
Using an Operator Interface Terminal (OIT) With a S200
Position Node Drive

Introduction

Many machine manufacturers find it useful to use an Operator Interface Terminal (OIT)

with a single axis motor/drive system. This white paper discusses some of the issues in

developing an a customized OIT graphic interface with the S200 Position Node Drive as

our team decided to choose an OIT and configure it for a wide range of machine

configurability.

The task

Our team set out to design a system that allowed easy configuration of a precision linear

positioning system. We decided that the S200 Position Node drive could be pre-

configured to perform virtually all of the main tasks. We wanted to allow the user to be

able to adjust certain performance characteristics such as stop positions, speeds, ramp

rates, etc. An off-the-shelf Operator Interface Terminal seemed like the perfect solution.

OIT Requirements

The S200 Position Node uses Modbus serial communications as a slave device. The user

can read or write 32 bit registers and the data can be formatted as long or float. Therefore,

the OIT must have 32-bit read/write access capabilities, a graphical development

environment, Modbus Master support, RS232 port (38,400 or 19200 Baud), and support

macros or scripts. We wanted simplicity, reliability, and the ability to communicate to the

user as much information as possible to be unambiguous as to what to do. A CRT touch

screen unit seemed to be the logical choice. Since the S200 Position Node uses a Mobus

protocol and there are many OITs that support this protocol we felt confident to move

forward.

Modbus Communication With an OIT

One of the first steps in developing an OIT is to communicate with the drive was to

research capabilities. We found some of the terminology a bit confusing but easily made

the connection. Terms such as PLC (device it is communicating with), Interval Packets

(number of registers addressed per communication), and Station Number (Modbus

address) were quickly understood. We needed an OIT with Modbus that could support

the following requirements:

Communication Interface : RS232

BAUD rate : 38400 or 19200 BPS

Bits/character : 8 bits

Parity : Default Even (Settable to odd with S13-3 => Down)

Start bit : 1

Communication Type: Modbus RTU Master

 Addressing : This is also referred to as the Modbus address.

Set this to the corresponding address on the drive

(PLC).

This is set on the drive through switches S11 and

S12 for address 0-99.

 (Station Number = S12*10 + S11)

 Interval of block packs: 0

The “interval of block packs” is the number of

commands that are combined and sent to the drive

(PLC) in one message. The S200 position node

drive will only process one command at a time. The

value of zero tells the OIT not to combine any

message together, but rather send each message out

individually. Stated another way; The S200 Position

Node supports only one register read or write per

Modbus command.

Modbus ProtocolDiscussion

Using the OITs made Modbus communications easy and we found that we didn’t need to

understand the protocol and become experts at it. However, a basic understanding of the

Modbus protocol was found to be very helpful.

Modbus is a request/reply (sometimes called client/server or master/slave) protocol. The

S200 Position Node acts as a server and will not communicate unless asked to. Therefore

for every request the OIT will wait for a response. No other requests will be sent out until

the pending response is received or a timeout has occurred. If a timeout occurs then the

OIT will generate a communication error. What the OIT does with the communication

error will depend on the OIT and how the developer configured it. A common action on a

communication error is to display a popup window (see Figure 1). The PLC terminology

refers to the S200 Drive.

Figure 1 An Example Popup window On A Communication Error

Modbus is an application layer (OSI 7) messaging protocol.
i
 Our implementation of

Modbus can be defined simply by stating that a Modbus communication from the OIT

can either read a register or write a register. To do this, Modbus has defined a protocol

data unit (PDU) as shown in Figure 2. The PDU is made up of an address field (Addr), a

function code (FC), the data (Data), and a checksum (CRC). The address refers to the

identity of the device (the Modbus address of the S200) that you wish to communicate

with and is set on the S200 drive through switches S11 and S12. The function codes will

be discussed in the “Function Codes” section. The data is the information sent/received

from the drive and the CRC is the calculated checksum. The checksum will be calculated

for the developer by the OIT design software and we need not concern ourselves with the

method used to calculate the checksum. However, interested reader can refer to the sited

reference
ii
 for details on the CRC checksum.

Addr FC Data CRC

Figure 2 Modbus Serial Line Protocol Data Unit (PDU)

The Modus data field consists of 3 components; The register address of the variable

inside the S200 PN that you wish to access, the number of data bytes that are being

worked with, and in the case of a write request, the actual data being written to the

register. Thee S200 Position Nude has bot variable names and a Modbus register

association. This is well documented in the S200 Position Node User’s guide.

Function Codes

The Modbus protocol uses function codes (FC) as commands.
i
 To communicate to the

S200 drive only the public function codes that we will use are the “Read from Holding

Register” (FC=3) and “Write to Holding Register” (FC=16).

Register Addressing

There are two common register (or

memory) configurations. The first memory

configuration places the most significant

byte (MSB) in the lowest address space

(big endian – see inset), while the second

memory configuration places the least

significant byte (LSB) in the lowest

address space (little endian – see inset).

The reason this matters when developing

an OIT is depending on the drive and the

OIT memory architecture we may need to

swap words in order to get the correct

data. The OIT/Drive that was employed in

this white paper required a word (16-bits)

swap. In the OIT that we selected we

found that we could accomplish this by

using a 5x command instead of the 4x

command. The 5x command swaps the

words for us, while the 4x command does

not. You may need to perform the word

swapping in a macro or script if the OIT

does not support this function.

The S200 drive contains 32-bit registers

and Modbus uses big endian, 16-bit words access. So in order to access the S200 drive a

double 16-bit access with a word swap is required. Using the word swapping command

0x01

0x02
0x03

0x04

address

addr + 2

addr + 1

addr + 3

Memory

Register

0x01020304

MSB LSB

Big Endian

0x0102

addr addr+1

0x0304

Word Access (16 bit)

0x01 0x02 0x03 0x04

Byte Access (8 bit)

addr addr+1 addr+2 addr+3

Little Endian

0x04
0x03
0x02
0x01

address

addr + 2
addr + 1

addr + 3

Memory

Register

0x01020304

MSB LSB

0x0403
addr addr+1

0x0201

Word Access (16 bit)

0x04 0x03 0x02 0x01

Byte Access (8 bit)

addr addr+1 addr+2 addr+3

(5x command) the Modbus address needs to be increased by one. The OIT decrements

the Modbus address by one and then retrieves the two 16-bit words performing the word

swap. An example is listed in the OIT Jog Example section.

Parameters and Commands

The S200 Position Node has all features mapped to registers. Some variables can be used

to adjust performance and are called variables or parameters, such as speed. Other

registers cause the drive to execute a function, such as STOP, and are called commands.

An abbreviated S200 position node command table
iii

is listed in Table 1. These

commands are used in the OIT Jog Example. The full command table is presented in the

S200 Position Node User’s Guide
iii

.

Table 1 S200 Position Node Drive - Abbreviated Command

Command

Name

Modbus

address

Description

STOP 508 1 = Force velocity to 0

ENABLE 2404 1=enable drive

0=disable drive

MJOG 290 Jog at VJOG speed and ACCR/DECR Ramps

VJOG 578 Jog command (velocity) while in Motion Tasking or Gearing

Modes

OIT Jog Example

This is a simple example (Figure 3) that allows the new OIT developer a chance to learn

some basics of OIT / S200 Position Node Drive communication. This example

enable/disable the drive, allows the user to set the jog speed, start jogging the motor, and

stop jogging the motor. The “Disable” button sends a Modbus command (5x) to address

2405 (Modbus address + 1). Recall we need to add one to the Modbus address when

using the word swapping command (5x), so the Modbus address from Table 1 (2404)

turns into 2405. To software disable the drive the data that is sent to Modbus address

2404 must be a zero. The Enable button sends the same command to the drive as the

Disable button except that the data is set to a one. The activation of the Jog button sends

a one to address 579 (Modbus address+1). This jogs the motor assuming that the drive

has been enabled. Set the jog velocity by writing to Modbus address 578 (remember to

add 1 to the address when using the word swap command).

Addr=2405

32 bit write (5x)

Data = 0

Addr=2405

32 bit write (5x)

Data = 1

Addr=509

32 bit write (5x)

Data = 0

Addr=291

32 bit write (5x)

Data = 1

Addr=579

32 bit Read/Write

(5x)

Figure 3 Operator Interface Terminal (OIT) Jog Example

Conclusion

Some machines can benefit greatly from having an Operator Interface terminal to allow

the user to adjust some parameters of the machine performance. We set some goals of

being able to modify such parameters. We selected an OIT Terminal and programmed it

to perform these tasks. Foregoing the issues required to make the interface ergonomic for

the user we discovered how the ‘off the shelf’ operator interface terminals operate and

some of the advantages to certain models. Since the S200 Position Node is a configurable

drive and not a programmable drive we found it advantageous to have some higher-level

of features in the OIT. Modbus communications and register sets made the task simpler

but we did find a few challenges such as numerical processing capabilities of the OIT.

Our mating an OIT with the S200 Position Node drive was successful in every goal set.

References

http://www.maplesystems.com/products/silverseries/silverseries_ezw.htm

i
 MODBUS Application Protocol Specification V1.1b, http://www.Modbus-IDA.org, December 28, 2006.

ii
 MODBUS Over Serial Line Specification & Implementation Guide V1.0, http://www.modbus.org,

December 02, 2002.
iii

 S200 Position Node User’s Guide Revision B, http://www.danahermotion.com, Oct. 23, 2007.

