

DECEL=expression
DECEL - used in an expression

DECEL=expression
Sets the deceleration rate value in units/sec2.

DECEL - used in an expression
Evaluates and returns the present deceleration value.

The rate at which the motor speed is decreased. Specifying a 0 or negative
value will result in error code 7. Specifying a value greater than "Max Accel" set in
the Configuration and Setup will result in DECEL being set to "Max Accel". At
power up DECEL is initialized to 50% of "Max Accel". DECEL can be set during
motion, but the new setting will not be used until the next move. Reading DECEL
returns the most recent setting.

DECEL=3.1
sets the deceleration value to 3.1 units/sec2.

X = DECEL

String ManipulationCHR$
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

MotionCMDPOS
ACTION:

PROGRAM SYNTAX:

REMARKS:

DECEL
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Trajectory Parameters

EXAMPLES:

90 Programming Commands

Sets variable X equal to the value of deceleration.

Programming Commands 91

Defines a symbolic name to be a particular string of characters.

#DEFINE name@1, ... , @10 replacement text
#DEFINE name replacement text

The name has the same form as a variable name: a sequence of letters and digits that
begins with a letter. The name is case sensitive. Typically upper
 case is used for the name.

The @1, ... , @10 are the program command substitution arguments for the
replacement text.

The replacement text can be any sequence of letters of characters.

Any occurrence of the name in the program, not in quotes and not part of another
name, will be replaced by the corresponding replacement text when the program
is compiled.

#DEFINE TRUE 1
Substitutes a 1 when the name TRUE is encountered.

#DEFINE FALSE 0
Substitutes a 0 when the name FALSE is encountered.

#DEFINE SENDPOS @1 PRINT#@1,ABSPOS
Sends the absolute position via port @1.

SENDPOS 1
Sends the absolute position via port #1. The 1 is substituted for the @1.

SENDPOS 2
Sends the absolute position via port #2. The 2 is substituted for the @1.

#DEFINE CLR PRINT#2,CHR$(12);
#DEFINE LOCATE @1,@2 PRINT#@,CHR$(27);"[@1,@2H";

CLR ' clear display
LOCATE 1,2 ' locate cursor at row 1 column 2

#DEFINE
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Miscellaneous Command

EXAMPLES:

92 Programming Commands

Returns the distance moved from the start of the last commanded motion or changes
the move distance during indexed motion.

DIST = expression
DIST - used in an expression

DIST = expression
Extends or shortens the index (MOVEI or MOVEA) motion underway.

 A positive value extends the move, a negative value shortens it. If the present move
is past the point to which the move has been shortened, by a DIST = negative
value, then the move is stopped. The DIST command has no effect if the present
move is currently stopping.

DIST - used in an expression
Returns the distance traveled from the start of the last motion command. DIST

returns a positive number, regardless of the move direction.

x=DIST
sets x to the distance moved from the start of motion.

MOVEI = -25
DIST = -10 shortens the move by 10 units

Trajectory ParametersDIST
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 93

Repeats a block of statements while a condition is true or until a condition
becomes true.

DO {UNTIL | WHILE} [condition]
[statement block]
[EXIT DO]
[statement block]
LOOP

DO
[statement block]
[EXIT DO]
[statement block]
LOOP {UNTIL | WHILE} [condition]

DO <spc> : <spc> LOOP

Syntax 1 allows the condition to be tested at the top of the loop. Syntax 2 allows
the condition to be tested at the bottom of the loop therefore the loop will always
execute at least once.

EXIT DO is an alternative exit from a DO...LOOP.

EXIT DO transfers control to the statement following the LOOP statement. When
used within nested DO...LOOP statements, EXIT DO transfers out of the
immediately enclosing loop. EXIT DO can be used only in a DO...LOOP
statement.

DO WHILE EVENT1 <> 1 >Continue the loop while 'event1 does not equal 1.
:

LOOP >End of
loop.

DO...LOOP
 ACTION:

PROGRAM SYNTAX 1:

PROGRAM SYNTAX 2:

PROGRAM SYNTAX 3:

REMARKS:

Program Flow Control

EXAMPLES:

94 Programming Commands

Returns the encoder position.

ENCPOS - used in an expression

ENCPOS
Evaluates and returns the present encoder position.

The actual motor position. The range of ENCPOS is " 2,147,483,647 encoder
counts. Reading ENCPOS returns the actual motor position in user units.
ENCPOS is initialized to 0 at power up. Setting ABSPOS sets ENCPOS to the

same value

y = ENCPOS ' returns the encoder position to variable y.

Returns the Encoder 2 position in user units.

ENCPOS2 – used in an expression

This command is defined in more details in the Gearing section of the manual.

ENCPOS
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Trajectory Parameters

EXAMPLES:

Trajectory ParametersENCPOS2
ACTION:

PROGRAM SYNTAX:

REMARKS:

Programming Commands 95

Returns the current encoder speed in units/sec.

ENCSPD - used in an expression

ENCSPD
Evaluates and returns the current encoder speed.

Reading ENCSPD returns the actual motor speed with a resolution of:

(250 * "Units/rev")/("Line count" * "Servo Sample Time") units/sec.

These values are set in the Configuration and Setup.

Example: "Units/rev" = 1 , "Line count" = 1000, "Servo Sample Time" = 1

example resolution = .25 rev/sec

Note: Limit = 2 meg counts/sec. at 1ms sample time
= 1 meg counts/sec. at 2 ms sample time

The returned motor speed value is a signed number.

x=ENCSPD ' returns the current encoder speed to variable x.

Returns the current Encoder 2 velocity in units/second.

ENCSPD2 – used in an expression

This command is defined in more detail in the Gearing section of the manual.

Trajectory ParametersENCSPD
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Trajectory ParametersENCSPD2
ACTION:

PROGRAM SYNTAX:

REMARKS:

96 Programming Commands

Signifies the end of a program.

END

This command signifies the end of a program and must be included in each program
or an error condition may occur.

statement
....
END

Returns the error status of the controller.

ERR - used in an expression

If an error occurs while the program is running, the program jumps to label
ERROR_HANDLER if it is present, otherwise it ends. The fault LED is on while
the error code is non-zero. Host command "ERR" or executing a
"GOTO" command in the error handler code clears the error code. The first error
locks out subsequent errors.

Error Code Description
 0 No error.
 1 Could not burn flash successfully.
 2 Could not download file.
 3 Not enough memory to execute user program.
 4 Attempt to access a non-existent array element.
 5 Real data too large to convert to Integer data.
 6 Attempt to set accel data <= 0.
 7 Attempt to set decel data <= 0.
 8 Attempt to access non-existent output.
 9 Attempt to access non-existent input.
 10 Attempt to divide by 0.
 11 Received serial data will not fit in buffer.
 12 Motion occurring when program ended.
 13 Attempt to execute user program that is not present.
 14 Incorrect user program checksum.

END
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Program Flow Control

EXAMPLES:

Return Error CodeERR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Programming Commands 97

 15 Attempt to set Kp out of range.
 16 Attempt to set Kd out of range.
 17 Attempt to set Ki out of range.
 18 Attempt to set Kvff out of range.
 19 Attempt to set FOLERR <0.
 20 Attempt to set INTLIM out of range.
 21 Move distance too large.
 22 Function not implemented.

23 INPUT command error occurred
24 NVR specified location out of range (1-400).
25 NVR device not detected.

 128 +limit switch activated.
 129 -limit switch activated.
 130 + Software travel limit exceeded.
 131 - Software travel limit exceeded.
 132 This code is reserved for future use.
 133 Excessive position error.
 134 Registration distance too small.
 135 Attempt to move with drive not enabled.
136 Excessive duty cycle shutdown or attempt to move with drive not

ready.
137 Gearing backlog overflow.
138 NVR data corrupt

If the hard limit inputs are enabled during gearing motion and the hard limit input
becomes active an error will occur. The error code for the + Limit is 128 and 129
for the – Limit.

If the Soft limits are enabled during gearing motion and the soft limit is exceeded
an error will occur. The error code for the + Software travel limit is 130 and 131
for the – Software travel limit.

When operating in electronic gearing mode, a hard or soft limit error will force a
GEAROFF condition before jumping to the error handler routine.

Gearing motion can backlog counts when the input rate exceeds the imposed rate
limit for gearing. No error will occur if this count is less than 32767 counts.
However, if this count is exceeded an error will occur which will cause a
GEAROFF condition before going to the error handler routine. The error code for
a backlog overflow is 137.

If there is no error handler routine present in the program, an error will simply
terminate program execution, otherwise an error causes the program to jump to the
error handler routine (label ERROR_HANDLER). The error handler routine
can not be interrupted. The error handler routine is terminated with either an END
statement or a GOTO <label> statement. The END statement will terminate
program execution. The GOTO <label> statement will cause program execution
to continue. At this point the program can be interrupted.

98 Programming Commands

x=ERR 'Sets x equal to the present controller error number for this task and clear
the error number.

EXAMPLES:

Programming Commands 99

Sets the trigger polarity and trigger enable, which are used in a MOVEHOME and
MOVEREG cycle.

EVENT1=expression

The EVENT1 command is used to select the effect of the hardware signal at the
EVENT1 / IN1 input. This input is typically wired to a switch or sensor. It may be
used as a home position trigger during a MOVEHOME
cycle. It also may be used as a position mark registration trigger during a
MOVEREG cycle. When used for mark registration, a trigger on EVENT1 will
 initiate the index portion of the MOVEREG cycle.

The EVENT1 triggering for a MOVEHOME or MOVEREG cycle may be
combined with an encoder index pulse input, and is assigned in the user pro-gram
Configuration and Setup.

For a MOVEHOME cycle, the EVENT1 command may be used to set the
polarity of the move home trigger. If the expression to the right of the EVENT1
command is positive, for example EVENT1 = 1, the home cycle trigger occurs
when the EVENT1 input becomes active. If the expression to the right of the
EVENT1 command is negative, for example EVENT1 = -1, the home cycle trigger
occurs when the EVENT1 input becomes inactive. An EVENT1 home trigger
cannot be disabled using this command.

For a MOVEREG cycle, the EVENT1 command may be used to set the polarity
of the registration trigger. If the expression to the right of the EVENT1 command
is positive, for example EVENT1 = 1, the registration cycle trigger occurs when
the EVENT1 input becomes active. If the expression to the right of the EVENT1
command is negative, for example EVENT1 = -1, the registration cycle trigger
occurs when the EVENT1 input becomes inactive.

The EVENT1 trigger for a registration cycle may be disabled by setting
EVENT1=0. A registration trigger may be enabled to either polarity during a
move. It may not, however, be disabled once the cycle has begun.

The EVENT 1 input state can be read with command IN(1).

EVENT1=0 disables EVENT1 trigger if assigned as a MOVEREG trigger.

EVENT1=1 Sets EVENT1 trigger to positive polarity triggering and enables the
trigger.

EVENT1=-1 Sets EVENT1 trigger to negative edge triggering and enables the
trigger.

EVENT1
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

EXAMPLES:

100 Programming Commands

Sets the trigger polarity and trigger enable, which are used in a MOVEHOME and
MOVEREG cycle.

EVENT2=expression

The EVENT2 command is used to select the effect of the hardware signal at the
EVENT2 / IN2 input. This input is typically wired to a switch or sensor. It may be
used as a home position trigger during a MOVEHOME cycle. It also may be used
as a position mark registration trigger during a MOVEREG cycle . When used for
mark registration, a trigger on EVENT2 will initiate the index portion of the
MOVEREG cycle.

The EVENT2 triggering for a MOVEHOME or MOVEREG cycle is as-signed
in the user program Configuration and Setup.

For a MOVEHOME cycle, the EVENT2 command may be used to set the
polarity of the move home trigger. If the expression to the right of the EVENT2
command is positive, for example EVENT2 = 1, the home cycle trigger occurs
when the EVENT2 input becomes active. If the expression to the right of the
EVENT2 command is negative, for example EVENT2 = -1, the home cycle trigger
occurs when the EVENT2 input becomes inactive. An EVENT2 home trigger
cannot be disabled using this command.

For a MOVEREG cycle, the EVENT2 command may be used to set the polarity
of the registration trigger. If the expression to the right of the EVENT2 command
is positive, for example EVENT2 = 1, the registration cycle trigger occurs when
the EVENT2 input becomes active. If the expression to the right of the EVENT2
command is negative, for example EVENT2 = -1, the registration cycle trigger
occurs when the EVENT2 input becomes inactive.

The EVENT2 trigger for a registration cycle may be disabled by setting
EVENT2=0. A registration trigger may be enabled to either polarity a move. It
may not, however, be disabled once the cycle has begun.

The EVENT 2 input state can be read with command IN(2).

EVENT2=0 disables EVENT2 trigger if assigned as a MOVEREG trigger.

EVENT2=1 Sets EVENT2 trigger to positive edge triggering and enables the
trigger.

EVENT2=-1 Sets EVENT2 trigger to negative edge triggering and enables the
trigger.

EVENT2
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

EXAMPLES:

Programming Commands 101

Sets or returns the position error limit. When the position error limit is exceeded, the
windings are turned off, the analog output voltage is set to zero and an error is set.

FOLERR=expression
FOLERR - used in an expression

FOLERR= expression
Sets the position error limit in units. Setting the position error limit to zero sets the
position error limit to infinity.

FOLERR - used in expression
Returns the value of the position error limit.

FOLERR sets or reads the "Following Error" Limit. "Following Error" is set
initially in the Configuration and Setup and is the absolute value of the difference
between the commanded and actual motor position, i.e. |ABSPOS - ENCPOS|.
 The test for excessive "Following Error" is only performed if the drive enable
output is on and the FOLERR setting is not zero. If the "Following Error" exceeds
the FOLERR setting, then the error code is set to 133, the windings are turned off
and the analog output voltage is set to zero. FOLERR is limited to the number of
user units corresponding to 32767 encoder counts. FOLERR is initialized to the
number of units corresponding to 32767 encoder counts at power up. A negative
setting for FOLERR results in error code 19. If an attempt is made to set
FOLERR greater than 32767, the FOLERR is set to its maximum value of 32767.

 Reading FOLERR returns the present setting in user units.

FOLERR=.5 ' position error limit is set to .5 units
x=FOLERR ' returns the current position error limit.

FOLERR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Servo Parameters

EXAMPLES:

102 Programming Commands

Repeats a block of statements a specified number of times.

FOR counter = start# TO end#
[statement block]
[EXIT FOR]
[statement block]
NEXT counter

Counter is a variable used as the loop counter.
Start# is the initial value of the counter.
End# is the ending value of the counter.
The step size is always 1.

If start is greater than end then the loop will not execute, control is transferred to
the statement following the NEXT statement. If start equals end then the loop will
execute once.

EXIT FOR is an alternative exit from a FOR...NEXT loop.

EXIT FOR transfers control to the statement following the NEXT statement. When
used within nested FOR...NEXT statements, EXIT FOR transfers out of the
immediately enclosing loop. EXIT FOR can be used only in a FOR...NEXT
statement.

for x=1 to 8 >For..next loop initialization
statements >Program statements.

next x >End of loop.

This command selects the External master velocity source for gearing which is the
Encoder 2 input port.

GEAREXT

This command is defined in more details in the Gearing section of the manual.

FOR...NEXT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Program Flow Control

EXAMPLES:

GearingGEAREXT
ACTION:

PROGRAM SYNTAX:

REMARKS:

Programming Commands 103

Selects the internal master velocity source, GEARVEL command, for gearing.

GEARINT

This command is defined in more detail in Section 8, Gearing .

Enables the master velocity for the Gearing mode of Operation.

GEARON

This command is defined in more detail in Section 8, Gearing.

Disables the master velocity for the Gearing mode of Operation.

GEAROFF

This command is defined in more detail in Section 8, Gearing.

Selects the external follower motor to master encoder gearing ratio. The ratio is
follower motor revs / master encoder revs.

GEARRATIO =
GEARRATIO – used in an expression

This command is defined in more detail in Section 8, Gearing.

Sets or returns the master velocity for internal gearing in
units/second.

GEARVEL = expression
GEARVEL – used in an expression

This command is defined in more detail in Section 8, Gearing.

GearingGEARINT
ACTION:

PROGRAM SYNTAX:

REMARKS:

GEARON
ACTION:

PROGRAM SYNTAX:

REMARKS:

Gearing

GEAROFF
ACTION:

PROGRAM SYNTAX:

REMARKS:

Gearing

GearingGEAR
RATIO

ACTION:

PROGRAM SYNTAX:

REMARKS:

GearingGEARVEL
ACTION:

PROGRAM SYNTAX:

REMARKS:

104 Programming Commands

Waits for a character on the selected serial port and returns the ASCII code of the
character.

GETCHAR(n) - used in an expression

The n specifies the serial port number (1 or 2). Port 1 is the Host port and Port 2
is the User port.

Program execution is suspended while GETCHAR waits for a character to be
received by the designated serial port. If a character is already in the receiver

buffer the ASCII code of the character is returned immediately.

INTEGER a,b
STRING a$,b$
a=GETCHAR(1) ' sets a to the ASCII code of host character
b=GETCHAR(2) ' sets b to the ASCII code of user character
a$=a$ + CHR$(A) ' add host character to a$
b$=b$ + CHR$(A) ' add host character to b$

GETCHAR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

Programming Commands 105

Branches to, and returns from, a subroutine.

GOSUB [linelabel]

You can call a subroutine any number of times in a program. You can call a
subroutine from within another subroutine (nesting).

Subroutines can only be nested ten deep.

The execution of the RETURN statement causes the subroutine to goto the line
following the call or jump to the subroutine..

Subroutines can appear anywhere in the program (except within an interrupt
routine). It is good programming practice to make them readily distinguishable

from the main program.

GOSUB GET_CHAR 'goto subroutine at label "GET_CHAR"
MOVEI=10 >Line that executes after the return.
:
:
GET_CHAR: 'label for subroutine
:

statement block 'statements to perform action of the subroutine
:
RETURN 'return to program line following GOSUB

GET_CHAR

GOSUB...
RETURN

 ACTION:

PROGRAM SYNTAX:

REMARKS:

Program Flow Control

EXAMPLES:

106 Programming Commands

Branches unconditionally to the specified label.

 GOTO [label]

The GOTO statement provides a means for branching unconditionally to another
label.

It is good programming practice to use subroutines or structured control statements
(DO... UNTIL, FOR...NEXT, IF..THEN...ELSE) instead of GOTO statements,
because a program with many GOTO statements can be difficult to read and

debug. Try to avoid using AAGOTO@@ !

if x=1 then GOTO coolant_off
:
:
coolant_off:
(statements)

Disables the hardware limit inputs.

HARDLIMOFF

Hard limit inputs are used to stop the motor before it runs into a physical
end of travel, thus avoiding damage to the mechanical system. A separate hard limit
input is provided for + and - motor rotation. Activating the + input stops the motor
if it is rotating in the + direction. Activating the - input stops the motor if it is rotating
in the - direction.

Inputs 3 and 4 become general purpose inputs with this command.

HARDLIMOFF ' hard limit inputs are general purpose.

GOTO
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Program Flow Control

EXAMPLES:

Over Travel LimitHARDLIM
OFF

 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 107

Enables the hardware limit inputs.

HARDLIMON

Hard limit inputs are used to stop the motor before it runs into a physical
end of travel, thus avoiding damage to the mechanical system. A separate hard limit
input is provided for + and - motor rotation. Activating
the + input stops the motor if it is rotating in the + direction. Activating the - input
stops the motor if it is rotating in the - direction.

Inputs 3 and 4 become the +Limit and -Limit inputs. As hard limits, the active
signal level can also be configured as active on switch closing or active on switch
opening. This is done in the project's Configuration and Setup.

The +Limit is only checked when motion in the + direction is commanded, likewise
the -Limit is only checked when motion in the - direction is commanded. When
a Limit input is activated, the motor is decelerated to a stop using the maximum
accel value (set in the project's Configuration and Setup) and an error code is
set. Code 128 is set when the +Limit is activated and code 129 when the - Limit
is activated.

The state of the +Limit can be read with the IN(3) command and the state of the
-Limit can be read with the IN(4) command.
The relation between the return value from the IN command and the limit status is
shown in the following table.

active signal level IN command limit status
switch closing 0 not active

 1 active
switch opening 0 active

 1 not active

HARDLIMON ' Limit inputs are active.

Over Travel LimitHARDLIM
ON

 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

108 Programming Commands

Returns the hex string of an Integer value.

A$=HEX$(expression)

The expression must be an integer value.

A$=HEX$(255) ' returns the string "FF"

Returns the decimal value of a hexadecimal string.

x=HVAL(A$)

A$ is the designated string variable or string literal.

The converted value is an Integer. Thus "x" must be defined as an Integer.

x=HVAL("0XFF") ' x is set to 255

A$="1F"
x=HVAL(A$)" ' x is set to 31

HEX$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

String ManipulationHVAL
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 109

Allows conditional execution based on the evaluation of a Boolean condition.

IF condition THEN thenpart [ELSE elsepart]

IF condition1 THEN
[statement block-1]
[ELSE] ELSE and statement block-2 is optional
[statement block-2]]
END IF

The argument condition is an expression that SEBASIC evaluates as true (nonzero)
or false (zero).

The argument statement block includes any number of statements on one or more
lines.

The argument thenpart includes the statements or branches performed when
condition is true.

The argument elsepart includes the statements or branches performed when
condition is false. The syntax is the same as thenpart. If the ELSE clause is not

present, control passes to the next statement in the program following the END IF.

if x=0 then
statement block

else
statement block

end if

IF...THEN...

ELSE...

ENDIF
ACTION:

PROGRAM SYNTAX 1:

PROGRAM SYNTAX 2:

REMARKS:

Program Flow Control

EXAMPLES:

110 Programming Commands

Returns the state of a digital input.

IN(nn) - used in an expression

nn is the specified digital input 1-19.

The value returned is 1 for active or 0 for inactive.

The inputs are assigned as follows:

Input Signal Designation Input Signal Designation

1 Event1/IN1 11 BCD0/IN11

2 Event2/IN2 12 BCD1/IN12

3 "+Limit"/IN3 13 BCD2/IN13

4 "-Limit"/IN4 14 BCD3/IN14

5 "Run"/IN5 15 BCD4/IN15

6 "Clear"/IN6 16 BCD5/IN16

7 AFeedhold@/IN7 17 BCD6/IN17

8 IN8 18 BCD7/IN18

9 IN9 19 DRV Ready

10 IN10

Inputs 3 through 7 are individually selectable in the Configuration and Setup as
either dedicated or general purpose inputs. If selected as dedicated inputs and
activated, these inputs cause specific action to occur as outlined in the
HARDWARE INPUTS section of this manual.

Inputs selected as general purpose may be used within the user program as
needed. A general purpose input will not cause the dedicated action to occur when
the input is active. Note: The IN(X) command will return the value at the input pin
regardless of the Configuration and Setup. For example, if Input 7 is selected
in the system configuration as dedicated to AFeedhold@, and the input at the pin is

active, then IN(7) will return a 1.

IF IN(6)=1 then goto continue

IN
 ACTION:

PROGRAM SYNTAX:

REMARKS:

I/O Operator

EXAMPLES:

Programming Commands 111

Returns the ASCII code of a character from the designated serial port. If no
character is in the receiver buffer a 0 is returned.

INCHAR(n)

The n specifies the serial port (1 or 2). Port 1 is the Host port and Port 2 is the
User port.

If no character has been received by the designated serial port, a 0 is returned.
 Otherwise, the ASCII code value equivalent is returned.

INTEGER x
STRING a$
DO

x=INCHAR(1) ' x= character received or a 0
LOOP UNTIL x > 0 ' wait for character
a$=a$+CHR$(x) 'adds input character to a$

Includes a file name with define statements in a user task.

#INCLUDE drive:\subdir\...\subdir\filename.inc

Drive is the root directory of the drive.

Subdir is the path required to find the file.

Filename is the include filename with extension .inc.

The include file must be a series of #DEFINE statements only and can be used in
any project task file.

The iws.inc file is included in the MCPI software for Windows. This file can be
used to control a IWS-120-SE or IWS-30-SE interface panel.

#INCLUDE c:\mcpi\iws.inc ' include file iws.inc

INCHAR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

Miscellaneous Command#INCLUDE
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

112 Programming Commands

Reads a Line of data from the designated serial port into a string variable.

INPUT#1,n$
INPUT#1,n$,var1$[,var2$] ... [var_n$]
INPUT#1,x
INPUT#1,x,y[,z] ... [,z1]
INPUT#2,n$
INPUT#2,n$,var1$[,var2$] ... [var_n$]

 INPUT#2,x
INPUT#2,x,y[,z] ... [,z1]

This command accepts input characters until a carriage return or linefeed is received
by the designated port.

Multiple arguments can be entered on one input line separated by a ",". The
arguments can be parameters values, strings, Integer values and Real values.

INPUT#1 designated the Host port and INPUT#2 designates the User port as the
serial receiver port.

The following data was entered via user port: "A555555,100,10.5,20 " cr
Program:
string a$
integer x
real y
INPUT#2,a$,x,y ' sets a$="A555555"

'sets x=100
'sets y=10.5

Returns the character position of the first occurrence of a specified string in another
string.

INSTR(string1$,string2$) - used in an expression

The expression must be an integer variable.

The comparison is case sensitive and returns a 0 if no match is found.

a$= "WE part# 215629"
a=INSTR(A$,"Part#") 'returns the starting position of "part#" in a$; in this case,

String ManipulationINPUT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

INSTR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

Programming Commands 113

the value of 4 is returned.

Sets the Integral limit for the controller. This is the limit of the contribution to the
servo output from the integral of the position error.

INTLIM=expression
INTLIM - used in an expression

The expression is the Integral Limit of the servo axis in volts.

Limits the contribution of the integral term to the servo loop's output.
INTLIM can be set between 0 and 319.99 volts. Setting it to a value outside this
range will result in error number 20. If the input value is out of range, the previous
setting is retained. Reading INTLIM returns the present setting in volts.

INTLIM=expression
Sets the Integral limit to the expression value.

INTLIM
Returns the integral limit value of an axis.

INTLIM=5 'Sets the integral limit to 5 volts.

x=INTLIM 'Sets variable x to the integral limit.

INTLIM
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Servo Parameters

EXAMPLES:

114 Programming Commands

Disables an interrupt for an ON...INTRn command.

INTROFFn

An interrupt causes the program to stop what it is doing, go do something else and
then resume from where it was interrupted. There can be up to 4 software
interrupts in a program. The conditions that cause the interrupt
can be programmed and the interrupts can be enabled or disabled individually. At
the start of program execution the interrupts are disabled and must be enabled
within the program. They can also be disabled within the program.

The n (1-4) defines the interrupt number to be disabled.

INTROFF1 'disables interrupt 1 for an ON...INTRn command.

Enables an interrupt for an ON...INTRn command.

INTRONn

An interrupt causes the program to stop what it is doing, go do something else and
then resume from where it was interrupted. There can be up to 4 software
interrupts in a program. The conditions that cause the interrupt
can be programmed and the interrupts can be enabled or disabled individually. At
the start of program execution the interrupts are disabled and must be enabled
within the program. They can also be disabled within the program.

The n (1-4) defines which ON...INTRn command is enabled.

INTRON1 'enables interrupt 1 for an ON...INTRn command.

InterruptINTROFFn
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

InterruptINTRONn
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 115

Jog the motor in a specified direction.

JOG = expression

JOG=expression
The sign of the expression determines the direction of motion. If the expression is
positive or 0, jogging will take place in the positive direction.
If the expression is negative, jogging will take place in the negative direction. The
speed of the jog move is determined by the last SPEED command.

Use the STOP command for stopping the motor.

Sets or returns the derivative gain for the servo motor.

KD=expression
KD - used in an expression

The expression is the derivative gain value of the servo axis.
The Units are milliseconds.

The expression value must be positive.

KD must be non-zero for system stability. Setting KD affects the gains for the
velocity and feedforward terms. A negative value will result in error code 16 as
would a value that causes any of the affected gains to exceed their upper bounds.
 When a setting for KD results in error code 16, the previous gain settings are

retained. Reading KD returns the present setting.

KD=4 'Sets the derivative gain to 4 milliseconds.
x=KD 'Sets variable x to the derivative gain.

JOG
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

KD
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Servo Parameters

EXAMPLES:

116 Programming Commands

Sets or returns the Integral gain of the servo motor.

KI=expression
KI - used in an expression

The expression is the integral gain value of the servo axis.
The Units are milliseconds.

The expression value must be positive.

KI, which is specified in ms., determines how fast the integral term grows with
non-zero position error. The growth rate is inversely related to the value of KI.
 For example the integral term grows 5 times faster with KI = 10 than with KI =
50. A special case is KI = 0, which disables the integral action and sets the
integral term to zero. When the drive is disabled, the integral term is set to zero.
 Setting KI only affects the gain for the integral term. A negative value will result
in error code 17 as would a small enough positive value. Most likely, the system
would go unstable well before a KI setting results in a range error. When an out
of range error occurs, the previous gain setting is retained. Reading KI returns the

present setting.

KI=1 'Sets the integral gain to 1 millisecond.

x=KI 'Sets variable x to the integral gain.

KI
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Servo Parameters

EXAMPLES:

Programming Commands 117

Sets or returns the proportional gain of the servo motor.

KP=expression
KP - used in an expression

The expression is the proportional gain value of the servo axis.
The Units are millivolts/encoder count.

The expression value must be positive.

KP determines the size of the proportional term for a given position error. The units
of KP are millivolts per encoder count. A negative value will result in error code
15 as would a value that causes any of affected gains to exceed their upper
bounds. When a setting for KP results in error code 15, the previous gain settings

are retained. Reading KP returns the present setting.

KP=50 'Sets the proportional gain to 50 millivolts/encoder count (.05 volts/encoder
count).
x=KP 'Sets variable x to the proportional gain value.

KP
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Servo Parameters

EXAMPLES:

118 Programming Commands

Sets or returns the velocity feed forward gain value for the servo motor.

KVFF=expression
KVFF - used in an expression

KVFF, which is specified in % can be used to reduce the position error during
motion. It does not affect system stability. The minimum error occurs with KVFF
near 100%. Setting KVFF only affects the gain for the
feedforward term. Setting KVFF less than 0 will result in error code 18. Setting
KVFF above 200 % will result in the feedforward gain exceeding its upper bound
and error E_KVFF_RANGE being set. When setting KVFF and error code 18
results, the previous gain setting is retained. Reading KVFF returns the present
setting.

The expression value must be positive.

KVFF=100 'Sets the velocity feed forward gain to 100%.
x=KVFF 'Sets variable x to the velocity feed forward gain value.

Converts and returns a string with lower case letters.

string1$=LCASE$(string2$)

string2$ is copied and all upper case letters are converted to lower case letters and
the resulting string is returned string1$.

This command is useful for making the INSTR command case insensitive.

a$="HELLO"
b$=LCASE$(a$) ' sets b$="hello"

KVFF
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Servo Parameters

EXAMPLES:

String ManipulationLCASE$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 119

Returns the leftmost characters of a string.

string2$=LEFT$(string1$,n)

The n is the number of leftmost characters to return. If n is greater than the length of
string1$ then the entire string is returned to string2$.

b$="Hello World"
a$=LEFT$(b$,7) ' sets a$= "Hello W"

Return the number of characters in the designated string.

LEN(string$) - used in an expression

The expression should be an integer type. If the input string is a null string returns a 0.

A=LEN("ABCD") ' sets A=4

Returns the designated middle number of characters of a string.

string1$=MID$(string2$,start,number)

The start specifies the starting position of the input string (string2$).

The number specifies the number of characters to return. If the number is
greater than the (length of the string - start position) the input string is copied from
the starting position to the end of the string.

a$="P/N 123AC"
b$=MID$(a$,5,3) ' sets b$="123"
c$=MID$(a$,5,9) ' sets c$="123AC"

LEFT$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

LEN
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

String ManipulationMID$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

120 Programming Commands

Sets or returns the hardware trigger level for a MOVEI,
MOVEA, MOVEHOME, JOG or MOVEREG cycle.

MOTTRIG = expression
MOTTRIG – used in an expression

Allows hardware inputs 1 or 2 to trigger motion. This results in a quick response
time from the input trigger to the start of motion. The maximum start delay using the
MOTTRIG command is 1 millisecond.

The expression specifies the starting trigger for the above motion commands and
is specified as follows:
0 no trigger required (default) 3 start motion on event 1 inactive
1 start motion on event 1 active 4 start motion on event 2 inactive
2 start motion on event 2 active

If the expression is not a value 0-4 MOTTRIG will become 0.

The default is no trigger required when program execution starts.

This command is ignored if commanded motion is taking place. This command is
defined in more detail in Section 8, Gearing

MOTTRIG = 1 ‘ event 1 active trigger required to start motion
MOVEI = 1 ‘ move 1 unit after event 1 goes active
DO : LOOP UNTIL BUSY = 1 ‘ wait for motion start
WAITDONE

INTEGER trigger
trigger = MOTTRIG ‘ sets variable trigger equal to the current MOTTRIG

value.

Initiates the motor to move to the specified absolute position.

MOVEA=expression

The expression represents the specified absolute position.

Move to the specified position. The specified position must not be further
than +/- 2,147,483,647 encoder counts away or error code 21 will be set and no
motion will occur.

MOVEA= -1.0 ' moves to an absolute position of -1.0 units.

MotionMOTTRIG
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

MOVEA
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

EXAMPLES:

Programming Commands 121

Runs the motor until the home input is activated, captures and records the position
of the switch activation as home (electrical zero), then decelerates the motor to a
stop.

MOVEHOME=expression

The sign of the expression determines the direction (positive or negative) of motion
for the home cycle. The non-zero value of the number is not significant.. The
commanded speed is determined by the last SPEED command that was executed.

The MOVEHOME trigger can be the EVENT 1 input, EVENT 2 input or an
Encoder marker state. This trigger is defined by the user program Configuration
and Setup, and also by the EVENT1 or EVENT2 command if they have been
executed prior to the MOVEHOME.

Prior to starting a MOVEHOME motion, the appropriate trigger input (EVENT
1 or EVENT 2) is checked to see if it has already been triggered. If the trigger is
already triggered the ABSPOS and ENCPOS are set to zero and no motion
occurs. Otherwise, the motor accelerates at the ACCEL rate to the commanded
SPEED and continues at this speed until the home trigger condition is met. When
the home trigger occurs, the motor decelerates to a stop at the DECEL rate. Once
at a stop, the distance traveled from the trigger becomes the new ABSPOS and
ENCPOS value. The exact position that the motor was at when the trigger
occurred becomes the zero position, or home.

MOVEHOME= -1.0 'Initiates a mechanical home cycle in the negative
direction.

MOVEA=0 'Moves motor back to electrical home. (i.e. switch
edge)

MOVE
HOME

 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

EXAMPLES:

122 Programming Commands

Initiate an incremental move.

MOVEI=expression

The expression represents the distance to move from its present location. The sign
of the expression determines the direction (positive or negative) of motion for the
move.

Move the specified incremental distance from the present position. The increment
must not be greater than +/- 2,147,483,647 encoder counts or error code 21 will

be set and no motion will occur.

MOVEI= -1.0 ' moves -1.0 units.

MOVEI
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

EXAMPLES:

Programming Commands 123

Runs the motor until the mark registration input is activated; then moves the motor
the desired registration distance.

MOVEREG=expression

The expression represents the incremental distance to move after a registration
trigger has occurred. The sign of the expression determines the direction (positive
or negative) of motion for the registration cycle. The
distance must not be greater than +/- 2,147,488,647 encoder counts or error code
21 will be set and no motion will occur.

The registration trigger can be the EVENT 1 input, EVENT 2 input or an Encoder
marker state. This trigger is defined in the user program Configuration and
Setup, and also by the EVENT1 or EVENT2 command if they have been
executed prior to the MOVEREG.

The Registration Travel Limit, which is set by command REGLIMIT, limits the
distance that the motor will rotate if no trigger occurs. A REGLIMIT setting of
0, sets no limit for motor rotation while awaiting a trigger. This is the condition after
power up or RESET. The motor speed during a MOVEREG move is set by the
SPEED command. When the registration trigger occurs, the registration distance
is checked to determine if the motion can be stopped in the given distance. If it
can=t, then the motion will be stopped using the project's Configuration and
Setup setting for max. accel, and an error code 134 is set. This error can be
eliminated by increasing the reg. distance, decreasing the speed or increasing the
deceleration.

Prior to starting a MOVEREG motion the appropriate trigger input (EVENT 1 or
EVENT 2) is checked to see if it has already been triggered. If the trigger has
already occurred, an incremental move of the distance specified by the expression
to the right of the MOVEREG will occur.

A MOVEREG can be started with its trigger disabled (except for the two
encoder index marker selections). The registration trigger may then be enabled

later by an EVENT1 or EVENT2 command.

MOVEREG= 1.0 > Initiates a positive registration cycle of 1 unit.

MOVEREG
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

EXAMPLES:

SPEED = MOVEREG * 2 * DECEL * .96

124 Programming Commands

The logical NOT operator is used in boolean expressions.

NOT expression

The NOT operator uses the "truth table":
The result is TRUE if the expression is FALSE

 expression condition result

True False

False True

 Do
:
:

Loop while (NOT (x=1)) >The controller will continue to execute until
variable X does not equal 1.

Returns or stores a REAL or INTEGER value to NVR memory.

NVR(element) – used in an expression
NVR(exp1) – used in an expression
NVR(element) = expression
NVR(exp1) = expression

element or exp1 defines the NVR location being addressed (1-400).

expression is the value being stored in the specified NVR location.

The NVR has 400 location for storage.

To clear all 400 locations of NVR use host command CLRNVR.

STRING data$

PRINT#2,”load Speed value”
INPUT#2,data$ ‘ input speed value
NVR(1)=VAL(data$) ‘ save speed value
PRINT#2,”load move distance value”
INPUT#2,data$ ‘ input move value
NVR(2)=VAL(data$) ‘ save move value
SPEED=NVR(1)
MOVEI=NVR(2)

NOT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Boolean Operator

EXAMPLES:

NVR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

NVR Memory

EXAMPLES:

Programming Commands 125

DO WHILE BUSY : LOOP ‘ wait for motion done

126 Programming Commands

Sets condition to execute subroutine INTRn.

ON [condition] INTRn

The "n" specifies the interrupt number 1-4.

When the specified condition for the ON...INTRn command becomes
TRUE during program execution and the designated interrupt "n" has been
enabled, a subroutine call to label INTRn takes place. Upon completion of the
subroutine the program continues from where it was interrupted and execute the
next program line. The INTRn can be disabled at any time during program
execution by the INTROFFn command. The INTRn can be enabled at any time
during program execution by the INTRONn command.

The <condition> for each enabled interrupt is checked at the end of execution of
each program line. The first <condition> that is TRUE will cause the interrupt to
occur. Because the operating system must check all <conditions> for enabled
interrupts after every program line, excessive use of software interrupts will slow
down the execution of the user=s program.

Note: Other subroutines CANNOT be called from within the interrupt routine.

The following example shows the execution flow for two conditions
to be tested. The first condition which is true will result in execution of the

appropriate interrupt routine, in this case INTR1: or INTR2:

ON <condition 1> INTR1
ON <condition 2> INTR2

INTRON1 >turn on interrupt 1

program checks <condition 1> 'if it's TRUE jump to code at INTR1: if not,
continue with next program statement

PROGRAM STATEMENT >execute normal program line

program checks <condition 1> 'check condition 1, if it's TRUE jump to code at
INTR1: if not, continue with next program
statement

INTRON2 >turn on interrupt2
program checks <condition 1> 'check condition 1, if it's TRUE jump to code at

INTR1: If not, continue

program checks <condition 2> 'check condition 2, if it's TRUE jump to INTR2:
If not execute next program statement.

ON...INTRn
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Interrupt

Programming Commands 127

NEXT PROGRAM STATEMENT 'execute next line in program

program checks <condition 1> 'check condition 1, if it's TRUE jump to code at
INTR1: If not, continue and

program checks <condition 2> 'check condition 2, if it's TRUE jump to INTR2:
If not execute next program line.

INTROFF1
program checks <condition 2> 'check condition 2, if it's TRUE jump to INTR2:

If not execute next program line.

INTROFF2 'no conditions are checked since all interrupts
have been disabled.

NEXT PROGRAM STATEMENT 'execute next line in program
no conditions are checked since both interrupt
1 and interrupt 2 were disabled with the
INTROFF command.

INTR1: >beginning of interrupt 1 routine
PROGRAM STATEMENTS 'execute program statement interrupt conditions

are not checked after program statements
within the interrupt routine.

RETURN 'end of interrupt 1 routine

INTR2: >beginning of interrupt 2 routine
 PROGRAM STATEMENTS 'execute interrupt 1 routine statement interrupt

conditions are not checked after program
statements within the interrupt routine.

RETURN 'end of interrupt 2 routine

Up to four interrupt subroutines can be embedded in the program code. A
RETURN command is required at the end of each subroutine. There are four

interrupt subroutines labeled (INTR1-INTR4).

ON IN (5)=1 INTR1 ' specifies input 5=1 as the condition to go sub
INTR1
program statements
INTRON1 ' enables INTR1
program statements

INTR1:
program statements
RETURN

EXAMPLES:

128 Programming Commands

The logical OR operator is used in boolean expressions.

expression1 OR expression2

The OR operator uses this "truth Table":
The result is TRUE, if either expression is TRUE.

Expression1 Expression2 Condition Result

True True True

True False True

False True True

False False False

DO
LOOP until (A > 5 OR X = 0) >The controller continues to do the loop Until
variable A > 5 or variable X = 0.

OR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Boolean Operator

EXAMPLES:

Programming Commands 129

Sets or returns the condition of a specified digital output.

OUT(n) = expression
OUT(n) - used in an expression

n is the specified output (1-6).

OUT(n)
Returns a 1 for a commanded active output and a 0 for a commanded inactive
output.

OUT(n) = expression
If the expression is a non-zero value the specified output will be activated.

The output are assigned as follows:

Output Output Designation

1 OUT 1

2 OUT 2

3 BCD0/OUT3

4 BCD1/OUT4

5 BCD2/OUT5

6 BCD3/OUT6

OUT(1)=1 ' sets OUT 1 to the active state.
OUT(2)=0 ' sets OUT 2 to the inactive state
x=OUT(1) >Gets the state of output 1 and stores it to x.

Note that use of the BCD command takes precedent over the OUT command
and will toggle OUT3-OUT6 when called to strobe the BCD switch bank. If
OUT3-OUT6 are used as general purpose outputs, care must be taken not to
invoke a BCD command or the state of the outputs will be disturbed.

OUT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

I/O Operator

EXAMPLES:

130 Programming Commands

Sets or returns the servo command voltage limit

OUTLIMIT=expression
OUTLIMIT used in an expression

Limits the magnitude of the servo loop's output voltage. OUTLIMIT is set to 10
volts at power up. OUTLIMIT can be set between 0 and 10 volts inclusive.

Setting it to a value outside this range will cause it to be set to
the nearest valid value. Ex. OUTLIMIT = 5 will limit the servo output to +/- 5
volts. Reading OUTLIMIT returns the present setting in volts.

OUTLIMIT= expression
sets the OUTLIMIT to the expression value

OUTLIMIT
returns the current value of the OUTLIMIT.

OUTLIMIT=5 ' sets analog output voltage limit to 5 volts.

x=OUTLIMIT 'sets variable x to the OUTLIMIT value.

OUTLIMIT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Servo Parameters

EXAMPLES:

Programming Commands 131

Transmits designated data via the designated serial port.

PRINT#1,[expression][, or ;][expression][, or ;]
PRINT#2,[expression][, or ;][expression][, or ;]

Port 1 is the Host port and Port 2 is the User Port.

expression can be an integer variable, real variable, parameter, string
variable or Literal string. Literal strings must be enclosed in quotation marks.

If a comma "," is used between expressions five spaces will separate expressions.

If a semicolon ";" is used between expressions there will be no space between
expressions.

Up to 20 expressions can be used with one PRINT command.

If a semicolon ";" is used at the end of the PRINT command, no carriage-
return/line-feed sequence will be generated.

ACCEL=10.5
DECEL=2.1
PRINT#1,"accel= ";ACCEL,"decel= ";DECEL
' Host output "accel= 10.5 decel= 2.1" crlf

ACCEL=10.5
DECEL=2.1
PRINT#2,"accel= ";ACCEL,"decel= ";DECEL

' User output "accel= 10.5 decel= 2.1" crlf

ACCEL=10.5
DECEL=2.1
PRINT#2,"accel= ";ACCEL,"decel= ";DECEL;

' User output "accel= 10.5 decel= 2.1"

PRINT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

132 Programming Commands

Prints strings character or formatted numbers.

PRINT USING #1,"literal string",[exp][, or;][exp][;]
PRINT USING #1,Format$,[exp][, or;][exp][;]
PRINT USING #2,"literal string",[exp][, or;][exp][;]
PRINT USING #2,Format$,[exp][, or;][exp][;]

Port 1 is the Host Port and Port 2 is the User Port.

The numeric values are formatted only using the literal string or a
designated Format$ variable string. This string can contain non-format characters
that will be printed prior to the formatted number. The following characters in the
string will not be printed from the string:
"+" "#" "0" " ." "\" and ",". However, these character can be printable
characters by preceding the character with a "\".
 Example:

requirement to send the following ASCII string with the current state of
OUT(1) (Output #1 is <state> which is the coolant control)

a$="Output \#1 is # which is the coolant control"
PRINT USING #1,a$,OUT(1)

The resulting serial output:
Output #1 is n which is the coolant control
where: n is the state of output (1)

The "," which is the delimiter for expressions will not print spaces like the PRINT
command. If spaces are required between expressions they must be added to
the literal string or format$.
Example:

ACCEL=10000
DECEL=20000
a$="Acc= 000000 Dcc= 000000"
PRINT USING#1,a$,accel,decel

The resulting serial output:
Acc= 010000 Dcc= 020000

PRINT
USING

 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

Programming Commands 133

If the numeric data is larger than the specified format than an "*" will be substituted
for the 0's and #'s in the output.
Example:

ABSPOS=1000.54
a$="Position= +0##.##"
PRINT USING #1,a$,abspos

The resulting serial output:
Position= +***.**

The following special characters are used to format the numeric field:

+ The sign of the number will always be printed. The default prints
the negative sign and substitutes a space for the positive sign.

Represents a digit position. If no data exists at the digit position
substitutes a space. The digit field will always be filled.

0 Represents a digit position. If no data exists at the digit position
substitutes a zero. The digit field will always be filled.

. A decimal point may be inserted at any position in the field.

The valid formats are:
 Left side format Comments

+0000 The sign with leading zero's will be printed.
+0000. The sign with leading zero's and decimal point will be printed. The

right side format is optional.
+#### The leading spaces with a sign and digits will be printed.
+####. The leading spaces with a sign, digits and decimal point will be

printed. The right side format is optional.
0000 The - sign or a space with leading zero's will be printed.
0000. The - sign or a space with leading zero's and decimal point

will be printed. The right side format is optional.
The leading spaces with a - sign or a space and digits will

be printed.
####. The leading spaces with a - sign or a space, digits and

decimal point will be printed. The right side format is
optional.

+. The sign and decimal point will be printed. This requires
the right side format also.

. The - sign or a space and decimal point will be printed.
This requires the right side format also.

134 Programming Commands

Right side format Comment
0000 Prints digits with trailing zero's.
Prints digits with trailing spaces.
00## Prints two digits minimum with trailing spaces.

If the expressions are literal strings or variable strings they will be printed as is.

If a semicolon is used at the end of the Print Using command, no carriage-return
/ line-feed sequence will be generated.

When numeric data is to be printed, the format string is searched from the
beginning for a format character (+0#.). The string data up to this position is sent
via the serial port. The format characters (+0#.) are now processed and the
formatted value is sent via the serial port. When the next numeric data is to be
printed, this process continues from the current position in the string. When the end
of the format string is encountered and numeric data is to be printed, a default
format (PRINT # format) is used. If the format string end is not encountered and
the command is complete the remaining characters in the format string will be
printed.

The following example illustrates how the format string is processed. The
command is:
PRINT USING#1,"Numbers are +###.## ### 0## **",100.54,"mv",
999,"cnts" ,54," is limit"
The "Numbers are " is extracted from the string and sent via serial port. The
"+###.##" is extracted from the string as the data format, which results in
"+100.54" being sent via serial port. The string "mv" is sent via serial port. The
" " is extracted from the string and sent via serial port. The "###" is extracted
from the string as the data format, which results in "999" being sent via serial port.
The string "cnts" is sent via serial port. The " " is extracted from the string and
sent via serial port. The "0##" is extracted from the string as the data format,
which results in "054" being sent via serial port. The string " is limit" is sent via
serial port. The " **" is extracted from the string and a crlf is appended and sent
via serial port. The resulting string is:

Numbers are +100.54mv 999cnts 054 is
limit**<cr><lf>

PRINT USING #1,"The time is ##,:##am",12,30
The time is 12: 30am<cr><lf>

PRINT USING #1,"today=s date is 00\\00\\####",1,31,1980;
today=s date is 01\ 31\ 1980

ABSPOS=10560.32
PRINT USING #1,"Absolute Position is +0######.0## units",abspos

Absolute Position is +0010560.32 units <cr><lf>

EXAMPLES:

Programming Commands 135

Sets or returns the distance to be moved during a MOVEREG cycle, while awaiting
a trigger. If no trigger occurs, a MOVEREG cycle behaves like
a MOVEI cycle, with the distance specified by REGLIMIT.
REGLIMIT must be set prior to a MOVEREG cycle.

REGLIMIT - used in an expression
REGLIMIT=expression

REGLIMIT
Return the current MOVEREG travel distance. The value returned is $ 0.

REGLIMIT=expression
Sets the MOVEREG travel distance. REGLIMIT should be set to a positive
number or 0. Setting REGLIMIT = 0, or a negative number, allows a MOVEREG
to run indefinitely while awaiting a trigger. If REGLIMIT <0 then REGLIMIT will

be set to 0.

REGLIMIT= 0 ' disables the MOVEREG travel distance limit.

REGLIMIT= 10 ' set the MOVEREG travel distance limit to 10 units.

Returns the rightmost characters of a string.

string1$=RIGHT$(string2$,n)

The n is the number of rightmost characters to return. If n is greater than the length
of string2$ then the entire string is returned to string1$.

b$="Hello World"
a$=RIGHT$(b$,4) ' sets a$="orld"

REGLIMIT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Over Travel Limit

EXAMPLES:

String ManipulationRIGHT$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

136 Programming Commands

Programmable "software limit switch" for motion in the negative direction. Sets or
returns the absolute negative travel limit position value for the motor.

SOFTLIMNEG=expression
SOFTLIMNEG - used in an expression

Software travel limits are used to stop the motor when the commanded position
(ABSPOS) exceeds the programmed software travel limit. There are two software
travel limits, one for + and one for - motor rotation. The
+ software travel limit is tested when the motor is rotating in the + direction. The -
software travel limit is tested when the motor is rotating in the - direction.

The software travel limits are checked if they are enabled and a motion other than
MOVEHOME is occurring.

The software travel limits power up disabled (SOFTLIMOFF). At power up, the
-software travel limit is set to -2,147,481,647 encoder counts away from 0. This
setting is changed with the SOFTLIMNEG command.

When a travel limit is exceeded, the motor is decelerated to a stop using the
maximum accel value, and an error code is set. Code 130 is set when the +
software limit is exceeded and code 131 when the - software limit is exceeded.

SOFTLIMNEG=expression
Sets the absolute travel distance.

SOFTLIMNEG - used in an expression
Evaluates and returns the absolute software travel distance.

SOFTLIMNEG = -4 ' Sets the absolute software travel distance to -4 units.

SOFTLIM
NEG

 ACTION:

PROGRAM SYNTAX:

REMARKS:

Over Travel Limit

EXAMPLES:

Programming Commands 137

Disables the software over travel limits.

SOFTLIMOFF

Software travel limits are used to stop the motor when the commanded position
(ABSPOS) exceeds the programmed software travel limit. There are two software
travel limits, one for + and one for - motor rotation. The
+ software travel limit is tested when the motor is rotating in the + direction. The -
software travel limit is tested when the motor is rotating in the - direction.

This command disables the negative and positive software limits checking during
motion.

SOFTLIMOFF 'Disables the negative and positive software limits.

SOFTLIM
OFF

 ACTION:

PROGRAM SYNTAX:

REMARKS:

Over Travel Limit

EXAMPLES:

138 Programming Commands

Enables the software over travel limits.

SOFTLIMON

Software travel limits are used to stop the motor when the commanded position
(ABSPOS) exceeds the programmed software travel limit. There are two software
travel limits, one for + and one for - motor rotation. The
+ software travel limit is tested when the motor is rotating in the + direction. The -
software travel limit is tested when the motor is rotating in the - direction.

This command enables the negative and positive software limits checking during
motion.

The software travel limits are checked if they are enabled and motion other than
MOVEHOME (move to home) is occurring.

The software travel limits power up disabled (SOFTLIMOFF) and are set to
2,147,481,647 encoder counts away from 0. These settings can be subsequently
changed with commands SOFTLIMPOS and SOFTLIMNEG.

When a travel limit is exceeded, the motor is decelerated to a stop using the
maximum accel value, and an error code is set. Code 130 is set when the +
software limit is exceeded and code 131 when the - software limit is exceeded.

SOFTLIMON 'Enables the negative and positive software limits.

SOFTLIM
ON

 ACTION:

PROGRAM SYNTAX:

REMARKS:

Over Travel Limit

EXAMPLES:

Programming Commands 139

Programmable "software limit switch" for motion in the positive direction. Sets or
returns the absolute positive travel limit position value for the motor.

SOFTLIMPOS=expression
SOFTLIMPOS - used in an expression

Software travel limits are used to stop the motor when the commanded position
(ABSPOS) exceeds the programmed software travel limit. There are two software
travel limits, one for + and one for - motor rotation. The
+ software travel limit is tested when the motor is rotating in the + direction. The -
software travel limit is tested when the motor is rotating in the - direction.

The software travel limits are checked if they are enabled and a motion other than
MOVEHOME is occurring.

The software travel limits power up disabled (SOFTLIMOFF). At power up, the
+software travel limit is set to +2,147,481,647 encoder counts away from 0.
This setting is changed with the SOFTLIMPOS command.

When a travel limit is exceeded, the motor is decelerated to a stop using the
maximum accel value, and an error code is set. Code 130 is set when the +
software limit is exceeded and code 131 when the - software limit is exceeded.

SOFTLIMPOS=expression
Sets the absolute travel distance.

SOFTLIMPOS - used in an expression
Evaluates and returns the absolute travel distance.

SOFTLIMPOS = +4 ' Sets the absolute travel distance to +4 units.

SOFTLIM
POS

 ACTION:

PROGRAM SYNTAX:

REMARKS:

Over Travel Limit

EXAMPLES:

140 Programming Commands

Sets and returns the target velocity of the motor.

SPEED = expression
SPEED - used in an expression

SPEED - used in an expression
Evaluates and returns the target velocity.

SPEED = expression
Sets the target speed for motion. Specifying a value < 0, results in a target speed
of 0. Specifying a value greater than "Max Speed" set in the Configuration and
Setup will result in a target speed of "Max Speed". At power up the target speed
is initialized to 25% of "Max Speed". SPEED can be set during motion, the new

setting is effective immediately.

SPEED=3.0 ' Sets the velocity to 3.0 units/second.
x=SPEED ' sets x to 3.0.

Stops any motion with a controlled stop.

STOP

Stop the motor using the programmed decel and velocity profile.

STOP ' generates a motion stop command.

SPEED
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Trajectory Parameters

EXAMPLES:

MotionSTOP
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 141

Returns a string representation of a numeric expression.

string1$=STR$(numeric_expression)

The numeric expression can be a parameter value, real value or integer value.

The STR$ command is the complement of a VAL command.

STRING a$,b$,c$
INTEGER x

REAL y
ACCEL=10.5

x=100
y=2.1
a$=STR$(ACCEL) ' sets a$="10.5"
b$=STR$(x) ' sets b$="100"
c$=STR$(y) ' sets c$="2.1"

Returns a string of characters.

string1$=STRING$(num,code)

The num indicates the length of the returned string.

The code is the ASCII code of each character.

a$=STRING$(10,63) ' sets a$="??????????"

STR$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

STRING$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

142 Programming Commands

Sets or returns the timer value.

TIMER=expression
TIMER - used in an expression

TIMER = expression
Sets the timer value to the expression. The value is in seconds.

TIMER
Returns the current timer value to the variable.

The timer is free running and counts up in .001 second increments. After
reaching a value of +2,147,481.647 seconds, the timer wraps around
to -2,147,481.647 and continues to count towards zero (i.e. the next count

 is -2,147,481.646). Programs which use large timer values must take this
into account and adjust appropriately.

TIMER=0 'Sets the Timer value to 0.

DO
statements

LOOP WHILE TIMER < 1.0 'Do this loop until timer >= 1.0

Converts and returns a string with upper case letters.

string1$=UCASE$(string2$)

string2$ is copied and all lower case letters are converted to upper case letters and
the resulting string is returned string1$.

This command is useful for making the INSTR command case insensitive.

a$="hello"
b$=UCASE$(a$) ' sets b$="HELLO"

TIMER
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Time Functions

EXAMPLES:

UCASE$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

Programming Commands 143

Returns the current ID.

UNITID - used in an expression

The unit id value returned is 1-32. The value read from the unit id switches on
power-on.

ID = UNITID 'sets variable ID to the unit id number
IF VAL(unitid$) = ID THEN ' if received unit id matches the unit id

' number execute the following statements
YYY
YYY

END IF

Return the numeric value of a string.

VAL(n$) - used in an expression

n$ is the designated string.

Only numeric values are returned. The first character that cannot be part
 of the number terminates the string. If no digits have been processed a value of
zero is returned.

Integer x
Real y
STRING a$,b$

a$="134 Main St"
b$="10.55 dollars"
x=VAL(a$) ' sets x=134
y=VAL(b$) ' sets y=10.55

UNITID
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Daisy Chain

EXAMPLES:

VAL
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

144 Programming Commands

Waits for the specified period of time to expire before continuing.

WAIT=expression

Program execution is suspended until the desired time has elapsed. The value
entered is in seconds.

WAIT=1.1 'Waits 1.1 seconds and then continues.

Waits for a motion to be completed.

WAITDONE

WAITDONE
Waits for motion to be completed before program execution continues.

An alternate way to accomplish the WAITDONE function is as follows:
DO
:

LOOP WHILE BUSY ' Waits until motion is
completed.

WAITDONE >Waits for motion to be complete before continuing
program execution .

WAIT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Time Functions

EXAMPLES:

MotionWAITDONE
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 145

Enables or disables the servo drive.

WNDGS=expression
WNDGS - used in an expression

The drive enable output powers up in the off state. This insures an initially safe
condition. The WNDGS command controls the drive enable output. WNDGS =1
turns the enable on and WNDGS =0 turns it off.
Although the WNDGS command can be executed at any time, the drive enable
output is only changed when motion is not occurring. The state of the drive enable
output can be read using the "WNDGS" command. A return value of 0 = not
enabled, 1 = enabled.

When the drive enable is off, the servo loop's integral term is zeroed and the servo
loop output is 0v. When the drive enable is turned on, the commanded position
(ABSPOS) is set equal to the encoder position (ENCPOS).This forces the
position error to zero so that the servo loop output does not cause unexpected
motion. If motion is commanded when the drive is disabled, error code 135 is set
and no motion occurs.

The expression value must be zero or a positive number.

PRINT#1,WNDGS ' Prints the state of the servo drive windings
WNDGS=1 'enables the servo drive.
WNDGS=0 'disables the servo drive.

WNDGS
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

EXAMPLES:

146 Host Commands

Section 6.2

Host Commands
Reference Guide

Host Commands 147

6.2.0 Host Commands

One method of operating the controller is to program it via a PC using the commands detailed in the previous
section, then set it up as a stand-alone system. In that case, after it is programmed, the programmer does not need
to communicate with any outside computer system. However, another method of system operation involves
connecting the controller to some type of "host" computer, via the "HOST RS-232" or "HOST RS-485" port.
Then, that computer may direct its operation and query its status from time to time, if desired. To do this, you use
the "Host Commands" detailed below. The full command may be spelled out, or the abbreviated commands in
parentheses may be used. Note: Except for the immediate commands, all host commands MUST be
preceded by an ESCAPE character for them to be recognized while a program is executing. Items placed
in quotes (e.g., "?") are key presses or ASCII characters and are not spelled out in letters.

6.2.1 Host Commands Grouped by Function
MOTION PAGE

BUSY (BS) Returns the motion status of the axis. 148
CMDPOS Returns the commanded position of the motor in units. 149
EVENT1 (E1) Sets enable or disable and trigger state or returns event1 input state. 155
EVENT2 (E2) Sets enable or disable and trigger state or returns event2 input state. 155
FEEDHOLD (FH) Control stops any motion. 156
JOG (J) H Runs continuously in the specified direction. 160
MOVEA (MA) H Initiates an absolute indexed move . 162
MOVEHOME (MH) H Run until the home input is activated. 162
MOVEI (MI) H Initiates an incremental indexed move . 163
MOVEREG (MR) H Runs until the registration input is activated, 163

then moves the specified distance.
STOP (S) Control stop any motion. 169
WNDGS (WN) Enable/disable servo drive. 170

TRAJECTORY PARAMETERS

ABSPOS (P) H Sets or returns the absolute position. 147
ACCEL (AC) H Sets or returns the acceleration rate in units/sec/sec. 147
DECEL (DC) H Sets or returns the deceleration rate in units/sec/sec. 151
DIST H Returns the distance moved from the start of the last commanded 152

motion or changes the move distance during indexed motion.
ENCPOS (EP)Returns the encoder absolute position. 152
ENCSPD (ES) Returns the current speed. 153
SPEED (SPD) Sets or returns the commanded target speed. 169

SERVO PARAMETERS

FOLERR (FE) H Sets or returns the following error. 156
INTLIM (IL) HSets or returns the servo axis integral limit. 159
KD H Sets or returns the servo axis derivative gain. 160
KI H Sets or returns the servo axis integral gain. 160
KP H Sets or returns the servo axis proportional gain. 161
KVFF H Sets or returns the servo axis velocity feed forward gain. 161
OUTLIMIT (OL) H Sets or returns the torque output voltage limit. 164

148 Host Commands

I/O PAGE

ANALOG (AN) Returns the analog input voltage. 147
BCD Returns the BCD switches value. 148
IN (I) Returns the discrete input state of the specified input. 159
OUT (O) Sets the discrete output state of the specified output 164

TRAVEL LIMITS

HARDLIMOFF (HL0) Disables hard limits. 158
HARDLIMON (HL1) Enables hard limits. 158
REGLIMIT (RL) H Sets or returns the MOVEREG limit distance. 165
SOFTLIMNEG (SLN) H Sets or returns the software absolute negative travel distance. 167
SOFTLIMOFF (SL0) Disable soft limits. 167
SOFTLIMON (SL1) Enables soft limits 168
SOFTLIMPOS (SLP) H Sets or returns the software absolute positive travel distance. 168

MISCELLANEOUS

CLRNVR Initialize all location in NVR memory to 0. 149
DIR Returns the user project information. 151
ERR Return error number. 154
FREEMEM Return the user program free memory byte value. 157
NVR Returns or stores a REAL or INTEGER value to NVR memory. 163
RESET Reset operating system. 165
REVISION (REV) Returns operating system revision and date. 166
RUN H Execute user program from the start. 166

IMMEDIATE

ABACKSPACE@ Delete one character in the host buffer. 148
ACTRL-A@ Stop motion immediately and terminate program execution. 150
ACTRL-C@ Stop motion immediately and terminate program execution. 150

The analog output voltage for a servo is disabled.
AESCAPE@ Immediate Host command. 154

DAISY CHAINING

<nn Enables a specific unit (nn = 01 to 32) 146
<nn? Enables a specific unit (nn = 01 to 32) which 146

then sends back its unit ID.
<00 Places all units on the chain in a command listen mode, 132

the units can not transmit.

GEARING

ENCPOS2 Returns the Encoder 2 position in units. 152
ENCSPD2 Returns the current Encoder 2 velocity in units/second. 152

HH IMPORTANT:

Host Commands 149

Host commands indicated with a (H) WILL NOT execute if a program is executing. The program execution must
be halted, and the Host command re-entered for it to take effect.

150 Host Commands

6.2.2 Host Command Summary (alphabetical list)
Note: The full command may be spelled out,

or the abbreviated commands in parentheses may be used.

PAGE
<nn Enables a specific unit (nn = 01 to 32) 146
<nn? Enables a specific unit (nn = 01 to 32) which 146

then sends back its unit ID.
<00 Places all units on the chain in a command listen mode, 146

the units can not transmit.
A
ABSPOS (P) Sets or returns the absolute position. 147
ACCEL (AC) Sets or returns the acceleration rate in units/sec/sec. 147
ANALOG (AN) Returns the analog input voltage. 147

B
BACKSPACE Delete one character in the host buffer. 148
BCD Returns the BCD switches value. 148
BUSY (BS) Returns the motion status of the axis. 148

C
CLRNVR Initialize all location in NVR memory to 0. 149
CMDPOS Returns the commanded position of the motor in units. 149
CTRL-A Stop motion immediately and terminate program execution. 150
CTRL-C Stop motion immediately and terminate program execution. 150

The servo drive enable is turned off.

D
DECEL (DC) Sets or returns the deceleration rate in units/sec/sec. 151
DIR returns the user project information. 151
DIST Returns the distance moved from the start of the last commanded 152

motion or changes the move distance during indexed motion.

E
ENCPOS (EP) Returns the encoder absolute position. 152
ENCPOS2 Returns the Encoder 2 position in units. 152
ENCSPD (ES) Returns the current speed. 153
ENCSPD2 Returns the current Encoder 2 velocity in units/second. 153
ERR Returns error number. 154
ESCAPE Immediate host command. 154
EVENT1 (E1) Sets enable or disable and trigger state of event1. 155
EVENT2 (E2) Sets enable or disable and trigger state of event2. 155

F
FEEDHOLD (FH) Control stops any motion. 156
FOLERR (FE) Sets or returns the following error. 156
FREEMEM Return the user program free memory byte value. 157

Host Commands 151

H PAGE
HARDLIMOFF Disables hard limits. 158
 (HL0)
HARDLIMON Enables hard limits. 158
 (HL1)

I
IN (I) Returns the discrete input state of the specified input. 159
INTLIM (IL) Sets or returns the servo axis integral limit. 159

J
JOG (J) Runs continuously in the specified direction. 160

K
KD Sets or returns the servo axis derivative gain. 160
KI Sets or returns the servo axis integral gain. 160
KP Sets or returns the servo axis proportional gain. 161
KVFF Sets or returns the servo axis velocity feed forward gain. 161

M
MOVEA (MA) Initiates an absolute indexed move . 162
MOVEHOME (MH) Run until the home input is activated. 162
MOVEI (MI) Initiates an incremental indexed move . 163
MOVEREG (MR) Runs until the registration input is activated, 163

then move the specified distance.

N
NVR Returns or stores a REAL or INTEGER value to NVR memory. 163

O
OUT (O) Sets the discrete output state of the specified output 164
OUTLIMIT (OL) Sets or returns the torque output voltage limit. 164

R
REGLIMIT (RL) Sets or returns the MOVEREG limit distance. 165
RESET Reset operating system. 165
REVISION (REV) Returns operating system revision and date. 166
RUN Execute user program from the start. 166

S
SOFTLIMNEG (SLN) Sets or returns the software absolute negative travel distance. 167
SOFTLIMOFF (SL0) Disable soft limits. 167
SOFTLIMON (SL1) Enables soft limits 168
SOFTLIMPOS (SLP) Sets or returns the software absolute positive travel distance. 168
SPEED (SPD) Sets or returns the commanded target speed. 169
STOP (S) Control stop any motion. 169

W
WNDGS (WN) Enable/disable servo drive. 170

152 Host Commands

6.2.3 Host Commands - Alphabetical Listing

Functional list of all HOST commands with syntax and examples

Notes: "cr" means the carriage return key in the following descriptions.
 Each command may be spelled out, or the abbreviated command may be
used, where applicable.

Enables a specific unit on the Host daisy chain to receive and transmit information.

<nn cr

Ann@ is a unit id number from 01,02...32. Leading zeros are required when
specifying unit id numbers less than 10. 00 is a special case as described below.

This command is used to communicate to multiple units from a single host computer.
In this arrangement the Host communications ports of two or more units are wired
together in RS-485 mode as shown previously in the wiring section. Each unit must
also have its ID switches set to a unique ID number. One (and only one) unit
MUST have its switches set to ID number 1. This unit will transmit a RDY upon
reset, the others will not.

In order to accept commands from the Host device, a particular unit must be set
to the active mode. The Host accomplishes this by sending the device attention
character (<) followed by the two number device ID and a carriage return, line
feed. If nn matches the controller ID number as set on the ID switches, that unit
becomes the active controller on the chain.

If the Host requires an acknowledgement that a specified unit is in the active mode,
the Host may send a <nn? cr . If any unit is on the chain and in the active mode, it
will transmit its ID number as two characters.

All controllers on the chain may be placed in a command listen mode. In this mode,
all units will actively listen for and respond to commands, but will not transmit any
response. This is useful for synchronizing multiple units by simultaneously starting

their motion. To place the units in this mode, the Host must send <00 cr. In order
to exit the command listen mode an individual unit must be re-activated (e.g. <01).

<05 ' sets unit with ID number 5 to the active mode.
<06? ' queries whether unit 6 is on the chain and active

' unit 6 will respond with "06" if it is.
<00 ' sets all units to the command listen mode.

<nn
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Daisy Chain

EXAMPLES:

ABSPOS
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Host Commands 153

Sets or returns the commanded absolute position of the motor.

ABSPOS=number cr
ABSPOS cr

Abbreviation P can be used in place of ABSPOS.

See Programming Command ABSPOS.

ABSPOS=2 'sets absolute position to 2 units.

ABSPOS 'returns the current absolute position

Sets or returns the acceleration value of an axis.

ACCEL=number cr
ACCEL cr

Abbreviation AC can be used in place of ACCEL.

See Programming Command ACCEL.

ACCEL=2 'Sets the acceleration rate to 2 units/sec2.

Returns the analog input value in volts.

ANALOG cr

Abbreviation AN can be used in place of ANALOG.

See Programming Command ANALOG.

ANALOG 'returns the analog input voltage value.

Trajectory Parameters

EXAMPLES:

ACCEL
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Trajectory Parameters

EXAMPLES:

ANALOG
 ACTION:

PROGRAM SYNTAX:

REMARKS:

I/O Operator

EXAMPLES:

154 Host Commands

The Backspace key or ASCII code 08 can be used to delete one character from
the host receiver buffer.

Press the BACKSPACE (²) key or send ASCII 08.

Note: This command is placed in quotes. This is because it is a keypress or ASCII
code and is not spelled (typed) out in letters. The ASCII code may be sent to the
controller if a keyboard is not used.

Returns the value on the BCD switches.

BCD cr

See Programming Command BCD.

BCD 'returns the BCD switches value.

Returns the motion status.

BUSY cr

Abbreviation BS can be used in place of BUSY.

See Programming Command BUSY

Immediate"BACK
SPACE"

 ACTION:

PROGRAM SYNTAX

I/O OperatorBCD
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

BUSY
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

Host Commands 155

BUSY cr 'returns the motion status.EXAMPLES:

156 Host Commands

Initialize all location in NVR memory to 0.

CLRNVR cr

If an initialization value other than zero is required execute the following basic
program.

REAL data
INTEGER count

data= 1.0 ‘ initialization value
FOR count=1 to 400

NVR(count)=data ‘ initialize NVR location
NEXT count
END

CLRNVR ‘ initializes all NVR location to 0

Returns the commanded position of the motor in units.

CMDPOS cr

This command is defined in more details Section 8 Electronic Gearing.

CLRNVR
ACTION:

PROGRAM SYNTAX:

REMARKS:

NVR Memory

EXAMPLES:

MotionCMDPOS
ACTION:

PROGRAM SYNTAX:

REMARKS:

Host Commands 157

Stops motion by decelerating the motor using the maximum acceleration value in the
Configuration and Setup. The servo system remains energized, and program
execution terminates. This command has the same effect as the hardware CLEAR
input.

Simultaneously press the control key, CTRL, and A keys. ASCII code 01 may also
be used.

"CTRL-A" will stop program execution and motion.

Note: This command is placed in quotes. This is because it is a keypress
or ASCII code and is not spelled (typed) out in letters. The ASCII code may be
sent to the controller if a keyboard is not used.

Performs the same function as the CTRL-A, but also de-energizes the servo system
by turning off the DRIVE ENABLE signal and commanding 0V on the SERVO
CMD analog output.

Simultaneously press the control key, CTRL, and the C keys. ASCII code 03 may
also be used.

"CTRL C" will stop program execution and motion. When motion stops the servo
drive is disabled.

To re-enable the servo drive use the WNDGS=1 command.

Note: This command is placed in quotes. This is because it is a keypress or ASCII
code and is not spelled (typed) out in letters. The ASCII code may be sent to the
controller if a keyboard is not used.

"CTRL-A"
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Immediate

Immediate"CTRL-C"
 ACTION:

PROGRAM SYNTAX:

REMARKS:

158 Host Commands

Sets or returns the deceleration value.

DECEL=number cr
DECEL cr

Abbreviation DC can be used in place of DECEL.

See Programming Command DECEL.

DECEL=3.1 'sets the deceleration value to 3.1 units/sec2.

Returns the user project information.

DIR cr

If there is no user project, DIR returns a crlf.

Returns the following ASCII format:
VER n.nn
pppppppp mm\dd\yyyy hh:mm
 where:

n.nn project compiler version.
pppppppp project name. Up to 8 characters can be used for a

project name. If less than 8 characters is used to identify
a project the trailing characters will be spaces.

mm month the project was compiled.
dd day the project was compiled.
yyyy year the project was compiled.
hh hour the project was compiled.
mm minutes the project was compiled.

DIR cr ' with no project loaded
 crlf

DIR cr ' with project test1 loaded
VER 1.00crlf
test1 06\26\1996 12:30

DECEL
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Trajectory Parameters

EXAMPLES:

DIR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Miscellaneous

EXAMPLES:

Host Commands 159

compiled with version 1.00 compiler. Project name is test1.
compiled June 26 1996 at 12:30.

160 Host Commands

Returns the distance moved from the start of the last commanded motion or changes
the move distance during indexed motion.

DIST=number cr
DIST cr

See Programming Command DIST.

DIST ' returns the distance traveled from the start of motion.

MOVEI=-25
DIST=-10 ' shorten the move by 10 units

Returns the encoder position.

ENCPOS cr

Abbreviation EP can be used in place of ENCPOS.

See Programming Command ENCPOS.

ENCPOS ' returns the encoder position.

Returns the Encoder 2 position in user units.

ENCPOS2 cr

This command is defined in more detail in Section 8 Electronic Gearing.

DIST
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Trajectory Parameters

EXAMPLES:

Trajectory ParametersENCPOS
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

ENCPOS2
ACTION:

PROGRAM SYNTAX:

REMARKS:

Gearing

Host Commands 161

Returns the current encoder speed in units/second.

ENCSPD cr

Abbreviation ES can be used in place of ENCSPD.

See Programming Command ENCSPD.

ENCSPD ' returns the current encoder speed.

Returns the current Encoder 2 velocity in units/second.

ENCSPD2 cr

This command is defined in more details in the Gearing section of the manual.

ENCSPD
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Trajectory Parameters

EXAMPLES:

GearingENCSPD2
ACTION:

PROGRAM SYNTAX:

REMARKS:

162 Host Commands

Returns the error status of the controller.

ERR cr

See Programming Command ERR.

ERR cr ' return the error status.

The ESCAPE command is used during program execution to allow host commands
to be executed.

Press the ESCAPE key or send ASCII code 27.

The ESCAPE command must precede a host command during program execution
in order for it to be executed.

Note: This command is placed in quotes. This is because it is a keypress or ASCII
code and is not spelled (typed) out in letters. The ASCII code may be sent to the

controller if a keyboard is not used.

"ESCAPE" ABSPOS cr ' returns the absolute position

"ESCAPE" STOP cr ' stops motion

"ESCAPE" FEEDHOLD cr ' Feedhold motor

MiscellaneousERR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

"ESCAPE"
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Immediate

EXAMPLES:

Host Commands 163

Sets the trigger polarity and trigger enable, which are used in a MOVEHOME and
MOVEREG cycle.

EVENT1=number cr

Abbreviation E1 can be used in place of EVENT1.

See Programming Command EVENT1

EVENT1=0 'disables EVENT1 trigger if assigned as a
MOVEREG or MOVEHOME trigger.

EVENT1=1 'Sets EVENT1 trigger to positive edge triggering and
enables the trigger.

EVENT1=-1 'Sets EVENT1 trigger to negative edge triggering and
enables the trigger.

Sets the trigger polarity and trigger enable, which are used in a MOVEHOME and
MOVEREG cycle.

EVENT2=number cr

Abbreviation E2 can be used in place of EVENT2.

See Programming Command EVENT2

EVENT2=0
Disables EVENT2 trigger if assigned as a MOVEREG trigger.

EVENT2=1
Sets EVENT2 trigger to positive edge triggering and enables the trigger.

EVENT2=-1
Sets EVENT2 trigger to negative edge triggering and enables the trigger.

EVENT1
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

EXAMPLES:

MotionEVENT2
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

164 Host Commands

This command stops all motion by decelerating at the programmed decel rate.
The user program continues to run. Motion may be continued by issuing a RUN
host command or toggling the RUN hardware input from inactive to active.

FEEDHOLD cr

Abbreviation FH can be used in place of FEEDHOLD.

FEEDHOLD
Control stops any motion. The control stopping rate is the programmed DECEL
rate.

To resume the stopped motion issue a Arun" host command.

To cancel the motion issue a <Ctrl-A> host
command.

 FEEDHOLD cr

Sets or returns the position error limit. When the position error limit is exceeded,
any ongoing motion is stopped and an error is set.

FOLERR=number cr
FOLERR cr

Abbreviation FE can be used in place of FOLERR.

See Programming Command FOLERR.

FOLERR=.5 ' position error limit is set to .5 units

FEEDHOLD
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

Servo ParametersFOLERR
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

Host Commands 165

Returns the total program space available and the amount of free memory remaining
for program storage.

FREEMEM cr

The return format is:
tttt,nnnn
where: tttt total number of 8 bit bytes available.

nnnn number of 8 bit byte remaining.

An option to save or not save the source code for the project is selected by
accessing the System menu item Source Code in the MCPI Programming
Environment . The saving of the source code results in the compressed source
code being added to the compiled project during a project download. If more
memory is required to store the project simply select the do not save the source

code.

FREEMEM cr
8192,8000
8192 total bytes available with 8000 bytes remaining

FREEMEM
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Miscellaneous

EXAMPLES:

166 Host Commands

Disables the hardware limit inputs.

HARDLIMOFF cr

Abbreviation HL0 can be used in place of HARDLIMOFF.

See Programming Command HARDLIMOFF.

HARDLIMOFF 'hard limit inputs are general purpose.

Enables the hardware limit inputs.

HARDLIMON cr

Abbreviation HL1 can be used in place of HARDLIMON.

See Programming Command HARDLIMON.

HARDLIMON 'hard limit inputs are active

HARDLIM
OFF

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Travel Limits

EXAMPLES:

Travel Limits
HARDLIM

ON
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

Host Commands 167

Returns the state of a digital input.

IN(nn) cr

Abbreviation I can be used in place of IN.

See Programming Command IN.

IN(6) ' current state of input 6 is returned.

Sets the Integral limit for the controller. This is the limit of the contribution to the
servo output from the integral of the position error.

INTLIM=number cr
INTLIM cr

Abbreviation IL can be used in place of INTLIM.

See Programming Command INTLIM.

INTLIM=5 ' Sets the integral limit to 5 volts.

IN
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

I/O Operator

EXAMPLES:

Servo ParametersINTLIM
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

168 Host Commands

Move in the specified direction.

JOG = number cr

Abbreviation J can be used in place of JOG.

See Programming Command JOG.

JOG=+1 ' start a jog in the positive direction.

Sets or returns the derivative gain for the servo motor.

KD=number cr
KD cr

See Programming Command KD.

KD=10 'Sets the derivative gain to 10 milliseconds.

Sets or returns the Integral gain of the servo motor.

KI=number cr
KI cr

See Programming Command KI.

KI=1 'Sets the integral gain to 1 millisecond.

JOG
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

KD
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Servo Parameters

EXAMPLES:

Servo ParametersKI
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Host Commands 169

KI ' returns the current
value for integral gain

Sets or returns the proportional gain of the servo motor.

KP=number cr
KP cr

See Programming Command KP.

KP(2)=50 'Sets the proportional gain to 50 millivolts/encoder count (.05
volts/encoder count).

KP ' returns the current value for proportional gain

Sets or returns the velocity feed forward gain value for the servo motor.

KVFF=number cr
KVFF cr

See Programming Command KVFF.

KVFF=100 cr 'Sets the velocity feed forward gain to 100%.

KVFF ' return the current velocity feed forward gain

KP
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Servo Parameters

EXAMPLES:

Servo ParametersKVFF
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

170 Host Commands

Initiates the motor to move to the specified absolute position.

MOVEA = number cr

Abbreviation MA can be used in place of MOVEA.

See Programming Command MOVEA.

MOVEA=2.5 ' moves to absolute position of 2.5 units.

Runs the motor until the home input is activated, captures and records the position
of the switch activation as home (electrical zero), then stops.

MOVEHOME = number cr

Abbreviation MH can be used in place of MOVEHOME.

See Programming Command MOVEHOME.

MOVEHOME=+1 'Returns to mechanical home in the Positive direction

MOVEA
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

MotionMOVE
HOME

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

Host Commands 171

Initiates an incremental move.

MOVEI = number cr

Abbreviation MI can be used in place of MOVEI.

See Programming Command MOVEI.

MOVEI=2.5 ' moves +2.5 units.

Runs the motor until the mark registration input is activated, then moves the motor
the desired registration distance without stopping.

MOVEREG =number cr

Abbreviation MR can be used in place of MOVEREG.

See Programming Command MOVEREG.

MOVEREG=+2.5 'Initiates a registration cycle in the positive direction with
a move of 2.5 units after the mark registration input is activated.

Returns or stores a REAL or INTEGER value to NVR memory.

NVR(element) cr
NVR(element) = number cr

See programming command NVR.

NVR(400)=34.5 ‘ store 34.5 in NVR location 400
NVR(400) ‘ returns 34.5 from NVR location 400

MOVEI
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

MotionMOVEREG
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

NVR MemoryNVR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

172 Host Commands

Sets or returns the state of a specified digital output.

OUT(n) = number cr
OUT(n) cr

Abbreviation O can be used in place of OUT.

See Programming Command OUT.

OUT(1)=1 ' sets OUT 1 to the active state.

OUT(2)=0 ' sets OUT 2 to the inactive state

Sets or returns the servo command voltage limit.

OUTLIMIT=number cr
OUTLIMIT cr

Abbreviation OL can be used in place of OUTLIMIT.

See Programming Command OUTLIMIT.

OUTLIMIT=5 ' sets analog output voltage limit to 5 volts.

OUTLIMIT ' returns the current analog output limit.

OUT
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

I/O Operator

EXAMPLES:

OUTLIMIT
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Servo Parameters

EXAMPLES:

Host Commands 173

Sets or returns the maximum mark registration
distance before indicating an error and stopping motion.

REGLIMIT cr
REGLIMIT=number cr

Abbreviation RL can be used in place of REGLIMIT.

See Programming Command REGLIMIT.

REGLIMIT=0 ' disables the MOVEREG travel distance limit.

REGLIMIT=10 ' set the MOVEREG travel distance limit to 10 units.

REGLIMIT ' returns the current REGLIMIT value

Resets the system.

RESET cr

This command causes the system to halt, and then restart as though power had been
cycled.

REGLIMIT
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Travel Limits

EXAMPLES:

MiscellaneousRESET
 ACTION:

PROGRAM SYNTAX:

REMARKS:

174 Host Commands

Returns the current revision level of the controller's operating system software.

REVISION cr

Abbreviation REV can be used in place of REVISION.

The return format for this command is:
TDC REV n.nn mm/dd/yy
where:

n.nn TDC software revision
mm month
dd day
yy year

Starts the user program or resumes from a FEEDHOLD condition which has been
generated either by the hardware input Feedhold or by the FEEDHOLD host
command.

RUN cr

Starts execution of the user program if a Feedhold condition does not exist.

Resumes motion if a Feedhold condition exists.

RUN

REVISION
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Miscellaneous

MiscellaneousRUN
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Host Commands 175

Programmable "software limit switch" for motion in the negative direction. Sets or
returns the absolute negative limit travel position value.

SOFTLIMNEG=number cr
SOFTLIMNEG cr

Abbreviation SLN can be used in place of SOFTLIMNEG.

See Programming Command SOFTLIMNEG.

SOFTLIMNEG= -4 ' sets the absolute software travel limit to -4 units.

SOFTLIMNEG ' returns the software travel limit value

Disables the software over travel limits.

SOFTLIMOFF cr

Abbreviation SL0 can be used in place of SOFTLIMOFF.

See Programming Command SOFTLIMOFF.

SOFTLIMOFF 'Disables the negative and positive software limits

SOFTLIM
NEG

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Travel Limits

EXAMPLES:

Travel LimitsSOFTLIM
OFF

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

176 Host Commands

Enables the software over travel limits.

SOFTLIMON cr

Abbreviation SL1 can be used in place of SOFTLIMON.

See Programming Command SOFTLIMON.

SOFTLIMON 'Enables the negative and positive software limits.

Programmable "software limit switch" for motion in the positive direction. Sets or
returns the absolute positive limit travel position value for the motor.

SOFTLIMPOS=number cr
SOFTLIMPOS cr

Abbreviation SLP can be used in place of SOFTLIMPOS.

See Programming Command SOFTLIMPOS.

SOFTLIMPOS=4 ' sets the absolute travel distance to +4 units.

SOFTLIMPOS ' returns the current SOFTLIMPOS value.

SOFTLIM
ON

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Travel Limits

EXAMPLES:

Travel LimitsSOFTLIM
POS

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

Host Commands 177

Sets and returns the target velocity of the motor.

SPEED = number cr
SPEED cr

Abbreviation SPD can be used in place of SPEED.

See Programming Command SPEED.

SPEED=2.0 'sets target velocity to 2 units/sec.

SPEED ' returns 2.0

Stops any motion with a controlled stop.

STOP cr

Abbreviation S can be used in place of STOP.

Stop the motor using the programmed decel and velocity profile.

NOTE: If a program is executing, STOP will stop the present move. However,
program execution will continue and subsequent MOVE commands within the
program will execute. To stop motion immediately and terminate program
execution see Cntl-A and Cntl-C.

STOP ' generates a motion stop command.
' the present value of DECEL is used
' as the deceleration rate

SPEED
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Trajectory Parameters

EXAMPLES:

STOP
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

178 Host Commands

Enables or disables the servo drive.

WNDGS=number cr

Abbreviation WN can be used in place of WNDGS.

See Programming Command WNDGS.

WNDGS=0 'disables the servo drive.

WNDGS=1 'enables the servo drive.

WNDGS
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

Programming Examples 171

Section 7

Programming Examples

172 Programming Examples

Cut to Length Application

The application requires a servo motor to run a pair of nip rollers that draw material from a spool. This material could be anything
from paper to steel. The requirements for this application are:

Wait for activation of input 1 from an external device. This device may be an operator input or PLC.
Feed out a length of material. For this example, a length of 12 inches is required.
Activate the cutting blade.
Delay for 1 second. This allows the blade to cut the material.
Deactivate the cutting blade.
Delay for .25 seconds to allow the blade to return home.
Repeat the process if input 2 is not activated.

Program Code:

begin: >Label for program return .
do : loop until (in(1)=1) >Wait for input 1 to become active.
movei=12 >Move 12 inches (incremental move).
waitdone 'wait for motion to be completed
out(1)=1 >Turn on output 1, cutting blade activation.
wait=1 >Wait for 1 second. Wait for cut to happen.
out(1)=0 >Turn off output 1, cutting blade deactivation.
wait=.25 >Wait for cutting blade to return, .25 sec.
if in(2)=0 then goto begin >Return to beginning of program.

end >End of program.

TDC

Cutting
Head

Driven
Roller

Material
Spool

Programming Examples 173

Test
Station

1

Exit
Belt

Test
Station

2Test
Station

3

Load
Belt

Rotary Table Application, Test Stations

In this application, a customer needed to load a part onto a rotary table via the load belt. Once there, the part must be tested at
three stations. The application requires:

A sensor to tell the table to jog until a sensor before the first station and index 45E
Turn on an output to tell the belt to stop until testing is complete at all the stations.
The test procedure requires the sample to be at each station until an input is activated on the control. Each test station is 45E
apart.
After the last test station, the part is rotated 90E to the exit station where it is carried out. A sensor will then tell the controller to
start the load belt for the next part.

Program Code (Rotary Table):

begin: > Label to start program
 do : loop until(in(1)=1) > Wait until a part is detected by the sensor
 out(2)=1 > Turn off the exit belt motor
 out(1)=1 > Turn off the loading belt motor
 movei=+90 > Move table 90E
 waitdone ' Wait for motion to be completed
 do: loop until (in(2)=1) > Wait for test station to complete testing and turn on input 2.
 count =0 > Initialize a counter to zero
 do > Do loop begin

movei=+45 > Move rotary table +45E to the next station
waitdone > Wait until the motor stops.
do : loop until(in(3)=1 or in(4)=0) >Stay in this loop until testing at stations 2 & 3 are complete.
count=count+1 > Increment counter by 1.

 loop until count=2 > Do loop end.
 movei=+90 > Move the part 90E to the exit belt
 waitdone ' Wait for motion to be completed
 if in(5)=0 then > Check input 5 if it is inactive if not continue if active end.

out(2)=0 > Turn on exit belt.
do : loop until in(6)=1 > Stay in loop until the sensor is activated.
out(1)=0 > Turn on loading belt.
goto begin > Return to the beginning of the program

 end if > End of the if statement.
end > End of the program.

174 Programming Examples

Servo
Motor

TDC

Roll of Tape

Knife
Act.

Slitting Machine Application

A manufacturer of adhesive tape uses a machine that takes a wide roll of tape and slits then to the correct sizes. The program must
be written to make tape sizes of 2", 1" and 0.5" from a 10' roll. The size of the tape will be determined by the inputs selected. The
machine will operate as follows:
Return to mechanical home.
If input 1 make 0.5" size of tape.
If input 2 make 1.0" size of tape.
If input 3 make 2.0" size of tape.
Loop until a selection is made and input 4 is active
If input 5 is active end program else return to electrical home
Restart program.

Program Code (Slitting machine):

movehome=1 >Return to mechanical home switch.
start: >Start label.
 do : loop until in(4)=1 ' wait for input 4 to be active.
 if in(1)=1 then goto half_in_cut >If input one is a one goto half_in_cut routine.
 if in(2)=1 then goto one_in_cut >If input two is a one goto one_in_cut routine.
 if in(3)=1 then goto two_in_cut >If input three is a one goto two_in_cut routine.
goto start >Return to start.
half_in_cut: >Half inch cut routine.

for I=1 to 240 >Beginning of for..next loop.
movei=.5 >Move 0.5".
waitdone >Wait until move is completed.
out(1)=1 >Turn on the cutting blade on output 1.
wait=.5 >Wait for cutter to complete the cut.

next I >End of the for..next loop.
goto check >Goto check subroutine.

one_in_cut: >One inch cut routine.
for I=1 to 120 >Beginning of for..next loop.

movei=1 >Move 1"
waitdone >Wait until move is completed.
out(1)=1 >Turn on the cutting blade on output 1.
wait=.5 >Wait for cutter to complete the cut.

next I >End of the for..next loop.
goto check >Goto check subroutine.

two_in_cut: >Two inch cut routine.
for I= 1 to 60 >Beginning of for..next loop.

movei=2 >Move 2".
waitdone >Wait until move is completed.
out(1)=1 >Turn on the cutting blade on output 1.
wait=.5 >Wait for cutter to complete the cut.

next I >End of the for..next loop.
check: >Check input 5 subroutine.

if in(5) = 0 then >Check to see if input 5 is inactive.

Programming Examples 175

movea=0 >If input 5 is inactive move to electrical home.
goto start >Goto beginning of input search
end if >End of if..then statement

end >End of program.

Electronic Gearing 175

Section 8

Electronic
Gearing

176 Electronic Gearing

8.1 - Gearing Description

Gearing allows the controller to follow a selected master
velocity source at a specified ratio. The master source can
be an external velocity source or a program command
source.

The GEAREXT or GEARINT programming command
determines the selection. A quadrature encoder is used as
the external source, program command GEARVEL is
used as the internal source. The external source velocity
can also be scaled using the GEARRATIO command.

The default is external velocity source generated by the
encoder 2 quadrature inputs with a GEARRATIO of 1.

Note: For true gearing operation the master starting
velocity should be zero and the gearing rate limit
should be greater than or equal to the master accelera-
tion rate times the GEARRATIO.

8.2 - Gearing Features

• Simple Basic commands.

• Basic command selectable Master source,
GEAREXT and GEARINT commands.

• Master internal source can be a variable or an expres-
sion and is specified in units/second, GEARVEL
command.

• Motor can be ratioed from an external master source,
GEARRATIO command. The ratio can be changed
in small increments during gearing motion.

• The master velocity source can be monitored using
the ENCSPD2 command.

• The scaled master position can be monitored using
the ENCPOS2 command.

• Soft start, an acceleration rate limit is imposed from a
sudden start. The ACCEL rate is the rate limit. Ex-
cess counts will be backlogged.

• Gearing Hard limits and Soft limits can be enabled. If
the limit condition is met it produces the same errors
as normal motion.

• MOVEA, MOVEI and JOG motion can be super-
imposed on a gearing motion.

• A short excessive rate change can be tolerated with-
out positioning error.

8.3 – Enabling/Disabling Gearing

The gearing mode can be enabled or disabled by issuing
program commands. The GEARON command enables
gearing while the GEAROFF command disables gearing.
The default is gearing disabled.

Note: When GEAROFF is commanded the motor will
decelerate to a stop at the ACCEL rate selected.

8.4 – Gearing Motion

Gearing motion using an external encoder is allowed
when the GEAREXT and GEARON command are en-
countered during program execution. The GEARRATIO
will determine how the motor will follow the encoder
velocity.

The following diagram depicts a typical gearing cycle.

Gearing Profile

8.5 – Velocity Rate Limit

A rate limit is imposed on the gearing velocity. The rate
limit is determined by the value of the ACCEL com-
mand.

The default ACCEL is set to 50% of the Max Accel
value when program execution begins if ACCEL has not
been specified. This rate can be changed using the
ACCEL program command during program execution.

See Section 8.6 Gearing Anomalies for more details.

GEAREXT

GEARON

Gearing Velocity Profile

(1/2 rate of the master)

External Master Velocity Profile

Electronic Gearing 177

8.6 – Gearing Anomalies

Gearing Anomalies occur when gearing is enabled or dis-
abled and the master velocity is greater than zero. The
motor velocity limit change during these anomalies is
controlled by the current ACCEL value.

The following diagrams depict these gearing anomalies.

Gearing Anomalies

8.7 – Advance / Recede Motion

A commanded motion can be superimposed on a gearing
motion. This is accomplished by issuing a JOG, MOVEI
or MOVEA command while gearing motion is taking
place.

Note: The MOVEHOME or MOVEREG commands
should not be used during gearing motion.

The motion profile in which the MOVEI, MOVEA,
and JOG commands will follow is based upon the cur-
rent settings of SPEED and Accel/DECEL for the axis.

The following diagram depicts an advance and recede
cycle.

Advance/Recede cycle

8.8 – Triggered Motion

Another feature of the controller is the ability to start a
motion on a trigger event. The MOTTRIG command
selects the trigger mode of operation for a MOVEI,
MOVEA, MOVEHOME, JOG and MOVEHOME
cycle.

The selections are no trigger, event 1 active, event 1
inactive, event 2 active and event 2 inactive.

The following diagram depicts a triggered move cycle.

Triggered Move cycle

MOVEI

+ value

(advance)

MOVEI

- value

(recede)

SPEED

SPEED

ACCEL rate

DECEL rate

ACCEL rate

DECEL rate

GEARON

External Master

Velocity

&

Gearing VelocityGEAROFF

Gearing Velocity Profile

(1/2 rate of the master)

External Master

Velocity Profile

limited to

ACCEL

rate

GEARON

limited to

ACCEL

rate

Gearing Velocity Profile

(1/2 rate of the master)

External Master Velocity Profile

GEARON

limited to

ACCEL

rate

Master Velocity

stops suddenly

MOVEI

+ value

MOVEI
- value

SPEED

SPEED

ACCEL rate

DECEL rate

ACCEL rate

DECEL rate

GEAROFF

MOVEI commanded

MOVEI commanded

Trigger occurs

Trigger occurs

178 Electronic Gearing

8.9 – Gearing Command Listing

Returns the commanded position of the motor in units.

CMDPOS – used in an expression

CMDPOS is the motor commanded position at any time. The value re-
turned is in user units.

If gearing is not used, CMDPOS will equal the normal commanded posi-
tion, ABSPOS. When gearing mode is enabled, the motor's commanded
position, CMDPOS, is the sum of the normal position, ABSPOS, and the
scaled gearing position ENCPOS2 . This allows the superposition of
gearing motion and indexed motion to create advance or recede cycles
relative to the master input. Note here that ABSPOS will represent the
position command as a result of a MOVEA, MOVEI or JOG command,
and will not account for changes in position due to gearing. Therefore
ABSPOS can be used to determine how far the motor (follower) has ad-
vanced or receded rel ative to the master.

ENCPOS is the actual motor encoder position, which should track the
CMDPOS. The ABSPOS is the normal motion position and the
ENCPOS2 is the Gearing position.

Whenever ABSPOS is set, the motor commanded position, CMDPOS, is
set to the same value. ENCPOS2 is set to zero.

REAL pos

pos = CMDPOS ‘ sets real variable pos equal to the current motor
commanded position.

CMDPOS
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Electronic Gearing 179

Returns the Encoder 2 position in user units.

ENCPOS2 – used in an expression

Evaluates and returns the present encoder 2 position. In gearing mode the
Encoder 2 position is the gearing master position.

The range of ENCPOS2 is ± 2,147,483,647 counts. If the range is ex-
ceeded the sign is reversed and counting continues in the same direction.

The encoder line counts in the configuration folder and the GEARRATIO
are used to scale ENCPOS2 into user units. Therefore, reading
ENCPOS2 returns the scaled encoder 2 position in user units (for example
motor revolutions).

ENCPOS2 is initialized to 0 at power-up, and whenever an ABSPOS =
expression is commanded, a user program is downloaded or a RUN is
commanded.

REAL y

y = ENCPOS2 ‘ sets real variable y equal to the current encoder
 2 position.

Returns the current Encoder 2 velocity in units/second.

ENCSPD2 – used in an expression

Evaluates and returns the current encoder 2 velocity, gearing velocity.

The returned velocity value is a signed value and indicates the direction of
the velocity. ENCSPD2 uses the encoder line counts in the Configuration
folder and the GEARRATIO to provide the velocity in user units/second
(for example if user units/rev = 1, then ENCSPD2 is in motor revolutions
per second).

REAL y

y = ENCSPD ‘ sets real variable y equal to the current
encoder 2 velocity in units/second.

ENCPOS2
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

ENCSPD2
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

180 Electronic Gearing

This command selects the encoder 2 external input port as the master ve-
locity source for gearing.

GEAREXT

The motor velocity tracks the external master encoder velocity when
gearing is enabled. The ratio of the motor (follower) velocity to the master
velocity is set using the GEARRATIO command

If the master velocity is a non-zero value when gearing is enabled the
motor acceleration rate will be limited to the programmed ACCEL rate.

The GEARON and GEAROFF commands enable or disable tracking of
the master velocity.

GEAREXT ‘ select the External velocity source for gearing

This command selects the internal master velocity source for gearing. The
value of the internal master velocity source is set using the GEARVEL
command.

GEARINT

The motor velocity tracks the GEARVEL commanded master velocity
when gearing is enabled using the GEARON command.

If the master velocity is a non-zero value when gearing is enabled the
motor acceleration rate will be limited to the programmed ACCEL rate.

The GEARON and GEAROFF commands enable or disable tracking of
the master velocity.

GEARINT ‘selects the GEARVEL command as the velocity
source for gearing.

GEAREXT
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

GEARINT
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Electronic Gearing 181

This command enables master velocity tracking in the gearing mode of
operation.

GEARON

The GEAREXT and GEARINT commands select the master velocity
source. The motor (follower) velocity will track the master velocity based
on the GEARRATIO which must be properly set prior to executing the
GEARON command. The GEARRATIO command may also be changed
on the fly.

If the master velocity is a non-zero value when gearing is enabled the
motor acceleration rate will be limited to the programmed ACCEL rate.

GEARON ‘ enables the master velocity for gearing

This command disables master velocity tracking in the gearing mode of
operation.

GEAROFF

If the master velocity is a non-zero value when gearing is disabled the
motor deceleration rate will be limited to the programmed ACCEL rate.

The GEAROFF condition is selected whenever a Gearing error occurs or
when program execution begins.

GEAROFF ‘ disables the master velocity for gearing

GEARON
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

GEAROFF
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

182 Electronic Gearing

This command selects the motor (follower) to master encoder gearing ra-
tio.

GEARRATIO = expression
GEARRATIO – used in an expression

The expression sets the external velocity gear ratio, motor revolutions /
encoder 2 revolutions. An expression value of 1.0 specifies a Gearing
Ratio of 1. The expression value must be a positive number.

The gear ratio is only valid when the external velocity source (encoder 2)
is selected as the master velocity using the GEAREXT command. Exter-
nal velocity source is the default selection when program execution be-
gins.

The default GEARRATIO is 1.0 when a user program begins.

The Gear Ratio range 5.96e -8 to 16.0 in 5.96 e-8 increments. However, the
practical range for gearing is .00025 to 10.

The Gear ratio may be changed during Gearing motion in small incre-
ments. Large changes may result in jerky motion and possibly a following
error condition (see FOLERR).

GEARRATIO=1.5 ‘ sets the gear ratio of motor/master to 1.5

REAL ratio
ratio = GEARRATIO ‘sets real variable ratio equal to the current

GEARRATIO value.

‘ ramp GEARRATIO example
‘ changes GEARRATIO from 1.5 to .5 in 500 milliseconds
REAL increment
INTEGER x, count
GEARRATIO=1.5 ‘ sets the gear ratio of motor/master to 1.5
GEARON ‘ enable gearing
…. ‘ program statements
count = 100 ‘ number of increments
increment = .01 ‘ increment size for GEARRATIO change
FOR x = 1 to count

GEARRATIO = GEARRATIO - increment
Wait = .005 ‘ time between increments

NEXT x

GEAR
RATIO

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Electronic Gearing 183

Sets or returns the master velocity for internal gearing in units/second.

GEARVEL = expression
GEARVEL – used in an expression

When the gearing master source is selected as internal using the
GEARINT command, the GEARVEL expression specifies the master
velocity in units/second. This velocity is NOT scaled by the
GEARRATIO, which is only valid for an external velocity source.

The motor velocity tracks this velocity directly. However, the motor ac-
celeration and deceleration rates are limited to the programmed ACCEL
rate.

The GEARON and GEAROFF commands enable and disable tracking of
the GEARVEL velocity in the GEARINT mode of operation.

If GEAREXT is set (default), then GEARVEL has no effect.

GEAREXT ‘ External master velocity selected
GEARON ‘ Enable gearing using external velocity
…. ‘ program statements
GEARVEL = ENCSPD2 ‘ save last external master velocity.

GEARINT ‘ continue running at last external
 master velocity.

REAL gearspd
gearspd = GEARVEL ‘ sets real variable gearspd to the

current GEARVEL value.

GEARVEL
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

184 Electronic Gearing

8.10 – Cut to Length Application

This application requires that material, being driven by an
encoder source, be cut to a specific length while the mate-
rial is moving. To accomplish this the cutting axis must
run in synchronization with the material during the cutting
cycle. In this example the cutter is engaged when
OUT1=1 and removed when OUT1=0.

In the program listing below, the material cutting length is
specified using variable cutLength. The distance the cut-
ter is in synchronized with the material is specified using
variable syncDist. The master velocity is derived from a
quadrature Encoder signal source that is applied to the
Encoder 2 port. The Encoder 2 Line Count value is used
to specify the source value in the user program configura-
tion.

The cutting cycle consists of engaging the cutter and
waiting for the syncDist - .1 units to be traveled. The cut-
ter is now disengaged and the remainder of the specified
syncDist is traveled. A cutlength index motion traveling
in the opposite direction is commanded. When this index
motion is completed the cutter has overshot the next cut-
ting position. The speedFactor is now adjusted to reduce
the overshoot value of the next cycle. When the cutting
position is reached the cutting cycle restarts.

Maximum cut error is ±± (master velocity/500) units.

The velocity profile for the cut to length application is
depicted below.

0 velocity

Master Velocity

Motor Velocity

DECEL rate

ACCEL rate

Move -cutLength

syncDist

Master move cutLength

SPEED

return overshoot

Cut to Length Velocity Profile

Electronic Gearing 185

Cut to Length Application

Program Code (cuttolen.prj included):

'***
'** 1) Units/Rev =1 for this program
'** 2) External master source is assumed to be going in the positive direction for this program.
'** 3) Test code is used to simulate the application. It is not intended to measure cut accuracy.
'** Comment this code out when running real parts.
'***

REAL cutLength ' master cutting length
REAL syncDist ' master cutting cycle distance traveled
REAL velocity ' move velocity before being scaled
REAL speedFactor ' velocity scale factor
REAL initFactor ' initial scale factor
REAL adjust ' move distance
REAL compare ' targeted overshoot value
REAL pos ' temporary variable
REAL min,max,value,compValue ' test only

‘************************** define cutting parameters ***************************
cutLength=10 ' master cut length
syncDist=2 ' master cutting cycle distance traveled

‘************************ initialize system parameters ***************************
ABSPOS=0 ' cutting commanded starting position
FOLERR=2 ‘ servo position error limit =2 units
WNDGS=1 ‘ enable servo motor
GEARRATIO=1 ' gear ratio motor/master
ACCEL=500 ' rate limit and move acceleration rate
DECEL=ACCEL ' move deceleration rate
GEAREXT ' encoder 2 master source selected
velocity=1 ' initial move velocity will be modified if exceeded
speedFactor= 1/((cutLength - syncDist) / cutLength)
speedFactor = speedFactor + .5 ‘move velocity scale factor
initFactor=speedFactor ' initial move velocity scale factor
adjust = cutLength * GEARRATIO ' move distance
syncDist=syncDist * GEARRATIO ' motor cutting cycle distance
compare= -.5 * GEARRATIO ' target overshoot value

'******************************** test code ***********************************
min=adjust 'initialize min value
max=0 'initialize max value
compvalue =2 * adjust 'initialize compare value
'***

‘************************** enable cutting cycle ********************************
GEARON ' enable gearing, motion begins

'****************************** test code *************************************
PRINT#1,"press any key to stop program and print max/min results"
'***

186 Electronic Gearing

DO
‘ ********************* cut cycle *****************************
OUT(1)=1 ' engage cutter
DO ' wait for distance
LOOP UNTIL CMDPOS >= (syncDist - .1)
OUT(1)=0 ' disengage cutter
DO ' wait for sync distance to complete
LOOP UNTIL CMDPOS >= syncDist

‘********************* recede cycle ***************************
IF ENCSPD2 > velocity THEN ' master velocity increased

velocity=ENCSPD2 ' init new master velocity
speedFactor=initFactor ' set initial scale factor

END IF
SPEED=velocity * speedFactor ' move target speed
MOVEI = - adjust ' recede the cut length
WAITDONE

‘******************* optimize recede speed **********************
pos=CMDPOS

'*********************** test code *****************************
PRINT#1,pos ' print overshoot number

'****************** adjust speed factor if required******************
IF pos < compare THEN ' auto adjust return overshoot

speedFactor =speedFactor * .95 ' adjust to get closer
ELSE

IF pos >= 0 THEN ' auto adjust return too short
speedFactor = speedFactor * 1.5

END IF
END IF

‘***************** wait for cutting start position ********************
DO
LOOP UNTIL CMDPOS >= 0 'wait for cutting starting position

'***************************** test code *******************************
pos=ENCPOS2 ' read input position
value=compValue-pos ' calculated cut distance
IF value > max THEN

max=value ' maximum cut value
END IF
IF value < min THEN

min=value ' minimum cut value
END IF
compValue= compValue + adjust 'next compare position

LOOP UNTIL INCHAR(1) >0 ' stop the cycle request?
GEAROFF ' disable gearing

'***************************** test code ********************************
PRINT#1,"maximum=";max / GEARRATIO,"minimum=";min / GEARRATIO

DO ' wait for ramp down
LOOP UNTIL ENCSPD2=0
END

Electronic Gearing 187

8.11 – Electronic Gear Box Application

This application requires a ratio between the master velocity and the servo motor. This example simulates a gearbox with a
5:1 reduction. The master source is a quadrature Encoder input.

Program Example (gearbox.prj included):

'***************** Gear box application program*****************

ACCEL = 50 ‘ input rate limit
ABSPOS=0 ‘ set Abspos=0 and Encpos2=0
FOLERR =2 ‘ servo position error limit = 2 units
WNDGS=1 ‘ enable servo drive
GEARRATIO = .2 ‘ 5:1 reduction
GEAREXT ‘ master source Encoder 2 input
GEARON ‘ enable gearing
DO ‘ continuous loop
LOOP UNTIL 1=2
END

188 Electronic Gearing

8.12 – Manual Control Motion Application

This application requires the motor to follow a manually operated Encoder signal. The Encoder is enabled when input 5 is
activated and becomes disabled when input 5 is deactivated. If input 5 is active and input 6 is activated a finer control of the
motor is enabled. In the user program Configuration Encoder Folder enter the input encoder line count into the Encoder 2
Line Count text box.

Program Code (manmot.prj included):
ACCEL=50 ‘ input rate limit
ABSPOS=0 ‘ set Abspos=0 and Encpos2=0
FOLERR =2 ‘ servo position error limit = 2 units
WNDGS=1 ‘ enable servo drive
GEARRATIO = 1 ' 1 revolution of encoder moves 1 revolution of motor
GEAREXT ' master source Encoder 2 input
ON IN(5)=1 INTR1 ' go to INTR1 if IN(5)=1 and INTR1 is ON
ON IN(5)=0 INTR2 ' go to INTR2 if IN(5)=0 and INTR2 is ON
INTRON1 ' enable INTR1
DO ' continuous loop

DO ' move the motor with the encoder
IF IN(6)=1 THEN

GEARRATIO=.05 ' 20 revolution of encoder moves 1 revolution of motor
ELSE ‘ IN(6)=0

IF GEARRATIO <> 1 THEN
GEARRATIO=1 ' 1 revolution of encoder moves 1 revolution of motor

END IF
END IF

LOOP UNTIL IN(5)=0
‘ …… ' program statements
INTROFF1 ' optional disable INTR1
‘ …... ' program statements
INTRON1 ' optional enable INTR1

LOOP UNTIL 1=2
END

INTR1:
GEARON ' enable gearing
INTRON2 ' enable INTR2

RETURN
INTR2:

GEAROFF ' enable gearing
INTROFF2 ' disable INTR2

RETURN

Troubleshooting Guide 189

Section 9

Troubleshooting
Guide

190 Troubleshooting Guide

Q. I can=t establish communication with my control.
 What could be the problem?

A. Insure that the connections are correct. See
Figure 3.13 for assistance. Check to make sure that
the communication parameters are set correctly.

Q. When I try to run my program my motor runs
away. What could be wrong?

A. The encoder of the motor may not be functioning
or incorrectly connected with the encoder port.
Verify the encoder connection, refer to Figure 3.8,
and that the encoder is working. You can verify that
the encoder is working by either using an oscilloscope
or making sure you are receiving an encoder position
(encpos).

Q. The OVER TEMPERATURE LED is illumi-
nated. What could be the problem?

A. The over temperature LED tells you that the
maximum internal temperature of the drive has been
exceeded and the unit has shut down to protect itself.
 Turn off the control / drive and let it cool then turn it
back on. It should work. The other option is to find
a way to cool the drive. Frequent over temperature
shutdowns may indicate that a cooling problem exists
in the control cabinet where the TDC is mounted.

Q. When I press a button connected to my run input
the motor does not turn, why?

A. The switch may not be connected properly. See
Figure 3.9 for a connection diagram. The motor could
be connected improperly. Check the encoder and
the phasing. Check to see if there is power to the
unit. The program could also be waiting for another
input from another device or switch. Hall effect or
commutator is wired incorrectly. An over current or
temperature condition may have occurred. Check the
LED=s on the unit.

Q. After checking my connections and verifying that
they are correct, my motor still does not turn when I
start the program.

A1. Make sure that the system is tuned. This can be
done by checking if there are values Kp, Kd, Ki,
Kvff in the configuration screen or check them in
terminal mode by querying the controller. If the
system is tuned, use a voltmeter and check to see if
there is a servo command signal at the Servo CMD
output during a move command.

A2. The ENABLE input to the drive has not been
properly connected or activated. Insure that the
ENABLE input is connected to an active current
sinking circuit or switch that is connected with
common. The WNDGS command must be set
equal to 1 to enable the drive.

Q. When my system activates a sensor the controller
does not seem to recognize it, why?

A. Check to make sure that you are operating in the
correct mode, i.e. if your using an NPN sensor, make
sure you are in sink mode, a PNP source mode.
Check the connections and make sure you have
power to the sensor.

Q. My outputs don=t turn on when they are suppose
to turn on. What is the problem?

A. Like the inputs the outputs must also be sink or
source. Be sure that the setting for the I/O type is the
correct setting for your I/O. NPN, sink; PNP,
source.

Q. The OVER CURRENT LED is illuminated.
What do I do?

A. If the over current LED is lit, then chances are
that there is a short in the cable or the motor. Ohm
out the cable for any shorts. If no shorts are found in
the cable check the motor for shorts, phase to phase
and phase to case.

If more information is needed or additional
assistance is required contact our
Bristol Plant Motion Application
Engineering Department at 1-800-
SUPELEC (1-800-787-3532) between 8:00

Troubleshooting Guide 191

a.m. and 5:00 p.m. EST.

Glossary 191

Section 10

Glossary

192 Glossary

ABSOLUTE MODE - Motion mode in which all motor
movements are specified in reference to an electrical
home position.

ABSOLUTE POSITION - A data register in the Con-
troller which keeps track of the commanded motor
position. When the value in this register is zero, the
position is designated "Electrical Home".

ACCELERATION - The rate at which the motor speed
is increased from its present speed to a higher speed
(specified in units/second/second).

ACCURACY (of step motor) - The noncumulative
incremental error which represents step to step error in
one full motor revolution.

AMBIENT TEMPERATURE - The temperature of the air
surrounding the motor or drive.

AMPLIFIER - Converts or amplifies low level signals to
high voltages and current for use with the motor.

ASCII - (American Standard Code for Information
Interchange). A format to represent alphanumeric and
control characters as seven-or eight-bit codes for data
communications. A table of the ASCII codes appears
on page 196.

ATTENTION CHARACTER - <nn, where "nn" is a
unique integer from 1-99 (set by use of the unit ID#
select switches) that is assigned to a Motion Controller
arrayed in a multi-Controller system. The Attention
Character directs the program command to the specified
Motion Controller.

BACK EMF - The voltage that a permanent magnet
generates when it is rotated. This has a linear relation-
ship with speed and is related to the voltage constant or
back EMF constant of the motor, KE which is expressed
in units of :

BANDWIDTH - A given range of frequencies that a
motion system can respond to commands.

BAUD RATE - The rate of serial data communications
expressed in binary bits per second.

BCD - (Binary Coded Decimal), a format to represent the
digits 0 through 9 as four digital signals. Systems using
thumb wheel switches may program commands using

BCD digits. A BCD digit uses a standard format to
represent the digits 0 through 9 as four digital signals.

The following table lists the BCD and complementary
BCD representation for those digits. The Motion
Controller uses the complementary BCD codes because
the signals are active low.

 BCD code table (0 = low state, 1=high state)

Complementary
Digit BCD Code BCD Code
0 0000 1111
1 0001 1110
2 0010 1101
3 0011 1100
4 0100 1011
5 0101 1010
6 0110 1001
7 0111 1000
8 1000 0111
9 1001 0110

To represent numbers greater than 9, cascade the BCD
states for each digit. For example, the decimal number
79 is BCD 0111:1001.

BRAKING TORQUE - The torque that is required to
bring the motor from a running condition to a stop.
This also describes the torque that is developed during
a dynamic braking cycle.

CLEAR - Input or Command to immediately halt all
motor motion and program execution.

COLLECTORS (OPEN) - A transistor output that takes
the signal to a low voltage level with no pull-up device;
resistive pull-ups are added to provide the high voltage
level.

COMMUTATION - The function of directing current or
voltage to the correct motor phase to produce torque in
a motor.

COMMUTATOR - A mechanical device either optical
or electromechanical in nature that connect
and / or switch the motor phases to the power source

CYCLE START - Command to initiate program execu-
tion.

CYCLE STOP - Command to stop program execution.

DAISY-CHAIN - A method to interface multiple Motion
Controllers via RS485 to a single host using only one
serial port.

VOLTS
1000 RPM

Glossary 193

DAMPING - A method of applying additional friction or
load to the motor in order to alleviate resonance and
ringout. With servo motors, damping can also be
adjusted by adjusting the PID loop gains.

DECELERATION - The rate in which the motor speed
is decreased from its present speed to a lower speed
(specified in units/second/second).

DEVICE ADDRESS - A unique number used to assign
which Motion Controller in a multi-drive stepper system
is to respond to commands sent by a host computer or
terminal. Device addresses from 1 - 99 are set by means
of the ID # select switch. "00" is reserved to address all
Motion Controllers in a system. Factory default is 01.

DUTY CYCLE - The amount of Aon@ time versus the
Aoff@ time. This is usually expressed in terms of a per-
centage of the Aon@ time versus the total time. This is
given by the following equation:

DWELL - See "WAIT".

ELECTRICAL HOME - The location where the motor
position counter (ABSPOS) is zero.

ENCODER - a mechanical device attached to the motor
that provides a pulse output. This output can be used
to determine position, speed or acceleration. The
encoder may also be an absolute encoder or incre-
mental.

FEEDBACK - A signal that is transferred from the
output, in this case the servo motor, back to the input
where it is compared to see if a particular goal has been
achieved.

FEEDHOLD - The act of stopping the motor while in
motion by causing it to decelerated to a stop without
loss of position.

FEEDRATE - The speed or velocity (in units per sec-
ond) at which a move will occur.

FILTER TIME CONSTANT - The time it takes for a step
input to reach 63% of its value at the filter output.

FRICTION - Force that is opposite to the direction of
motion as one body moves over another.

FULL-STEP - Position resolution in which 200 pulses
corresponds to one motor revolution in a 200 step per
revolution (1.8 degree) motor.

HALF-STEP - Position resolution in which 400 pulses
corresponds to one motor revolution for a 200 step per
revolution (1.8 degree) motor.

HALL SENSOR - A device which is used as feedback
to correctly commutate the motor. Typically con-
structed of a magnetic wheel and hall effect sensors.

HANDSHAKE - A computer communications technique
in which one computer's program links up with an-
other's. The Motion Controller uses a software "Xon,
Xoff" handshake method. See "XON" below.

HOST - The computer or terminal that is connected to
the HOST serial port on the motion controller, and is
responsible for primary programming and operation of
the controller.

INCREMENTAL MODE - Motion mode in which all
motor movements are specified in reference to the
present motor position.

INDEXER - A Microprocessor-based programmable
motion controller that controls move distance and
speeds; possesses intelligent interfacing and in-
put/output capabilities.

INDEX FROM RUN - See MARK REGISTRATION

INERTIA - Measurement of a property of matter that a
body resists a change in speed (must be overcome
during acceleration).

INERTIAL LOAD - A "flywheel" type load affixed to
the shaft of a step motor. All rotary loads (such as gears
or pulleys) have inertia. Sometimes used as a damper to
eliminate resonance.

JOG MOVE - moves the motor continuously in a
specified direction.

LOAD - This term is used several ways in this and
other manuals.

LOAD (ELECTRICAL): The current in Amperes
passing through a motor's windings.
LOAD (MECHANICAL): The mass to which motor
torque is being applied (the load being moved by
the system).

LOAD (PROGRAMMING): Transmits a program
from one commuter to another. "DOWNLOAD" re-
fers to transmitting a program from a host computer
(where a program has been written) to the Motion
Controller where it will be used. "UPLOAD" refers
to transmitting a program from a Motion Controller
back to the host computer.

MARK REGISTRATION - A motion process (usually used in web handling applications) whereby a mark

TON

TOFF + TON

DCYCLE = x 100

194 Glossary

placed on the material is sensed (e.g., through the use
of an optical sensor) and, following detection of this
mark, the material is moved (indexed) a fixed length.

MECHANICAL HOME - The position where a switch
input is used as a reference to establish electrical home.

MOVE TO MECHANICAL HOME - Function which
allows the Motion Controller to move the motor and
seek a switch to establish electrical home and set Ab-
solute Position = zero.

NESTING - The ability of an active subroutine to call
another subroutine. The Motion Controller can nest up
to 16 levels.

NON-VOLATILE MEMORY - Data storage device that
retains its contents even if power is removed. Examples
are EEPROM, flash memory, and battery-backed RAM.

OPTO-ISOLATION - The electrical separation of the
logic section from the input/output section to achieve
signal separation and to limit electrical noise. The two
systems are coupled together via a transmission of light
energy from a sender (LED) to a receiver (photo transis-
tor).

PARITY -- An error checking scheme used in serial
communications (via the RS-232 or RS-485 port) to
ensure that the data is received by a Motion Controller
is the same as the data sent by a host computer or
terminal.

REGENERATION - A condition when the motor enters
a Abraking@ mode. The motor acts as a generator be-
cause of the transfer of kinetic energy being converted
into electrical energy through the motor.

RESOLUTION - The minimum position command that
can be executed. Specified in steps per revolution or
some equivalent.

RESOLVER - A feedback device that converts shaft
position into an analog signal.

RINGOUT - The transient oscillatory response (prior to
settling down) of a step motor about its final position.
Note: a small wait or dwell time between moves can
alleviate ringout problems.

RMS CURRENT - Root Mean Square Current. In an
intermittent duty cycle application, the RMS current is
equal to the value of steady state current which would
produce the equivalent resistive heating over a long
period of time.

RMS TORQUE - Root Mean Square Torque. In an
intermittent duty cycle application, the RMS torque is
equal to the value of steady state torque which would
produce the equivalent resistive heating over a long
period of time.

RS232-C - EIA (Electronic Industries Association)
communication standard to interface devices employing
serial data interchanges. Single-wire connections for
transmit and receive, etc.

RS-485 - EIA (Electronic Industries Association)
communication standard to interface devices employing
serial data interchanges. Two-wire connections (differ-
ential circuits) for transmit and receive, etc. Better than
RS-232 for long wire runs and multi-drop circuits with
many devices.

SINKING - An input that responds to, or output that
produces, a "low" level (signal common or low side of
the input/output power supply) when active.

SOURCING - An input that responds to, or output that
produces, a "high" level (the voltage used for the
input/output power supply) when active.

SUBROUTINE - A sequence of lines that may be ac-
cessed from anywhere in a program to preclude having
to program those lines repetitively. This allows shorter,
more powerful, and more efficient programs. See also
NESTING.

TORQUE - Product of the magnitude of a force and its
force arm (radius) to produce rotational movement.
Units of measure are pound-inches, ounce-inches,
newton-meters, etc.

TORQUE CONSTANT - A number representing the
relationship between motor input current and motor
output torque. Typically expressed in units of:

torque
amp

Glossary 195

TRANSLATOR - A motion control device (also called
"translator drive") that converts input pulses to motor
phase currents to produce motion.

WAIT - A programmed delay or dwell in program execu-
tion (specified in seconds).

TTL - Also called T2L, Transistor - Transistor - Logic

VOLTAGE CONSTANT (or BACK EMF CON-
STANT) - A number representing the relationship
between the back EMF voltage and angular velocity.
Typically expressed in:

XON / XOFF - A computer software "handshaking"
scheme used by a Motion Controller.
The Motion Controller sends an XOFF character (ASCII
Code 19) when it receives a command string with a
Carriage Return and has less than 82 characters re-
maining in its host serial port buffer. The Controller
sends an Xon when available buffer space reaches 100
characters or in response to an ID attention with ade-
quate buffer space remaining. Since it is impossible for
the host device to immediately cease transmissions, the
next three characters (subject to the total serial buffer
capacity of forty characters) received subsequent to the
Motion Controller sending the XOFF character will be
stored in the Motion Controller's serial buffer (a memory
dedicated to store characters that are in the process of
transmission).

Similarly, the Motion Controller will not transmit data if
the host device has sent an XOFF character to the
Controller; Motion Controller transmissions will resume
when the Controller receives an XON character.

VOLTS
1000 RPM

196 Glossary

ASCII Table

ASCII
Char

Dec
Code

ASCII
Char

Dec
Code

ASCII
Char

Dec
Code

ASCII
Char

Dec
Code

Null 0 Space 32 @ 64 ` 96

SOH 1 ! 33 A 65 a 97

STX 2 A 34 B 66 b 98

ETX 3 # 35 C 67 c 99

EOT 4 $ 36 D 68 d 100

ENQ 5 % 37 E 69 e 101

ACK 6 & 38 F 70 f 102

BELL 7 > 39 G 71 g 103

BS 8 (40 H 72 h 104

HT 9) 41 I 73 I 105

LF 10 * 42 J 74 j 106

VT 11 + 43 K 75 k 107

FF 12 , 44 L 76 l 108

CR 13 - 45 M 77 m 109

SO 14 . 46 N 78 n 110

SI 15 / 47 O 79 o 111

DLE 16 0 48 P 80 p 112

DC1 17 1 49 Q 81 q 113

DC2 18 2 50 R 82 r 114

DC3 19 3 51 S 83 s 115

DC4 20 4 52 T 84 t 116

NAK 21 5 53 U 85 u 117

SYNC 22 6 54 V 86 v 118

ETB 23 7 55 W 87 w 119

CAN 24 8 56 X 88 x 120

EM 25 9 57 Y 89 y 121

SUB 26 : 58 Z 90 z 122

ESC 27 ; 59 [91 { 123

FS 28 < 60 \ 92 | 124

GS 29 = 61] 93 } 125

RS 30 > 62 ^ 94 ~ 126

DEL 31 ? 63 _ 95 DEL 127

Glossary 197

Appendix A - CE Compliance 197

Appendix A
CE Compliance

Installation Requirements and Information

Certain practices must be followed when installing a TD servo drive or a TDC servo drive/controller in order to
meet the CE Electromagnetic Compatibility (EMC) Directive (89/336/EEC) and the Low Voltage Directive
(73/23/EEC). The TD family of products are components intended for installation within other electrical systems
or machines. The system or machine builder must ensure their system or end product complies with all applicable
standards required for that equipment, including overall CE certification. Following these practices will help ensure
(but cannot guarantee) that the machine in which these components are utilized will meet overall CE requirements.

Electromagnetic Compatibility Directive

In order to meet the various EMC Standards, all wiring must be done in accordance with the practices shown
in Figure 1.

With the addition of a suitable ac line filter, such as Corcom part number 15ET1 (connected externally), the TD
drive and TDC drive/controller meet all the applicable EMC emission and immunity standards on a Astand-alone@
basis:

EN55011, Class A: for Radiated and Conducted Emissions
IEC1000-4-3: for RF Radiated Immunity (RFRI)
IEC1000-4-4: for Electrical Fast Transient Immunity (EFT)
IEC1000-4-6: for RF Conducted Immunity (RFCI)

In order to achieve full CE compliance, an additional requirement must be met:
IEC1000-4-2: for ESD Immunity

To meet this requirement, the TD or TDC must be placed inside a metal enclosure, as shown in Figure 1.

Low Voltage Directive

1) These drives are to be operated in a pollution degree 2 environment as described in standard EN50178.

2) All of the control inputs and outputs are isolated from the main input power with a Abasic insulation rating@;
e.g., their impulse withstand voltage capability is 2.5kV (1.2 / 50 us) as referenced in EN50178. Control inputs
and outputs may need another level of protection against direct contact if such protection is required by the
standards governing the overall system or machine and its intended operating environment. It is the machine-
builder=s responsibility to provide this protection, if needed.

3) For electrical safety, and to protect personnel against direct contact with live electrical parts, the terminal cover
(provided with the unit) MUST be installed over the AC input, motor output, and External REGEN terminals.

4) All cautions and warnings listed throughout the operators manual MUST be followed to insure safe system
operation.

198 Appendix A - CE Compliance

WARRANTY AND LIMITATION OF LIABILITY

Superior Electric (the "Company"), Bristol, Connecticut, warrants to the first end user purchaser (the "purchaser") of equipment manufactured
by the Company that such equipment, if new, unused and in original unopened cartons at the time of purchase, will be free from defects in
material and workmanship under normal use and service for a period of one year from date of shipment from the Company's factory or a
warehouse of the Company in the event that the equipment is purchased from the Company or for a period of one year from the date of
shipment from the business establishment of an authorized distributor of the Company in the event that the equipment is purchased from an
authorized distributor.

THE COMPANY'S OBLIGATION UNDER THIS WARRANTY SHALL BE STRICTLY AND EXCLUSIVELY LIMITED TO REPAIRING OR
REPLACING, AT THE FACTORY OR A SERVICE CENTER OF THE COMPANY, ANY SUCH EQUIPMENT OF PARTS THEREOF WHICH
AN AUTHORIZED REPRESENTATIVE OF THE COMPANY FINDS TO BE DEFECTIVE IN MATERIAL OR WORKMANSHIP UNDER
NORMAL USE AND SERVICE WITHIN SUCH PERIOD OF ONE YEAR. THE COMPANY RESERVES THE RIGHT TO SATISFY SUCH
OBLIGATION IN FULL BE REFUNDING THE FULL PURCHASE PRICE OF ANY SUCH DEFECTIVE EQUIPMENT. This warranty does not
apply to any equipment which has been tampered with or altered in any way, which has been improperly installed or which has been subject
to misuse, neglect or accident.

THE FOREGOING WARRANTY IS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITA-
TION, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, and of any other obligations
or liabilities on the part of the Company; and no person is authorized to assume for the Company any other liability with respect to equipment
manufactured by the Company. The Company shall have no liability with respect to equipment not of its manufacture. THE COMPANY SHALL
HAVE NO LIABILITY WHATSOEVER IN ANY EVENT FOR PAYMENT OF ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, IN-
CLUDING, WITHOUT LIMITATION, DAMAGES FOR INJURY TO ANY PERSON OR PROPERTY.

Written authorization to return any equipment or parts thereof must be obtained from the Company. The Company shall not be responsible for
any transportation charges.

IF FOR ANY REASON ANY OF THE FOREGOING PROVISIONS SHALL BE INEFFECTIVE, THE COMPANY'S LIABILITY FOR DAM-
AGES ARISING OUT OF ITS MANUFACTURE OR SALE OF EQUIPMENT, OR USE THEREOF, WHETHER SUCH LIABILITY IS BASED
ON WARRANTY, CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR OTHERWISE, SHALL NOT IN ANY EVENT EXCEED THE
FULL PURCHASE PRICE OF SUCH EQUIPMENT.

Any action against the Company based upon any liability or obligation arising hereunder or under any law applicable to the sale of equipment,
or the use thereof, must be commenced within one year after the cause of such action arises.

The right to make engineering refinements on all products is reserved. Dimensions and other details are subject to change.

Printed in U.S.A.400030-131 Rev. G ECN # 84626

383 MIDDLE STREET � BRISTOL, CT 06010

(860) 585-4500 � FAX: (860) 589-2136

Distribution Coast-To-Coast and International

Superior Electric SLO-SYN products are available worldwide through an extensive
authorized distributor network. These distributors offer literature, technical
assistance and a wide range of models off the shelf for fastest possible delivery
and service.

In addition, Superior Electric sales and application engineers are conveniently located
to provide prompt attention to customers’ needs. Call Superior Electric customer service
for ordering and application information or for the address of the closest authorized
distributor for Superior Electric’s SLO-SYN products.

In U.S.A. and Canada
Superior Electric

• Customer Service: 1-800-787-3532
• Product Application: 1-800-787-3532
• Product Literature Request: 1-800-787-3532
• Fax: 1-800-766-6366
• www.danahermotion.com
383 Middle Street
Bristol, CT 06010
Tel: 860-585-4500
Fax: 860-589-2136

